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• Ubiquitous in computer vision

• segmentation stereo matching
optical flow image restoration
image completion object detection/localization
...

• and beyond

• medical imaging, computer graphics, digital 
communications, physics…

• Really powerful formulation
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Conditional Random Fields (CRFs)

• Extensive research for more than 20 years

• Key task: inference/optimization for CRFs/MRFs

• Lots of progress

• Graph-cut based algorithms

• Message-passing methods

• LP relaxations

• Dual Decomposition

• ….

• Many state-of-the-art methods:
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• Hypergraph

– Nodes 

– Hyperedges/cliques

• High-order MRF energy minimization problem

high-order potential
(one per clique)

unary potential
(one per node)

hyperedges

nodes
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CRF training

• But how do we choose the CRF potentials?

• Through training

• Parameterize potentials by w

• Use training data to learn correct w 

• Characteristic example of structured output 
learning [Taskar], [Tsochantaridis, Joachims]
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CRF training

• Equally, if not more, important than MAP inference

• Better optimize correct energy 
(even approximately)

• Than optimize wrong energy exactly

• Becomes even more important as we move 
towards:

• complex models

• high-order potentials

• lots of parameters

• lots of training data
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CRF training

can contain any 
kind of data

CRF variables 
(structured object)

Hereafter, we will use:

• symbol z to denote elements of space Z

• symbol x to denote elements of space X

f : Z X

input 
space

output 
space
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CRF training

• Denoising:

• Z: noisy input image

• X: denoised output image

Z X

f :

argf  parameterized 
by w

Goal of training:

estimate proper w



CRF training

• Object detection:

• Z: input image

• X: position of object parts

Z X

f :

argf  parameterized 
by w

Goal of training:

estimate proper w



CRF training (some further notation)



CRF training (some further notation)



CRF training (some further notation)



CRF training (some further notation)

vector valued feature 
functions



CRF training (some further notation)

vector valued feature 
functions
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or equivalently

CONSTRAINED
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Choice 2: logistic loss 

 Can be shown to lead to maximum likelihood learning

partition function 



Max-margin vs Maximum-likelihood

max-margin

maximum likelihood



Max-margin vs Maximum-likelihood

max-margin

maximum likelihood



Max-margin vs Maximum-likelihood

max-margin

maximum likelihood



Max-margin vs Maximum-likelihood

max-margin

maximum likelihood



Max-margin vs Maximum-likelihood

max-margin

maximum likelihood

soft-max



Solving the learning 
formulations
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Maximum-likelihood learning

 Differentiable & convex

partition function 

 Global optimum via e.g. gradient descent 



Maximum-likelihood learning

gradient

Recall that:
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Maximum-likelihood learning

gradient

 Requires MRF probabilistic inference 

 NP-hard (exponentially many x): approximation via loopy-BP 
???
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 Convex but non-differentiable
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Subgradient

x2

subgradient at x1

g(x2)+h2∙(x-x2)

subgradient at x2 = gradient at x2
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Subgradient

subgradient of LG = 
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total subgr. = 

Repeat 
1. compute global minimizers at current w
2. compute total subgradient at current w
3. update w by taking a step in the negative total subgradient

direction
until convergence

Subgradient algorithm
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Max-margin learning (UNCONSTRAINED)

partial subgradient = 

Repeat 
1. pick k at random
2. compute global minimizer at current w
3. compute partial subgradient at current w
4. update w by taking a step in the negative partial subgradient

direction
until convergence

Stochastic subgradient algorithm

MRF-MAP estimation per iteration
(unfortunately NP-hard) 
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Max-margin learning (CONSTRAINED)

subject to the constraints:

linear in w

• Quadratic program (great!)

• But exponentially many constraints 
(not so great)
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• What if we use only a small number of 
constrains?

• Resulting QP can be solved

• But solution may be infeasible

Max-margin learning (CONSTRAINED)

• only few constraints active at optimal solution !!
(variables much fewer than constraints)

• Constraint generation to the rescue

• Given the active constraints, rest can be ignored

• Then let’s try to find them!
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1. Start with some constraints

Constraint generation

2. Solve QP 

3. Check if solution is feasible w.r.t. to all constraints

4. If yes, we are done!

5. If no, pick a violated constraint and add it to the 
current set of constraints. Go to step 2

(optionally, we can also remove inactive constraints)
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• Key issue: we must always be able to find a violated 
constraint if one exists

Constraint generation

• Recall the constraints for max-margin learning

• To find violated constraint, we therefore need to 
compute:

(just like subgradient method!)
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1. Initialize set of constraints C to empty 

Constraint generation

2. Solve QP using current constraints C and 
obtain new (w,ξ)

3. Compute global minimizers at current w

4. For each k, if the following constraint is violated 
then add it to set C: 

5. If no new constraint was added then terminate.
Otherwise go to step 2.

MRF-MAP estimation per sample 
(unfortunately NP-hard) 
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Max-margin learning (CONSTRAINED)

subject to the constraints:

• Alternatively, we can solve above QP in the dual 
domain

• dual variables ↔ primal constraints

• Too many variables, but most of them zero at 
optimal solution

• Use a working-set method 
(essentially dual to constraint generation)



CRF Training via Dual 
Decomposition [CVPR 2011]
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CRF training

• Key issue: can we more properly exploit CRF structure 
during training?

