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Abstract

This document contains technical proofs for all lemmas and theorems that are
mentioned in the above referenced paper.

1 Appendix

Lemma 1. Let h be an optimal dual solution to DUAL.

1. If ∆q(h) > 0 then S(q) ≥ ∆q(h).

2. If ∆q(h) < 0 then S(q) ≤ ∆q(h).

Proof. For proving some of the theorems or lemmas of this paper, we will often need to vary
the penalty dqq that is associated with object q. For this reason, if that penalty takes the value
z, we will hereafter denote the corresponding pair of primal and dual LP relaxations as PRI-
MAL(z) and DUAL(z) respectively (e.g., according to this notation it holds PRIMAL=PRIMAL(dqq),
DUAL=DUAL(dqq)). With a slight abuse of notation, we will hereafter denote the margin of a feasi-
ble solution to any problem DUAL(z) by ∆q(h). Note, however, that ∆q(h) depends on the value
of the penalty z that is associated with q (of course, it will always be clear from context what that
value is). We will also denote:

∆+
q (h) =

∑

p:hpq=hp

(ĥp − hp) , (1)

∆−
q (h) =

∑

p6=q
(hpq − max(hp, dpq)) +

(

hqq − hq

)

. (2)

Obviously, it holds ∆+
q (h) ≥ 0, ∆+

q (h) ≥ 0 and also:

∆q(h) = ∆+
q (h) − ∆−

q (h) . (3)

Furthermore, depending on whether ∆q(h) is positive or negative, an optimal solution h must satisfy
either ∆+

q (h) = 0 or ∆−
q (h) = 0 (otherwise one can easily prove that h can be modified such that

its objective value increases by min(∆+
q (h), ∆−

q (h))).

Hence, if h is optimal to DUAL(dqq) and satisfies ∆q(h) > 0 it will hold ∆q(h) = ∆+
q (h). One can

then easily update h into a feasible solution h
′ which satisfies h′

qq = h′
q, ĥ′

q = h′
q + ∆+

q (h) and has

the same objective value as solution h, i.e., h′ is also optimal to DUAL(dqq). If we then set h′′ = h
′,

h′′
qq = h′

qq + ∆+
q (h) − ǫ (where 0 < ǫ < ∆+

q (h)), the resulting h
′′ would be an optimal solution to

DUAL(dqq + ∆+
q (h) − ǫ) (since it is easy to show that it is feasible and satisfies all complementary

slackness conditions). Furthermore, it holds h′′
qq = h′′

q < ĥ′′
q , which, from complementary slackness,

implies that there must exist optimal solution x to PRIMAL(dqq + ∆+
q (h) − ǫ) such that xqq > 0.
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It therefore holds S(q) ≥ ∆+
q (h) − ǫ = ∆q(h) − ǫ and, hence, S(q) ≥ ∆q(h) (since ǫ can be

arbitrarily small).

Let us now consider the case where h is optimal to DUAL(dqq) and satisfies ∆q(h) < 0. It will
then hold ∆q(h) = −∆−

q (h). Hence, one can easily update h into a feasible solution h
′ which

satisfies h′
qq = h′

q + ∆−
q (h) and has the same objective value as solution h, i.e., h′ is also optimal

to DUAL(dqq). If we then set h
′′ = h

′, h′′
qq = h′

qq − ∆−
q (h) + ǫ (where 0 < ǫ < ∆−

q (h)),

the resulting h
′′ would be an optimal solution to DUAL(dqq − ∆−

q (h) + ǫ) (since it is easy to
show that it is feasible and satisfies all complementary slackness conditions). Furthermore, it holds
h′′

qq > h′′
q , which, from complementary slackness, implies that there can be no optimal solution x to

PRIMAL(dqq −∆−
q (h)+ ǫ) such that xqq > 0. It therefore holds S(q) ≤ −∆−

q (h)+ ǫ = ∆q(h)+ ǫ
and, hence, S(q) ≤ ∆q(h) (since ǫ can be arbitrarily small).

Lemma 2.

1. If there exists optimal solution x to PRIMAL(dqq) such that xqq > 0, then there exists
optimal solution h to DUAL(dqq) such that ∆q(h) ≥ 0.

2. Similarly, if there exists no optimal solution x to PRIMAL(dqq) such that xqq > 0, then
there exists optimal solution h to DUAL(dqq) such that ∆q(h) ≤ 0.

