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Abstract

In this paper, we introduce a higher-order MRF opti-

mization framework. On the one hand, it is very general;

we thus use it to derive a generic optimizer that can be ap-

plied to almost any higher-order MRF and that provably

optimizes a dual relaxation related to the input MRF prob-

lem. On the other hand, it is also extremely flexible and

thus can be easily adapted to yield far more powerful algo-

rithms when dealing with subclasses of high-order MRFs.

We thus introduce a new powerful class of high-order po-

tentials, which are shown to offer enough expressive power

and to be useful for many vision tasks. To address them, we

derive, based on the same framework, a novel and extremely

efficient message-passing algorithm, which goes beyond the

aforementioned generic optimizer and is able to deliver al-

most optimal solutions of very high quality. Experimental

results on vision problems demonstrate the extreme effec-

tiveness of our approach. For instance, we show that in

some cases we are even able to compute the global optimum

for NP-hard higher-order MRFs in a very efficient manner.

1. Introduction

MRF inference is extremely popular in computer vision

and related fields. However, with a few exceptions only,

its use was mainly confined to the case of pairwise MRFs

up to now. One reason is because optimization of higher

order MRFs can be extremely difficult (i.e., algorithms that

yield almost optimal solutions are hard to get in this case)

and, furthermore, these algorithms often have a very high

computational cost that is prohibitive in practice. Yet, many

vision problems could greatly benefit from the use of higher

order models as this would allow far more expressive priors

to be encoded, and also multiple interactions to be captured.

This would, in turn, lead to a far better and more accurate

modelling, which is clearly needed by many vision tasks

(e.g., notice that in many cases there is a large disagreement

between the global optimum, that can often be computed

for pairwise MRFs, and the ground truth).

Towards dealing with the above issues, we propose here

a powerful framework for high-order MRF optimization

(§ 2). It uses a master-slave based scheme, which relies

on the core idea that even a hard high-order MRF problem

(with, e.g., large cliques or complicated structure) can often

be decomposed into high-order MRF subproblems that are

very easy or even trivial to solve. This leads to a very gen-

eral and flexible framework. Hence, on the one hand, we

use it to derive a generic optimizer, which is applicable to

almost any high-order MRF, and which provably computes

the global optimum to a strong dual LP-relaxation of the

MRF problem (§ 2.1). On the other hand, due to its flex-

ibility, the proposed framework can also be easily adapted

to lead to even more powerful algorithms when it comes

to dealing with specific classes of high-order MRFs. To

illustrate this, we also introduce here a new class of high-

order potentials, called pattern-based potentials, which of-

fer great expressive power and can be useful for many vi-

sion tasks (§ 3). By relying again on the same framework,

a powerful and extremely efficient message-passing algo-

rithm is proposed in this case. This algorithm goes beyond

the aforementioned generic optimizer and is able to deliver

solutions of very high quality (§ 3.1). As a result, for the

first time, we show experimentally that in some cases we

are even able to compute the global optimum for NP-hard

high-order MRFs used in vision, and, furthermore, we can

do that in a very efficient manner, e.g., at a fraction of the

time that would be required by a generic message-passing

scheme (§ 4). We thus hope that our framework will further

promote the applicability of higher-order models to vision.

We should note that not many MRF algorithms for high-

order vision problems have been proposed up to now. A

notable exception is the recent work of Kohli et al. [3, 4],

where an efficient inference technique was proposed for a

specific class of higher-order MRFs. Lan et al. [8] presented

an efficient but approximate version of BP, while Potetz [10]

proposed a BP adaptation for a certain class of high-order

graphical models. The n-ary max-sum diffusion method

has been very recently proposed by Werner [12], while two

other works [2, 11], that appeared concurrently with ours,

address high-order MRF optimization by reducing it to a

pairwise problem with binary or multi-label variables. This

can lead to a very compact representation in some cases.

2. Dual Decomposition & high-order MRFs

The problem of MRF optimization is defined as follows:

we are given a hypergraph G = (V , C), consisting of a set
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of nodes V and a set of hyperedges1 C. We also assume that

each node q ∈ V can take a label xq from a discrete set of

labels L. Our goal is then to find a labeling x = {xq} that

solves the following optimization task:

MRFG(U,H) ≡ min
x

∑

q∈V

Uq(xq) +
∑

c∈C

Hc(xc) (1)

Here Uq = {Uq(·)}, Hc = {Hc(·)} represent respectively

the unary potentials (for node q) and the higher order po-

tentials (for clique c), while notation xc denotes the set

{xq|q ∈ c}. We will hereafter refer to the above problem as

MRFG(U,H) to denote its dependence on the hypergraph

G and on the potentials U = {Uq}q∈V , H = {Hc}c∈C.

