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Abstract

The supplementary material contains technical proofs for theorems in the main paper.

1. Technical proofs

Theorem 2. Loss F{Gk
i
} upper bounds loss F0, i.e., F0 ≤ F{Gk

i
}

Proof. By definition (16) it holds that

F0 = min
w

µR(w) +
K
∑

k=1

LGk(x̄k, ūk, h̄k;w) (39)

(15)
= min

w

µR(w) +

K
∑

k=1

(

MRFGk(x̄k; ūk, h̄k) − MRFGk(ūk, h̄k)
)

(40)

≤min
w

µR(w) +

K
∑

k=1

(

MRFGk(x̄k; ūk, h̄k) − DUAL{Gk
i
}(ū

k, h̄k)
)

(41)

= min
w

µR(w) +

K
∑

k=1

(

MRFGk(x̄k; ūk, h̄k) − max
{θ(i,k)}

∑

i

MRFGk
i
(θ(i,k), h̄k)

)

(42)

= min
w

µR(w) +

K
∑

k=1

min
{θ(i,k)}

(

MRFGk(x̄k; ūk, h̄k) −
∑

i

MRFGk
i
(θ(i,k), h̄k)

)

(43)

= min
w,{θ(i,k)}

µR(w) +
K
∑

k=1

∑

i

(

MRFGk
i
(x̄k;θ(i,k), h̄k) − MRFGk

i
(θ(i,k), h̄k)

)

(44)

= min
w,{θ(i,k)}

µR(w) +
K
∑

k=1

∑

i

LGk
i
(x̄k,θ(i,k), h̄k;w) , (45)

where inequality (41) is true because DUAL{Gk
i
}(ū

k, h̄k) is a convex relaxation of minimization problem MRFGk(ūk, h̄k)

and so it holds DUAL{Gk
i
}(ū

k, h̄k) ≤ MRFGk(ūk, h̄k), while equality (44) is satisfied due to the fact that it holds

MRFGk(x̄k; ūk, h̄k) =
∑

i MRFGk
i
(x̄k;θ(i,k), h̄k) since

∑

i∈Ik
p

θ
(i,k)
p (·) = ūk

p(·).

Theorem 3. If {Gk
i } < {G̃k

j } then F{G̃k
j
} < F{Gk

i
}.
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Proof. By definition (22) it holds that

F{Gk
i
} = min

w,{θ(i,k)}
µR(w) +

K
∑

k=1

∑

i

LGk
i
(x̄k,θ(i,k), h̄k;w) (46)

=min
w

µR(w) +

K
∑

k=1

(

MRFGk(x̄k; ūk, h̄k) − DUAL{Gk
i
}(ū

k, h̄k)
)

, (47)

where the equality (47) is derived using a similar reasoning as in the proof of theorem 2 above.

Similarly, the following equality can be shown to hold true

F{G̃k
j
} = min

w,{θ(j,k)}
µR(w) +

K
∑

k=1

∑

j

LG̃k
j
(x̄k,θ(j,k), h̄k;w) (48)

=min
w

µR(w) +
K
∑

k=1

(

MRFGk(x̄k; ūk, h̄k) − DUAL{G̃k
j
}(ū

k, h̄k)
)

. (49)

By assumption it also holds {Gk
i } < {G̃k

j }, which means that the convex relaxation DUAL{G̃k
j
}(ū

k, h̄k) is tighter than the

convex relaxation DUAL{Gk
i
}(ū

k, h̄k), which in turn implies that

DUAL{Gk
i
}(ū

k, h̄k) < DUAL{G̃k
j
}(ū

k, h̄k) . (50)

The theorem now follows directly by combining equations (47), (49) and (50).

Theorem 4. F{G̃k
j
} can be a better approximation to F0 than FGk

single
only if there exists at least one sub-hypergraph G̃k

j

such that slave MRFs on G̃k
j do not have the integrality property1.