Proof. Let x be an optimal solution to PRIMAL(dqq) such that xqq > 0 . Let also h be an optimal
solution to DUAL(dqq) and let us assume that it satisfies ∆q(h) < 0. Hence, as already explained in
the proof of lemma 1, it will hold ∆q(h) = −∆−

q (h). One can then easily update h into a feasible

solution h
′ which satisfies h′

qq = h′
q + ∆−

q (h) and has the same objective value as solution h, i.e.,

h
′ is also optimal to DUAL(dqq). However, due to conditions h′

qq > h′
q and xqq > 0, the pair of

optimal solutions (x,h′) violates complementary slackness, which leads to a contradiction.

Let us now assume that no optimal solution x to PRIMAL(dqq) exists such that xqq > 0. Let us
also assume that h is an optimal solution to DUAL(dqq) which satisfies ∆q(h) > 0. As already
explained in the proof of lemma 1, it will hold ∆q(h) = ∆+

q (h). One can then easily update h

into a feasible solution h
′ which satisfies h′

qq = h′
q, ĥ′

q = h′
q + ∆+

q (h) and has the same objective

value as solution h, i.e., h
′ is also optimal to DUAL(dqq). However, the condition h′

qq = h′
q < ĥ′

q
along with the fact that no optimal x exists such that xqq > 0, imply that at least one complementary
slackness condition will always be violated, which again leads to a contradiction.

Theorem 3. The following equalities hold true:

S(q) ≥ 0 ⇒ S(q) = sup{∆q(h),h optimal solution to DUAL} , (4)

S(q) ≤ 0 ⇒ S(q) = inf{∆q(h),h optimal solution to DUAL} . (5)

Furthermore, it can be shown that:

S(q) = sign(S(q)) · sup{|∆q(h)|,h optimal solution to DUAL} . (6)

Proof. We denote:

S+(q) = sup{∆q(h),h optimal solution to DUAL} , (7)

S−(q) = inf{∆q(h),h optimal solution to DUAL} . (8)

Let us first consider the case where there exists optimal dual solution h0 to DUAL(dqq) such that
∆q(h0) > 0. We will then show that S(q) = S+(q). Obviously, due to ∆q(h0) > 0, it will hold
S+(q) > 0 and, so, by definition of S+(q), there must exist arbitrarily small ǫ ≥ 0 and optimal
solution h to DUAL(dqq) such that ∆q(h) = S+(q) − ǫ > 0. By lemma 1 above, it then follows
that S(q) ≥ ∆q(h) = S+(q) − ǫ, which implies (due to ǫ being either arbitrarily small or zero):

S(q) ≥ S+(q) . (9)

In this case it must, of course, hold S(q) > 0 as well.
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Also, by definition of S(q), there must exist arbitrarily small ǫ ≥ 0 and optimal solution x to
PRIMAL(dqq + S(q) − ǫ) such that xqq > 0. By lemma 2 above, this means that there must exist
optimal h to DUAL(dqq +S(q)− ǫ) such that ∆q(h) ≥ 0. Since S(q)− ǫ > 0 (due to that S(q) > 0
and ǫ is arbitrarily small), it is then easy to construct an optimal solution h

′ to DUAL(dqq) such that:

∆q(h
′) ≥ S(q) − ǫ (10)

(h′ can be constructed from h by appropriately decreasing those pseudo-distances hpq for which
hpq = hp while also ensuring that complementary slackness conditions hold true for h

′). From (10)
it follows that S+(q) ≥ S(q) − ǫ, which implies (due to that ǫ has to be either arbitrarily small or
zero):

S+(q) ≥ S(q) . (11)

From (9),(11), we conclude that S(q) = S+(q).

Let us now consider the case where there exists optimal h0 to DUAL(dqq) such that ∆q(h0) < 0.
We will then show that S(q) = S−(q). Obviously, due to ∆q(h0) < 0, it will hold S−(q) < 0
and, so, by definition of S−(q), there must exist arbitrarily small ǫ ≥ 0 and optimal solution h to
DUAL(dqq) such that ∆q(h) = S−(q) + ǫ < 0. By lemma 1 above, it then follows that S(q) ≤
∆q(h) = S−(q) + ǫ, which implies (due to that ǫ has to be either arbitrarily small or zero):

S(q) ≤ S−(q) . (12)

This, of course, also implies that S(q) is negative in this case (i.e., S(q) < 0).