To tackle problem MRFG(U,H) in its full generality,

we will rely on the recently introduced MRF optimiza-

tion framework of Dual Decomposition [7]. According to

that framework, for solving a hard MRF problem (hereafter

called the master), we first decompose it into a series of

MRF subproblems that are easy to optimize (the so-called

slave MRFs), and then we extract a solution to it by cleverly

combining the solutions from the slaves. The latter can be

done in a rigorous manner by using an iterative projected-

subgradient scheme. This framework has been previously

used for optimizing pairwise MRFs, but it turns out that

it can be easily extended to the higher order case, i.e., for

solving problem MRFG(U,H) (see Fig. 2(a)). To this

end, one simply needs to decompose the original hyper-

graph G = (V , C) into a set of sub-hypergraphs {Gi =
(Vi, Ci)} such that V = ∪Vi and C = ∪Ci. An MRF with

unary potentials UGi and higher order potentials HGi is

then defined for each of these sub-hypergraphs. Further-

more, all these potentials are chosen so as to provide a de-

composition of the original MRF potentials, i.e., it holds

U =
∑

i U
Gi , H =

∑
i H

Gi , which is easily ensured

simply by setting UGi
q =

U
G
q

|{i|q∈Vi}|
, HGi

c =
H

G
c

|{i|c∈Ci}|
. By

using these MRFs as slaves and applying the Dual Decom-

position framework, we derive the algorithm appearing in

Fig. 1.2 As can be seen, it alternates between optimizing

the slave MRFs (line 3) and updating their potentials UGi

based on the extracted optimizers (line 5). The latter essen-

tially relies on averaging these optimizers. Intuitively, the

goal is thus to make the slave MRFs to reach a consensus

and agree with each other on their labels for common nodes

(in which case the labeling is a global optimum). Upon con-

vergence a solution can be extracted by, e.g., traversing the

slave MRFs and copying their optimizers until all nodes of

the master MRF get labeled. Metaphorically, slave optimiz-

ers xGi may also be viewed as amount of resources, and po-

tentials UGi as corresponding market prices. Hence, master

1The term hyperedge or clique will refer to a subset of nodes from V .
2Here we assumed that each clique c ∈ C belongs to only one Ci (i.e.,

Ci ∩ Cj = ∅, ∀i 6= j). This allows us not to have to update the high-

order potentials H
Gi of the slave MRFs. We note, however, that the Dual

Decomposition framework can be easily adapted to handle such cases.

1: Input: set of slaves {MRFGi
(UGi ,HGi)}

2: repeat

3: xGi = optimize
(
MRFGi

(UGi ,HGi)
)

, ∀i

4: x̄Gi
q =

{[
xGi

q = l
]}

l∈L
, where [ · ] is Iverson bracket

5: UGi
q += αt ·

(
x̄Gi

q −
∑

j∈G(q) x̄
Gj
q

|G(q)|

)
, with G(q)={j|q ∈ Gj}

6: until convergence

Fig. 1: Dual decomposition scheme for high-order MRFs.

sets the prices and then lets the slaves choose how many re-

sources to consume. Naturally, prices are adjusted so that

the market finally clears: they thus increase/decrease for

overutilized/underutilized resources in line 5. We note that

the multipliers αt ≥ 0 (one per iteration) used by the algo-

rithm merely need to satisfy limt→∞ αt = 0,
∑

t αt = ∞.

Simply by choosing different decompositions {Gi}, dif-

ferent algorithms can be derived via the above scheme, all of

which can be shown to provably optimize (possibly differ-

ent) dual relaxations to the MRF problem. At each iteration

the sum of the minimum energies of the slaves provides a

lower bound to the minimum energy of the master MRF, and

the maximum of these bounds coincides with the optimum

of the underlying dual relaxation. As a result, the more diffi-

cult the slave MRFs (e.g., the more complex the topology of

sub-hypergraphs Gi), the better the lower bounds and thus

the tighter the underlying dual relaxation (this, of course,

means that it better approximates the master MRF).

2.1. A generic optimizer for higher order MRFs

The above framework provides great flexibility as to how

the slave MRFs (or equivalently the sub-hypergraphs Gi)

are chosen (the only practical requirement is that one must

be able to compute the optimizers of the resulting slave

MRFs). Based on this fact, we will derive in this section a

generic algorithm for high-order MRF optimization by us-

ing the following choice of sub-hypergraphs: to each clique

c ∈ C we will associate one sub-hypergraphGc = (Vc, Cc),
whose only hyperedge will be c and its set of nodes will

consist of all the nodes contained in that hyperedge, i.e.,

Vc = {q|q ∈ c}, Cc = {c}. Note that the resulting slaves

are much easier problems to solve, as, essentially, one only

needs to be able to optimize MRFs with a single high-order

clique (if this is still difficult to achieve, then there is prob-

ably not much hope for solving the original problem in the

first place). Due to this fact, the resulting algorithm can be

applied to almost any high-order MRF and thus can be con-

sidered as a generic optimizer. Not only that but, as the next

theorem certifies, it actually computes the global optimum

to a strong LP relaxation that often proves to be a very good

approximation to problem MRFG(U,H).

