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Abstract: In this work a new approach is presented for the classification and segmentation of texture images, where a
different statistical methodology and criterion for texture characterization is proposed. The scheme, in both problems,
uses the concept of Discrete Wavelet Frames for the appropriate frequency decompositions, as applied to 2-D signals,
and a distance measure based on the evaluation of parametric scatter matrices of the texture images to be segmented or
classified. Experiments yielding excellent results are presented for both algorithms.

1 Introduction and problem definition

In computer vision tasks, including multimedia appli-
cations (e.g., [8]), often texture information must be clas-
sified and segmented for recognition purposes. Several
statistical approaches have been proposed in the past for
texture analysis [3],[6],[11], which later were enhanced
in terms of the information they preserve [9],[1]. How-
ever, somedisadvantages such as increased computational
cost and irreversibility, which are inherent with those ap-
proaches, can be eliminated using the wavelet transform
[7], [10]. In this paper, the problem of texture classifi-
cation and segmentation is approached with algorithms
based on the concept of wavelet frames. The aim of the
analysis is to determine corresponding characteristics to
each texture content so that each is uniquely defined. Such
a distinction takes place in the frequency domain, where
the input image is decomposed to different frequency lev-
els using the Discrete Wavelet Frames (DWF). Once these
characteristics are deduced, statistical properties are ap-
plied to conclude those features necessary to describe and
classify the texture content. Although the philosophy to
this approach has been introduced in the past [12], our
scheme differs in the statistical methodology for evalu-
ating texture parameters and in the criterion by which a
texture point is assigned to a particular subregion of the
image to be segmented or classified. The presented work
is organized as follows. In the second section, the un-
derlying theory of the basic filters, the necessary decom-
position by upsampling and the use of Discrete Wavelet
Frames in the form of an algorithm, as applied to 2-D
signals, are described. Next, in Section 3, a classification
method is introduced, which is based on the maximum
likelihood criterion. The segmentation procedure, where
a representative vector for the different frequency layers
and the distance criterion based on the texture statistics
have been defined, is explained in the fourth section. The
experimental results for both classification and segmen-
tation are presented in Section 5.

2 Preliminary analysis
The fundamental tools used for building the processing

of texture images are a group of filters and the concept
of wavelet frames. A lowpass filter H(z) and its comple-
mentary highpass G(z) form the basis for generating more
filters by upsampling, so that the whole range of bands
is covered. For these basic types of filters the following
hold true [12], respectively:
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in the frequency domain and
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in the time domain. In addition, the generated filters are
characterized by locality, thus, taking advantage of the
periodicity of signals. Such filters can form orthogonal
wavelet base functions of the form [7]:
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where are the wavelet base functions, is the scale
index and is the translation index. And so the input
signal can be decomposed into wavelet coefficients cor-
responding to different layers of frequency resolution.
In order, however, to consider characteristics of texture,
such as periodicity and translational invariance, the Dis-
crete Wavelet Frames (DWF) are used to define a vector
representing the filters necessary for decomposition at the
different frequency levels. All of the above should be ex-
tended into 2-D so that it becomes functional for images
with texture, the features of which must be extracted. This
can be accomplished by forming wavelet bases which re-
sult from the cross product of separable bases in each
direction, as follows:
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where 1 2 3 are the 2-D wavelet base functions,
and are as defined in (3). Thus, the analysis is com-
putationally less complicated, since rows and columns of
the image are processed separately as though they were
1-D signals. The decomposition algorithm for images
(2-D) is described below:
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where is an image point, is upsampling with a
factor of , 1 1 2 1 3 1 are the details of the 1
layer and 1 the approximation of the decomposition.

3 Classification
The previous analysis can be applied to input texture

images to distinguish frequency layers, yielding the
following representative vector:

1 1 (6)

where each element of has been determined ac-
cording to the analysis in (5) and the dimension of the
vector is 3 1, composed of 1 detail com-
ponents and the approximation at level component. It
is evident that in each resolution level three new feature
channels are obtained. The first analysis layer corre-
sponds to high frequencies, while an increasing order of
layers represents decreasing frequencies. Thus, depend-
ing on the value of the corresponding vector coefficient,
the direction and the amount of frequency contribution is
deduced at a given image point . Different textures
are distinguished based on these last two characteristics.

In this work the discrimination of different textures
is only based on the 1 high frequency compo-
nents. Each texture class is then characterized by the
variances of the high frequency components , say

2 ( 1 1). Indeed, the mean value of each
high frequency component,as well as the correlation coef-
ficients between different components could be assumed
to be zero. There are two reasons justifing the above:
first,because a texture is best described through the fre-
quency channels and not through the difference of the ap-
proximation and second, because two images of the same
texture content may have different variances in the ap-
proximation channel only due to differences in contrast.
Also, assuming Gaussian probability density functions
with the previous statistics, the maximum likelihood cri-
terion gives the distance of a test texture from a class
,
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where the first sum is taken over all image points, and 2

is the variance of the component of class .

4 Segmentation
The same image decomposition and statistical analy-

sis could be used for texture segmentation. Nevertheless,

for the segmentation purpose all the components of the
decomposed image should be used. In this work, the
variances of the components are assumed as known from
a previous learning process, considered in a subsequent
paragraph. The mean value of the approximation compo-
nent is also assumed as known.

