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Abstract

The supplementary material contains technical proofs for theorems in the main paper.

1. Technical proofs
Theorem 2. Loss Fqry upper bounds loss Fo, i.e., Fo < Frary
Proof. By definition (16) it holds that
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where inequality (41) is true because DUALry (¥, h*) is a convex relaxation of minimization problem MRF (0", h*)
and so it holds DUAL {Gry}(ﬁk,flk) < MRF¢x (0, h*), while equality (44) is satisfied due to the fact that it holds

MRF i (%F; 0%, B¥) = 30, MRF g (%%; 00) 1¥) since 32,70 0577 () = @b (). O

Theorem 3. If {G¥} < {G%} then Fiamy < Fiany-
; !



Proof. By definition (22) it holds that
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where the equality (47) is derived using a similar reasoning as in the proof of theorem 2 above.
Similarly, the following equality can be shown to hold true
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By assumption it also holds {G}'} < {G}, which means that the convex relaxation DUAL ¢, (2%, h¥) is tighter than the
J

convex relaxation DUAL ¢y (@, h*), which in turn implies that
DUAL ¢y (0", 0") < DUAL{G?}(ﬁ"’, h") . (50)

The theorem now follows directly by combining equations (47), (49) and (50). ]

Theorem 4. F (Gry can be a better approximation to Fo than Fqr . only if there exists at least one sub-hypergraph é;“
J single

such that slave MRFs on é;“ do not have the integrality property'.

Proof. The MRF optimization problem MRF i« (x*; @, h*) is equivalent to the following linear integer program:
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In the above problem, the feasible set Z(G*) is defined for any hypergraph G* = (V¥,CF) as

Z(G*) ={z € Z(G*) | %), 2() € {0,1}, Vp e V", ceC*} | (53)
where
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Let {C;’éf = (13]’“7(?]’“)} be a hypergraph decomposition of G* (i.e. Uf)f = Vk, Ué]k = CF, C~Jk N (fjk, = (,Vj # j) and let
{0\F) 1 be a set of unary potentials for the corresponding slave MRFs chosen such that they satisfy equation (23), i.e.

> 09P () =ap(), (54)
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'We say that an MRF has the integrality property if and only if the corresponding LP relaxation of integer program (34) is tight.



where ZF = {j|p € V¥} (e.g. 8U"F) can be chosen as oiM () = up(-)/|Zk]). Using these potentials, the above linear integer
program (51) can be equivalently expressed as

min Z Z 29(3 k) zj (xp) + Z th Xc) zj (x¢) (55)
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The convex relaxation DUAL (G5} (¥, h*) is derived by relaxing constraints (57) and then solving the resulting Lagrangean

relaxation. Therefore, DUAL (G5} (@*, h*) is equivalent to the following relaxation of the above integer progam
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where CH(A) denotes the convex hull of set A. If we now assume that all slave MRFs corresponding to decomposition
{Gf} have the integrality property then by definition this implies that CH (Z (éf)) =7 (éf) (i.e. we can safely ignore the
integrality constraints in (53)) and so DUAL 4., (6", h*) reduces to
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Due to constraints (54) and (63), the objective function (61) above is easily seen to be equal to the objective function (51),
and so the above relaxation is obviously equal to the LP relaxation of (34) corresponding to decomposition G, which
concludes the proof of the theorem.
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