Theorem 1 ([1]). If the sub-hypergrpahs are chosen as de-

scribed above (i.e., one sub-hypergraph Gc per clique c),

then the algorithm optimizes the LP relaxation of the follow-



ing integer LP that is equivalent to problem MRFG(U,H):

min
z

∑

q

∑

xq

Uq(xq)zq(xq) +
∑

c

∑

xc

Hc(xc)zc(xc) (2)

s.t.
∑

xq

zq(xq) = 1 , ∀q (3)

∑
xc:xq=l

zc(xc) = zq(l) , ∀c ∈ C, q ∈ c (4)

zq(·), zc(·) ∈ {0, 1} , (5)

where a variable zq(xq), zc(xc) is associated respectively

with each label xq of node q and each label xc of clique c.

Note that in the case where all high-order potentials are

pairwise, this relaxation reduces to the well known LP-

relaxation upon which many state-of-the-art algorithms for

pairwise MRFs currently rely [12].

3. Pattern-based high order potentials

To illustrate the extreme flexibility of our framework, in

this section we will attempt to go beyond the above generic

optimizer by concentrating on a broad subclass of MRFs

that are based on a new set of high-order potentials, called

pattern-based potentials. As we shall see, these potentials

offer enough expressive power to be useful for modeling

many vision tasks (e.g., they include as special cases many

high-order potentials frequently used in vision). In addition

to that, however, they lend themselves to very powerful and

efficient inference algorithms, as they allow much stronger

decompositions to be used. A pattern-based potentialHc(·)
of a clique c is defined as:

Hc(x) =

{
ψc(x) if x ∈ P

ψmax
c otherwise .

(6)

Here P is a set of vectors from L|c| that correspond to label-

ings of clique c (these vectors will be called patterns here-

after), and the main assumption is that this set of patterns

is sparse (i.e., it contains much fewer elements than the set

L|c| of all possible labelings of c). The only other restriction

that we impose is that the high-order function ψc(·) should

satisfy ψc(x) ≤ ψmax
c , ∀x ∈ P (other than that, ψc(·) can

take arbitrary values).

To simplify the exposition and reduce notational clutter,

for the remainder of this section we will assume w.l.o.g.

that the hypergraph G = {V , C} has a a grid-like structure

(a typical case for many vision problems). In particular,

we assume that its nodes V are arranged in a grid of size

Ny × Nx, while all its cliques C have the same size Ky ·
Kx and are in 1-1 correspondence with the set of all Ky ×
Kx subrectangles in the grid. For short, G{y:y′,x:x′} will

hereafter denote the sub-hypergraph induced by the nodes

lying in the grid-rectangle [y : y′, x : x′] (e.g., under this

notationG = G{1:Ny,1:Nx}).

The generic algorithm of sec. 2.1 always uses a de-

composition consisting of sub-hypergraphs of the form

G{y+1:y+Ky,x+1:x+Kx}. For pattern-based potentials, how-

ever, we will manage to use a stronger decomposition that

consists of much larger sub-hypergraphs: namely of all

horizontal sub-hypergraphs of the form G{y+1:y+Ky,1:Nx},

as well as of all vertical sub-hypergraphs of the form

G{1:Ny,x+1:x+Kx} (see Fig. 2(b)). As explained, this will

lead us to a far more powerful algorithm that optimizes a

tighter dual relaxation to the MRF problem. Of course, a

critical question is how to compute the global optimum for

the much more complicated high-order MRFs associated

with the larger sub-hypergraphs. To this end, a very efficient

message-passing algorithm is proposed in the next section.

3.1. Messagepassing for higherorder slave MRFs

Since all sub-hypergraphs are isomorphic, it suffices

to consider one of them, e.g., G{1:Ky,1:Nx}. We will first

present our message-passing algorithm assuming that a

clique’s vertical dimension is Ky = 1, and we will explain

afterwards how the case Ky > 1 reduces to this one.

Under this assumption, our slave MRF consists of N nodes

q1, q2, . . . , qN (whereN=Nx), as well asN−K+1 cliques

each of size K (where K =Kx). The i-th clique (denoted

ci) contains nodes qi, . . . , qi+K−1 and its associated poten-

tial Hi(·) will be of form (6), while the unary potential of

node qi will be denoted by Ui(·). Furthermore, in this case,

each pattern x ∈ P will be a vector of K components. No-

tation P[k:l] will represent the set of all different subpatterns

x[k:l] that can be formed from patterns in P , i.e.,

P[k:l] =
{
x[k:l] |x ∈ P

}
,

where, for any vector x, we denote by x[k:l] its subvector

starting from the k-th and ending at the l-th component.