Taking into consideration all parameters characteriz-
ing a texture content, a given point belongs to a known
texture content, if its distance from the given texture is
minimal. Assuming that the probability density function
of the texture images is a Gaussian one, then the distance
of a point represented by the vector from a
texture content with variances 2 and mean value is
determined as follows:
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Following distance evaluation so that it is determined
to which texture content each image point belongs, an
algorithm for merging connected regions is used. This
is necessary because of small point-classification errors
of the statistical method described earlier. A bayesian
approach is adopted based on a Markov random field
model of the texture labels. Theoptimization is performed
using the Highest Confidence First (HCF) algorithm [4].

As it was described, at the beginning of the segmen-
tation process the the variances of the components are
required. The corresponding regions from which these
initial parameters are calculated can be given at the input
by the user. It is possible, however, to apply hierarchical
clustering algorithms [5] so that their initial parameters
are estimated without the user’s supervision. The only
given information at the input is the number of different
texture contents present in the image. To achieve this,
at the initial stage the whole image is divided into non-
overlapping windows of size 32 32. The inter distances
between these windows are evaluated using the sum of
squared distances for each component:
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Other distance criteria can be used as well, such as a
weighted sum of differences, where the size of the clusters
to be compared is an important factor. In any case, those
neighboring windows with the smallest distance measure
are merged and the corresponding parameter is estimated.
This procedure is repeated, for another such pair of win-
dows, up to the point where there is a sufficient number of
neighboring pairs of windows from almost all regions of
the initial image so that each pair from a region has a com-
mon parameter. Then, those parameters, which are further
from each other, are kept, based on the distance measure
given above. Next, a global clustering takes place on all
windows of the image using as initial parameters those
resulting from the previous step. Thus, the initial param-
eters for the segmentation procedure are obtained. The



reason for breaking down the evaluation of these param-
eters into the intermediate steps described earlier is due
to the appearance of large variances for neighboring win-
dows from two different texture contents, which results
into evaluation of parameters based only on neighboring
windows of the same texture content.

Figure 1. Brodatz Images:D1, D10, D11,
D17, D19, D3, D5, D51, D52, D6, D9

5 Experimental results

5.1 Classification Results
The data base used for the classification experiments

consists of eleven images of different texture content from
the Brodatz album [2], shown in Figure 1. The DWF algo-
rithm is applied to analyze the images from the data base.
Then, the variances 2 are calculated in order to character-
ize each texture image, based on the previously described
classification algorithm. In addition, so that the test data
set is enlarged, the images of the data base are divided
into smaller size images (blocks) of 32 32 dimension.
This results into a data set of 2580 subimages. Then,
each subimage is classified as one of the database images.
The statistical results of this experimental procedure are
shown in Table 1. In this table the percentage of correct
classifications is given, as well as the misclassifications.

In our case, the degree of difficulty of the classifica-
tion task was considerably higher than other experiments,
since the produced data set containted a much larger num-
ber of subimages, as each image is divided in 240 subim-
ages. The analysis was performed at a depth value of 5,

total
blocks

misclassifications percent

D1 240 none 100.00%
D10 240 D19:2 D5:7 D9:4 94.58%
D11 225 D52:1 99.56%
D17 240 D3:1 D9:4 97.92%
D19 210 D11:1 D9:3 98.10%
D3 240 D17:1 D52:2 98.75%
D5 240 D10:4 D19:3 D9:5 95.00%
D51 240 D1:1 D10:4 97.92%
D52 225 D11:9 D3:4 94.22%
D6 240 D1:2 D17:2 D5:1 97.92%
D9 240 D10:3 D11:2 D17:6 D52:1 95.00%

Table 1. Results of classification for 32 32
blocks.

which corresponds to fifteen element feature vectors since
the approximation value was omitted. The total number
of misclassified texture subimages was 73 out of 2580,
corresponding to 97.17% correct classification. The same
results are given (Table 2) for 64 64 blocks, where, as ex-
pected, the percentage of correct classifications is higher,
and for our method near to 100% (99.66%).

total
blocks

misclassifications percent

D1 56 none 100.00%
D10 56 none 100.00%
D11 49 none 100.00%
D17 56 D9:1 98.21%
D19 49 none 100.00%
D3 56 none 100.00%
D5 56 none 100.00%
D51 56 D10:1 98.21%
D52 49 none 100.00%
D6 56 none 100.00%
D9 56 none 100.00%

Table 2. Results of classification for 64 64
blocks.

Figure 2. Segmentation for the synthetic im-
age which contains two textures D9, D19



Figure 3. Segmentation for the synthetic im-
age which contains two textures D9 D3

Figure 4. Segmentation for the synthetic im-
age which contains four textures D2 D3 D17
D19

5.2 Segmentation Results

The segmentation algorithm described in the second
section of this paper was applied on several images con-
taining two or four different textures. One initial image
to be segmented (composed of textures D9 and D19) and
the result of the segmentation are shown in Figure 2. An-
other example is illustrated in 3 where the image consists
of textures D9 and D2. Finally, an additional synthetic
image which, in this case, is composed of four different
textures (D2, D3, D17, D19) and the resulting segmented
output image are depicted in Figure 4.

6 Conclusion

The problem of texture classification and segmenta-
tion is addressed, where the concept of Discrete Wavelet
Frames is used for decomposing the image into different
frequency levels. Both procedures use the same statis-
tical methodology for evaluating texture parameters and
the same form of criterion by which a texture point is
assigned to a particular subregion of the image to be seg-
mented or classified. Both algorithms (segmentation and
classification) were demonstrated using images of dif-
ferent texture content, where the results were very sat-
isfactory (e.g., 97.17% correct classification) and more
encouraging compared to other works. An improvement
of the classification approach could be achieved if a nor-
malization in terms of the image variance takes place for
all images contained in the data base and in the test set at
the beginning of the process. In that case, the resulting
effect would be a set of images with similar contrast.
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