Also, by definition of S(q), there must exist arbitrarily small ǫ ≥ 0 such that PRIMAL(dqq+S(q)+ǫ)
has no optimal solution x with xqq > 0. Hence, by lemma 2 above, there must exist optimal solution
h to DUAL(dqq + S(q) + ǫ) such that ∆q(h) ≤ 0. Since S(q) + ǫ < 0 (due to that S(q) < 0 and ǫ
is arbitrarily small), it is then easy to construct optimal solution h

′ to DUAL(dqq) such that:

∆q(h
′) ≤ S(q) + ǫ (13)

(h′ can be constructed from h by appropriately increasing those pseudo-distances hpq for which
hpq > hp while also ensuring that complementary slackness conditions hold true for h

′). From (13)
it follows that S−(q) ≤ S(q) + ǫ, which implies (due to ǫ being either arbitrarily small or zero):

S−(q) ≤ S(q) . (14)

From (12),(14), we conclude that S(q) = S−(q).

It remains to consider the case where ∆q(h) = 0 for any optimal solution h to DUAL(dqq) (i.e.,
S+(q) = S−(q) = 0). In this case, using reductio ad absurdum, it is easy to show that for any ǫ > 0
no optimal solution x to PRIMAL(dqq + ǫ) can satisfy xqq > 0 as well as that for any ǫ > 0 there
always exists optimal solution x to PRIMAL(dqq − ǫ) such that xqq = 0, thus proving that S(q) = 0.

Theorem 4. If maxq/∈Q ∆q(h) < 0, then the DISTRIBUTE operation maintains feasibility and,
unless V = Q∪ LQ, it also strictly increases the dual objective.

Proof. Let h, h
′ denote respectively the dual solution before and after the operation DISTRIBUTE.

Due to maxq/∈Q ∆q(h) < 0, feasibility condition h′
pq ≥ dpq is trivial to check. Therefore, to prove

feasibility of h
′, it suffices to verify that condition

∑

p h′
pq =

∑

p dpq holds true for all q /∈ Q.

Indeed:
∑

p

h′
pq =

∑

p∈Q

h′
pq +

∑

p/∈Q∪{q}:hp<dpq

h′
pq +

∑

p6=q,p∈LQ:hp≥dpq

h′
pq +

∑

p∈Vq:hpq>hp

h′
pq +

∑

p∈Vq :hpq=hp

h′
pq

=
∑

p∈Q

hpq +
∑

p/∈Q∪{q}:hp<dpq

(

hpq − (hpq − dpq)
)

+
∑

p6=q,p∈LQ:hp≥dpq

(

hpq − (hpq − hp)
)

+

∑

p∈Vq :hpq>hp

(

hpq − (hpq − hp) −
∆q(h)

|Vq|

)

+
∑

p∈Vq :hpq=hp

(

hpq + (ĥp − hp) −
∆q(h)

|Vq|

)

=
(

∑

p

hpq

)

+ ∆q(h) − |Vq| ·
∆q(h)

|Vq|
=

∑

p

hpq =
∑

p

dpq
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Also, it is trivial to verify that the DISTRIBUTE operation does not decrease any minimum pseudo-
distance, i.e., it holds h′

p ≥ hp. Furthermore, if there exists p /∈ Q ∪ LQ, then DISTRIBUTE will
strictly increase the minimum pseudo-distance hp (e.g., if hpq = hp then DISTRIBUTE will raise hpq

by −
∆q(h)
|Vq|

> 0).

Theorem 5. If maxq/∈Q ∆q(h) > 0, then the EXPAND operation strictly decreases the primal cost
E(Q).

Proof. Let q̄ = argmaxq/∈Q ∆q(h). By assumption, it holds ∆q̄(h) > 0. It is then easy to show that
the primal cost related to all objects in p ∈ Vq̄ will decrease if we choose q̄ as a new cluster center.
In particular, the primal cost of making q̄ a cluster center and assigning to it each p ∈ Vq̄ − {q̄} is
equal to

∑

p∈Vq̄

hpq̄ , whereas assigning each p ∈ Vq̄ to one of the current cluster centers in Q has

primal cost strictly greater than
∑

p∈Vq̄

hpq̄ . As a result even by merely making q̄ an active center

and assigning to it each p ∈ Vq̄ − {q̄} is guaranteed to decrease the primal cost.
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