Note that, provided P is sparse, each set P[k:l] is sparse

as well. Given the i-th MRF node (i.e., node qi), we

define its partial energy, Ei(·), as the energy resulting

from considering all potentials (excluding Ui(·)) that

involve only variables associated with nodes from the set

{q1, . . . , qi}, i.e.,Ei(·) =
∑

j<i Uj(·)+
∑

j≤i−K+1Hj(·).
During the algorithm’s execution, a set of partial energies,

called messages, are maintained. These are denoted by

Mk
i (x[1:k]) and have the following interpretation: assum-

ing that nodes qi−k+1, . . . , qi are labeled respectively with

the components x1, . . . , xk of vector x[1:k], then message

Mk
i (x[1:k]) represents the minimum partial energy up to

node qi attainable under these conditions.

The key observation to deriving an efficient algorithm is

that, despite the existence of an exponentially large num-

ber of possible messages, only a very small subset of them

needs to be maintained for computing the global optimum.

In particular, we need to maintain the following messages:

M1
i (x) , ∀x ∈ P[1:1] ∪ P[K:K] , (7)

Mk
i (x) , ∀x ∈ P[1:k] , where 1<k<K . (8)



Note that the above set of messages is small, because

only x that are subpatterns have to be considered (recall

that P[1:k] and P[K:K] are assumed to be sparse). To also

take into account all other x (i.e., x that are not subpat-

terns), it turns out we only need to consider just a few extra

messages. These are denoted by M̂1
i and have the follow-

ing interpretation: assuming that node qi is assigned a label

not belonging to the set of subpatterns P[1:1] ∪P[K:K], then

message M̂1
i represents the minimum partial energy up to

node qi attainable under these conditions, i.e., it holds

M̂1
i = min

x/∈P[1:1]∪P[K:K]

M1
i (x) (9)

Messages (7), (8) and (9) can be computed very effi-

ciently in a recursive manner by traversing the MRF nodes

in the order q1, q2, . . . , qN . When the current node is qi,

we compute all messages related to that node, i.e., mes-

sages {Mk
i (·),M̂1

i }, and this is done based on the mes-

sages related to the previous node qi−1, i.e., messages

{Mk
i−1(·),M̂

1
i−1} (which have been computed at the pre-

vious step). The pseudocode for these recursive message

updates is shown in Fig. 2. The updating of message M̂1
i

is done at lines 4-5. The role of the loop at lines 7-9 is

to update the rest of the messages Mk
i (·) by first consid-

ering the case where a pattern x[1:K] ∈ P is assigned to

the nodes of the clique ending at the current node qi (i.e.,

the (i − K + 1)-th clique ci−K+1). Subject to this condi-

tion we compute the resulting minimum partial energy up

to qi, denoted as Epattern at line 8, which suffices for up-

dating Mk
i (·) at line 9. Epattern obviously equals the min-

imum partial energy up to the previous node qi−1 (given

by message MK−1
i−1 (x[1:K−1])) plus the two potentials not

taken into account by that message3, i.e., the unary poten-

tial Ui−1(x[K−1:K−1]) at qi−1 and the high order poten-

tial ψi−K+1(x[1:K]) for the clique ci−K+1 terminating at

qi. Proceeding in a similar manner, we finish the update of

messages Mk
i (·) by considering at lines 11-13 the remain-

ing case where a non-pattern is assigned to the nodes of the

clique ci−K+1 ending at qi. The potential of ci−K+1 will

then equal ψmax
i−K+1, which leads to the update at line 13.

The important thing to notice here is that, as can be seen

from the pseudocode in Fig. 2, the time needed for updating

the messages is linear with respect to the size of the set of

patterns P . This, in turn, means that the messages can be

computed very fast, which makes the algorithm very effi-

cient and thus practical even for large scale problems with

large clique sizes.

Upon reaching last node qN , each sum M1
N (·)+UN(·)

(or M̂1
N + minl UN (l)) of a message and a unary term

corresponds, by definition, to a min-marginal energy,

3Recall that, by definition, a messageMk
i−1(·) takes into account po-

tentials only up to node qi−1 excluding unary potential Ui−1(·)

and so qN gets the label that attains the minimum of all

these sums, i.e., either label arg minl(M1
N (l) + UN(l))

or label arg minl UN (l) (based on whether it holds

minl(M
1
N (l)+UN(l))<M̂1

N +minl UN (l)). In the latter

case the active message for node qN is M̂1
N , whereas in the

former case it is M1
N(lN ), where lN is the label assigned

to qN (the active message of a node represents its partial

energy at the optimal labeling). To recover the optimal

labels for the rest of the nodes, we simply need to do a back-

tracking, i.e., we traverse nodes in reverse order and keep

track of active messages (this turns out to reduce to a series

of lookup operations due to that all necessary information

can already be computed for free during the forward pass).