Proof. The MRF optimization problem MRFGk(xk; ūk, h̄k) is equivalent to the following linear integer program:

min
z

∑

p∈Vk

∑

xp

ūk
p(xp)zp(xp) +

∑

c∈Ck

∑

xc

h̄k
c (xc)zc(xc) (51)

s.t z ∈ Z(Gk) . (52)

In the above problem, the feasible set Z(Gk) is defined for any hypergraph Gk = (Vk, Ck) as

Z(Gk) =
{

z ∈ Z̄(Gk) | zp(·), zc(·) ∈ {0, 1}, ∀ p ∈ Vk, c ∈ Ck
}

, (53)

where

Z̄(Gk) =























z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

xp

zp(xp) = 1, ∀ p ∈ Vk

∑

xc:xp=l

zc(xc) = zp(l), ∀ c ∈ Ck, p ∈ c

zp(·) ≥ 0, zc(·) ≥ 0, ∀ p ∈ Vk, c ∈ Ck























.

Let {G̃k
j = (Ṽk

j , C̃k
j )} be a hypergraph decomposition of Gk (i.e. ∪Ṽk

j = Vk, ∪C̃k
j = Ck, C̃k

j ∩ C̃k
j′ = ∅,∀j 6= j′) and let

{θ(j,k)} be a set of unary potentials for the corresponding slave MRFs chosen such that they satisfy equation (23), i.e.

∑

j∈Ik
p

θ(j,k)
p (·) = ūk

p(·), (54)

1We say that an MRF has the integrality property if and only if the corresponding LP relaxation of integer program (34) is tight.



where Ik
p = {j|p ∈ Ṽk

j } (e.g. θ
(j,k) can be chosen as θ

(j,k)
p (·) = ūk

p(·)/|Ik
p |). Using these potentials, the above linear integer

program (51) can be equivalently expressed as

min
z,zj

∑

j







∑

p∈Ṽk
j

∑

xp

θ(j,k)
p (xp)z

j
p(xp) +

∑

c∈C̃k
j

∑

xc

h̄k
c (xc)z

j
c(xc)






(55)

s.t. z
j ∈ Z(G̃k

j ) , ∀j (56)

zj
p(·) = zp(·) , ∀p ∈ Vk . (57)

The convex relaxation DUAL{G̃k
j
}(ū

k, h̄k) is derived by relaxing constraints (57) and then solving the resulting Lagrangean

relaxation. Therefore, DUAL{G̃k
j
}(ū

k, h̄k) is equivalent to the following relaxation of the above integer progam

min
z,zj

∑

j







∑

p∈Ṽk
j

∑

xp

θ(j,k)
p (xp)z

j
p(xp) +

∑

c∈C̃k
j

∑

xc

h̄k
c (xc)z

j
c(xc)






(58)

s.t. z
j ∈ CH

(

Z(G̃k
j )
)

, ∀j (59)

zj
p(·) = zp(·) , ∀p ∈ Vk , (60)

where CH(A) denotes the convex hull of set A. If we now assume that all slave MRFs corresponding to decomposition

{G̃k
j } have the integrality property then by definition this implies that CH

(

Z(G̃k
j )
)

= Z̄(G̃k
j ) (i.e. we can safely ignore the

integrality constraints in (53)) and so DUAL{G̃k
j
}(ū

k, h̄k) reduces to

min
z,zj

∑

j







∑

p∈Ṽk
j

∑

xp

θ(j,k)
p (xp)z

j
p(xp) +

∑

c∈C̃k
j

∑

xc

h̄k
c (xc)z

j
c(xc)






(61)

s.t. z
j ∈ Z̄(G̃k

j ) , ∀j (62)

zj
p(·) = zp(·) , ∀p ∈ Vk . (63)

Due to constraints (54) and (63), the objective function (61) above is easily seen to be equal to the objective function (51),

and so the above relaxation is obviously equal to the LP relaxation of (34) corresponding to decomposition Gk
single, which

concludes the proof of the theorem.