To apply the above algorithm for Ky > 1, one simply

uses columns of nodes (each of lengthKy) instead of single

nodes. In such a case, a series of N columns q1, . . . , qN
results, while x[k:l] represents the submatrix (of a matrix

x) starting at the k-th and ending at the l-th column of

x. Furthermore, for any column vector x = {xj}, terms

Ui(x) and minx (Ui(x)) in Fig. 2 must be replaced with∑
j Uij(xj) and

∑
j minxj

(Uij(xj)), where j indexes the

nodes in column qi. The same algorithm is then applicable.

3.2. Minmarginals for slave MRFs

Given a decomposition into sub-hypergraphs {Gi}, the

pseudocode in Fig. 1 uses the optimizers xGi of the corre-

sponding slave MRFs to update the unary potentials UGi

Alternatively, the node min-marginals can be used for that

purpose. In this case, assuming that ∆Gi
q denotes the vector

of min-marginals of node q (with respect to the slave MRF

on Gi), the potentials UGi are updated as follows:

UGi
q +=

∑
j∈G(q) ∆

Gj
q

|G(q)|
−∆Gi

q ,where G(q) = {i|q ∈ Gi}.

The above update can also be viewed as generalizing TRW

methods [5, 6] to the case of higher-order MRFs.

In the case of pattern-based potentials, to compute the

min-marginals ∆i(·) of node qi, one needs to compute an

additional set of messages, called reverse messages:

M̂
1
i ,M

1
i (x) , ∀x ∈ P[1:1] ∪ P[K:K] , (10)

M
k
i (x) , ∀x ∈ P[K−k+1:K] , 1<k<K . (11)

These play the same role with normal messages if the or-

der of nodes is reversed, e.g., M
k
i (·) represent minimum

partial energies that take into account all potentials involv-

ing nodes from {qi, . . . , qN} (we again exclude potential

Ui(·) as in normal messages). Reverse messages can thus be

computed during a backward pass by using the same algo-

rithm as in Fig. 2. Given both reverse and normal messages,

the pseudocode in Fig. 3 is used for the min-marginals es-

timation. In this code, min-marginals ∆i(·) of qi are up-

dated using sums of the form Mi(·) + Mi(·) + Ui(·) + ∆,



1: INPUT: messages M̂1
i−1,Mk

i−1(·) , OUTPUT: messages M̂1
i ,Mk

i (·)

2: M̂1
i ← +∞ , Mk

i (·)← +∞
3:

4: M̂1
i ← minx∈P[K:K]

(M1
i−1(x) + Ui−1(x) + ψmax

i−K+1)

5: M̂1
i

MIN
← M̂1

i−1 + minx

(
Ui−1(x)

)
+ ψmax

i−K+1
6:

7: For each pattern x ∈ P do

8: Epattern ←M
K−1
i−1 (x[1:K−1]) + Ui−1(x[K−1:K−1]) + ψi−K+1(x)

9: if x[K−k+1:K]∈P[1:k] thenMk
i (x[K−k+1:K])

MIN
← Epattern , 1≤k<K

10:

11:M1
i (x)

MIN
← M̂1

i , ∀x ∈ P[1:1] ∪ P[K:K]

12: For each pattern x ∈ P , 1 < k < K do

13: Mk
i (x[1:k])

MIN
← Mk−1

i−1 (x[1:k−1]) + Ui−1(x[k−1:k−1]) + ψmax
i−K+1

(b)

(a)
master

slave 1 slave N…
dual

decomposition

master-slave

coordination

simple high-order MRFs

complex

high-order MRF

iG
U

x iG

{1: ,1: }y xK KG {1: ,1: }y xK NG

{1: ,1: }y xN KG

Fig. 2: (Left) Pseudocode of recursive message updates (see text for explanation). x
MIN
← y represents x←min(x,y). (a) Dual decompo-

sition for high-order MRFs. (b) Grid of size Nx =8, Ny =6, with cliques of size Kx =2, Ky =2. A single-clique slave (blue) used by the

generic optimizer, as well as an horizontal (green) and a vertical (red) slave used in the decomposition for pattern-based potentials.

1: C=
{
j | clique cj *{q1, . . . , qi}, cj *{qi, . . . , qN}

}

2: ∆ =
∑

j∈C ψ
max
j

3: ∆i(·)←M̂i + M̂i + Ui(·) + ∆

4: ∆i(x)
MIN
←Mi(x) + Mi(x) + Ui(x) + ∆, ∀x∈P[1:1]∪ P[K:K]

5:

6: ∀x[1:K+δ] with x[1:K]∈P, x[δ+1:K]∈P, 0≤δ<K−2

7: For each k∈{δ+2, . . . ,K−1} do

8: C0 =
{
j ∈ C | clique cj ⊆ {qi−k+1, . . . , qi−k+K+δ}

}

9: Assume {qi−k+1, . . . , qi−k+K+δ} take the labels x[1:K+δ]

10: and let ψ′
j be the evaluated potential for clique cj with j ∈ C0

11: ∆ =
∑

j∈C\C0
ψmax

j +
∑

j∈C0
ψ′

j

12: ∆i(xk)
MIN
← Mi(x[1:k]) + Mi(x[k:K+δ]) + Ui(xk) + ∆

13: end for

Fig. 3: Pseudocode for computing the min-marginals ∆i(·) of

node qi (see text for explanation). Superscripts for messages

Mi(x), Mi(x) can be deduced from the size of x, and, so we

drop them to reduce notational clutter.

where we drop superscripts to reduce notational clutter. The

terms Mi(·), Mi(·) account for all potentials involving re-

spectively nodes {q1, . . . , qi} and {qi, . . . , qN} (excluding

potential Ui(·)). Hence the first 3 terms account for all

potentials except for those corresponding to cliques in the

set C = {cliques c | c * {q1, . . . , qi}, c * {qi, . . . , qN}},

which are taken into account by the last term ∆. Based

also on the fact that ψi(x) ≤ ψmax
i , it is easy to verify that

the above code correctly estimates the min-marginals of qi.

3.3. Instances of patternbased potentials

Just as an illustration, we describe here a few instances

of pattern-based potentials that can be useful in vision tasks.

Arbitrary potentials for small |L| and not very large

cliques: The number of all possible labeling for a clique

of size K equals |L|K . Hence, if both K and the cardi-

nality of the label set |L| are relatively small, one can very

efficiently model an arbitrary potential function as a pattern-

based potential simply by using all possible clique labelings

as patterns. This applies especially to the case of binary op-

timization problems (i.e., |L| = 2), which are so frequently

used in computer vision. For instance, a very useful exam-

ple in this class, that could be applied to a wide variety of

vision tasks, would be the case of binary fusion moves [13]

with low-size cliques.

Higher-order truncated potentials: One common way

to regularize many low level vision problems is by penal-

izing (in a robust way) solutions that fail to satisfy certain

high order smoothness assumptions. E.g., the following ro-

bust 3nd order potential serves such a role:

H(x) =

{
0 if |Fx| = 0, |∇x|∞ ≤ αmax

κ otherwise
(12)

It uses the 2nd order derivative Fx = x1 − 2x2 + x3 (com-

puted via filter F = [1 −2 1]) to robustly favor piecewise

planar solutions. Furthermore, αmax denotes the maximum

gradient magnitude (in | · |∞ norm) that can be attained in-

side the smooth part of a recovered solution. This is an in-

stance of a pattern-based potential with patterns of the form

(x, x+α, x+2α) or (x+ 2α, x+α, x), whose total number

equals 2(αmax + 1)(|L| − αmax) − |L|. Given that αmax

can be safely assumed to be small in practice, the number of

patterns is linear with respect to |L| and thus the message-

passing algorithm of sec. 3 becomes very efficient in this

case. Note, of course, that this can be true if other filters,

possibly of even higher order, are used as well.

A similar reasoning also applies to the following more

general class of robust potentias, which serve a similar role:

H(x) =

{
|Fx| if |Fx| ≤ κ, |∇x|∞ ≤ αmax

κ otherwise
(13)

Functions of this form are again very sparse, since they as-

sign a constant value to the great majority of input vectors

x, and thus they can be expressed as pattern based potentials

too (e.g., if F = [1−2 1] then a very coarse upper bound on



the resulting number of patterns is 4α2
max|L|). As a result,

these potentials can be easily handled in a unified manner

by our framework. Note that potentials (13) generalize the

so called robust truncated potentials such as min(|Fx|, κ),
which are known to preserve discontinuities very well and,

due to this, are heavily used in vision (e.g., in stereo match-

ing or optical flow estimation).

Pn Potts potential: This potential was recently intro-

duced into computer vision by [3] and has been successfully

used for segmentation purposes. Given a label set L = {lj},

that potential is defined as follows (for a K-size clique):

H(x) =

{
γj if x1 = x2 = . . . = xK = lj

γmax otherwise ,
(14)

where γmax ≥ γj , ∀j. Obviously, this is an instance

of a pattern-based potential with |L| patterns of the form

(l, l, . . . , l), ∀l ∈ L. Note that, in this case, the number of

patterns is independent of the clique size. As a result, the

message-passing algorithm of sec. 3 remains efficient even

when applied to cliques of very large sizes.

Exemplar-based priors/higher-order shape priors:

Exemplar-based priors are known to be extremely useful

for many vision tasks and can be encoded very easily by

using pattern-based potentials. E.g., in the context of class-

specific binary segmentation, each pattern may correspond

to a binary fragment (object-background mask) related to

a frequently occuring object part. Hence, in this case, pat-

terns essentially act as exemplars for frequently occuring

segments at the clique level, and they are thus used for im-

plicitly encoding higher-order shape information. Note that,

as demonstrated by Levin and Weiss [9], a small set of such

fragments is typically required, and they can be efficiently

learnt via a training procedure. Instead of deriving a class-

specific shape prior as above, one may also use patterns to

derive a generic higher-order shape prior. For instance, one

can associate patterns with a sparse set of generic binary

fragments with smooth boundaries (e.g., with small curva-

ture). By favoring these patterns, one essentially encodes

higher-order boundary terms such as curvature in the poten-

tial functions. This type of higher-order shape information

can be very useful for improving the segmentation process.

4. Experimental results

For the remainder of this paper we will refer to the

algorithm of sec. 3 as PatB (from Pattern-Based). We tested

that algorithm, as well as the generic optimizer of sec. 2.1

(referred to as simply generic optimizer hereafter), on

various problems. The first one was the problem of signal

reconstruction, where we are given a corrupted version of

a one-dimensional piecewise smooth signal y and we want

to recover the original signal x. In this case, the data term

was set equal to the unary potential U(xp) = |yp − xp|.
To model piecewise smoothness, we chose to take into
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Fig. 4: 1D signal reconstruction using a 4th order MRF. The PatB

algorithm computes the global optimum in this case.

(a) original (b) noisy input (c) our result

Fig. 5: Image denoising with a 3rd-order MRF.

account the 3nd order derivative Fx of signal x, where

F = [1 −3 3 −1]. In order to do that in a robust way,

we used a 4th-order potential of the form (12), and, so,

the resulting MRF had cliques of size 4. Fig. 4 shows an

example of using this technique for reconstructing a piece-

wise quadratic signal. Notice how accurately the signal’s

structure is recovered by our algorithm. For comparison,

we also show the result from the bilateral filter, which is a

state-of-the art filtering technique. Note that, in this case,

the PatB algorithm is guaranteed to compute the global

optimum of the resulting high-order MRF.

We next show results from applying our algorithm to

image denoising. Here we are using a 3rd-order potential

of the form (12), while we use absolute differences for the

unary potentials. Fig. 5 shows an image restoration result

for a synthetic example of size 100×100. An almost perfect

restoration is achieved in this case as the average error in

intensity is only 0.3 (note that pairwise MRFs do very badly

if applied to this example). Fig. 6 shows a corresponding

result for a real image of size 128×96 that has been altered

by Gaussian noise. For comparison we also show the result

from using a pairwise MRF with a truncated linear function

as potential (notice the characteristic piecewise constant
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(c) pairwise MRF (d) 3rd-order MRF

Fig. 6: Another image denoising example.
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Fig. 7: Primal costs (solid lines) represent MRF energies, while

dual costs (dashed lines) represent lower bounds on the optimum

energy. Unlike the generic optimizer of sec. 2.1, PatB computes

an almost optimal solution for the denoising examples since the

sequences of energies and lower bounds converge.

patches that appear in the denoised image in this case). The

plots in Fig. 7 display the sequences of primal and dual

costs generated by the PatB algorithm when applied to the

examples of Figs. 5, 6 (recall that each dual cost equals to

the sum of minimum energies of the slave MRFs and always

provides a lower bound to the optimum energy). Due to that

the two sequences converge in both examples, this implies

that the solutions computed by PatB are almost optimal. We

also plotted the energies produced by the generic optimizer

of sec. 2.1. As can be seen, it fails to perform as well as

PatB (i.e., produces solutions with higher energies), while

it also converges much slower. Despite using heavily unop-

timized code, the average running time per iteration of PatB

was only 7 secs for the denoising examples (256 labels).

To further test the effectiveness of our framework, we

also applied it to the problem of stereo matching. Given

recent work which shows that a second order smoothness

prior can provide a very good model for this problem,
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Fig. 8: Stereo matching results for ‘venus’ and ‘teddy’ using 15

proposal depth maps. These are concurrently fused by PatB at a

single step, and this is done in an almost optimal manner since the

corresponding energies and lower bounds converge to each other.

we used a higher-order potential of the form (13), which

is essentially a generalization of the robust potential

H(x1, x2, x3) = min(|x1 − 2x2 + x3|, κ) that approx-

imates a 2nd order derivative. The resulting MRF will

thus have as higher-order cliques all horizontal 1 × 3 and

vertical 3 × 1 patches in the image grid. Since we wanted

to obtain disparity with subpixel accuracy, a set of proposal

depth maps, generated similarly to [13], were fused for

extracting pixel disparities. Unlike in [13], however, where

many separate binary-fusion moves are applied for that

purpose, here we can naturally handle the fusion in a

much more integrated manner by considering all the depth

maps concurrently in a single multilabel high-order MRF.

For each node of this MRF we simply must choose a

label from the corresponding pixels of the proposal depth

maps instead from a standard label set. Put otherwise

a multi-fusion move is performed at a single step (an

operation that can, of course, be extremely useful for many

other problems in vision as well). Fig. 8 displays some

of the resulting disparity maps obtained with this method,

where 15 proposal depth maps have been fused. Due to the

use of higher order potentials, it is natural to expect that the

resulting MRFs will be much harder to optimize. The plots

in Fig. 8 show the corresponding sequences of energies

and lower bounds generated by the PatB algorithm in this

case. These plots confirm that, despite the high degree of

difficulty of this problem, PatB has been able to fuse the

depth maps almost optimally as the resulting solutions had
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Fig. 9: (a) A binary image segmentation result using a P3×3 Potts

model. (b) In this case PatB computes the global optimum of the

corresponding 9th-order MRF since the energies and the lower

bounds finally become equal to each other.
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Fig. 10: A plot from applying PatB to a random high-order MRF

based on a P3×3 Potts model with 10 labels on a 50 × 50 grid.

PatB computes the global optimum in this case as well.

energies extremely close to the optimum ones. The average

running time per iteration was only 1.6 secs. Obviously the

use of more depth map proposals can further improve the

results, but our main goal is to demonstrate that PatB can

perform the fusion in a provably almost optimal manner.

As a last application, we tested how well PatB can han-

dle the Pn Potts potentials. We thus applied it to the task of

interactive image segmentation, and used MRFs that had as

cliques all 3 × 3 patches in the image grid (i.e., the clique

size was 9). The clique potential Hc for a patch c was de-

fined such that it forms a P3×3 model as follows:

Hc(x) =

{
SSDc(l) if xk = l ∀k

λ0 maxl SSDc(l) otherwise .

Here SSDc(l) represents the minimum sum of squared dif-

ferences between the RGB values of patch c and all patches

belonging to the l-th user-specified mask, while we set

λ0 = 1.2. Furthermore, all unary potentials were set equal

to zero. Fig. 9(a) shows a binary segementation result for

an image from the middlebury data set. The correspond-

ing primal and dual costs are shown in Fig. 9(b), and prove

that PatB manages to compute the exact global optimum in

this case (this behavior was typical for other segmentation

examples due to that the corresponding LP-relaxation was

tight). To further examine how our algorithm handles the

Pn Potts model, we also applied PatB to a series of NP-

hard instances based on synthetic multilabel MRFs defined

on a 50 × 50 grid. The values of their unary potentials

were sampled independently from 100N (0, 1), while the

parameters γj (in (14)) were sampled independently from

|100N (0, 1)| for each 3 × 3 clique potential (furthermore

we set γmax = maxj γj). Interestingly enough PatB has

been able to compute the global optimum in all cases, and

Fig. 10 shows a typical run. Despite this fact, the running

time per iteration was very low. E.g., for a 100 × 100 MRF

with 3 × 3 cliques and 10 labels, the average running time

per iteration was only 0.18 secs. Contrast this with the ex-

ponential time that would be required if we were to apply a

generic message passing algorithm such as BP in this case.

5. Conclusions

We proposed a powerful master-slave based framework

for high-order MRF optimization. It allows decomposing

(in a principled manner) a difficult high-order MRF prob-

lem into a set of easy-to-handle optimization subtasks for

which efficient customized inference techniques can be eas-

ily exploited. As a result, besides being extremely general,

it is also very flexible since it is easily adaptable to take ad-

vantage of the special structure that may exist in high-order

MRFs encountered in practice. We showed an example of

this by introducing a very useful class of high-order poten-

tials, called pattern-based potentials, along with novel and

efficient message-passing algorithms. Experimental results

on a variety of problems verified our framework’s effective-

ness and its ability to deliver high-quality solutions. Given

that high-order models are of broad interest, we hope that

our framework will further promote their applicability to vi-

sion tasks and will be of value to a large class of problems.
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