• Existing max-margin (maximum likelihood) methods: 

• use MAP inference (probabilistic inference) w.r.t. 
an equally complex CRF as subroutine

• have to call subroutine many times during learning

• Suboptimal

• computational efficiency ?
• accuracy ?
• theoretical guarantees/properties ?
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CRF Training via Dual Decomposition

• Reduces training of complex CRF to parallel training of a 

series of easy-to-handle slave CRFs

• Handles arbitrary pairwise or higher-order CRFs

• Uses very efficient projected subgradient learning scheme

• Allows hierarchy of structured prediction learning 

algorithms of increasing accuracy

• Very flexible and adaptable
• Easily adjusted to fully exploit additional structure in any 

class of CRFs (no matter if they contain very high order 
cliques or not)

• Efficient max-margin training method
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(short review)
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MRF Optimization via Dual 
Decomposition

• Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

• Set of slaves =
(MRFs on sub-hypergraphs Gi whose union covers G)

• Many other choices possible as well



MRF Optimization via Dual 
Decomposition

• Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

• Optimization proceeds in an iterative fashion via
master-slave coordination
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MRF Optimization via Dual Decomposition

convex dual relaxation 

Set of slave MRFs 

For each choice of slaves, master solves (possibly different) 
dual relaxation
• Sum of slave energies = lower bound on MRF optimum
• Dual relaxation = maximum such bound



MRF Optimization via Dual Decomposition

convex dual relaxation 

Set of slave MRFs 

Choosing more difficult slaves  tighter lower bounds
tighter dual relaxations






Dual Decomposition for MRF 
Optimization 

(short review finished)
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loss-augmented potentials

Max-margin learning via dual decomposition



Learning objective intractable due to this term 

Problem

Max-margin learning via dual decomposition
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Max-margin learning via dual decomposition

now

before

Essentially, training of complex CRF decomposed 
to parallel training of easy-to-handle slave CRFs !!!
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Max-margin learning via dual decomposition

• Global optimum via projected subgradient method 
(slight variation of subgradient method)

Repeat 
1. compute subgradient at current w
2. update w by taking a step in the negative subgradient

direction
3. project into feasible set

until convergence

Projected subgradient



• Input:

• K training samples

• Vector valued feature functions

Projected subgradient learning algorithm

• Hypergraph
(in general hypergraphs can vary per sample)
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Projected subgradient learning algorithm

so as to satisfy

fully specified from 

(we only need to know how to optimize slave MRFs !!)



• Incremental subgradient version:

• Further improves computational efficiency

• Same optimality guarantees & theoretical 
properties

• Same as before but considers subset of slaves per 
iteration

• Subset chosen

• deterministically or 

• randomly (stochastic subgradient)

Projected subgradient learning algorithm



Projected subgradient learning algorithm

so as to satisfy

fully specified from 

pick k
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• Resulting learning scheme:

 Slave problems freely chosen by the user

 Easily adaptable to further exploit special structure of 
any class of CRFs

 Very efficient and very flexible

 Requires from the user only to provide an optimizer 

for the slave MRFs

Projected subgradient learning algorithm
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Choice of decompositions

•

(hierarchy of learning algorithms)

= true loss (intractable)

= loss when using decomposition

•

(upper bound property)
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• denotes following decomposition: 

– One slave per clique 
– Corresponding sub-hypergraph                              :

,

• Resulting slaves often easy (or even trivial) to solve even 
if global problem is complex and NP-hard 

– leads to widely applicable learning algorithm

• Corresponding dual relaxation is an LP

– Generalizes well known LP relaxation for pairwise
MRFs (at the core of most state-of-the-art methods)

Choice of decompositions
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• But we can do better if CRFs have special structure…

Choice of decompositions

• Structure means:

• More efficient optimizer for slaves (speed)

• Optimizer that handles more complex slaves 
(accuracy)

(Almost all known examples fall in one of above two cases)

• We are essentially adapting decomposition to exploit the 
structure of the problem at hand



• But we can do better if CRFs have special structure…

• E.g., pattern-based high-order potentials (for a clique c) 

[Komodakis & Paragios CVPR09] 

subset of (its vectors called patterns)
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• But we can do better if CRFs have special structure…

• E.g., pattern-based high-order potentials (for a clique c) 

[Komodakis & Paragios CVPR09] 

• We only assume:

– Set is sparse

– It holds

– No other restriction

subset of (its vectors called patterns)

Choice of decompositions
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• Tree decomposition
(Ti are spanning trees that cover the graph)

Choice of decompositions

• No improvement in accuracy

• But improvement in speed
(                    converges faster than                      ) 
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Image denoising

• Piecewise constant images

• Potentials:

• Goal: learn pairwise potential 

Z X

 k

p p p pu x x z     ,k

pq p q p qh x x V x x 
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Image denoising
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Stereo matching

“Venus” disparity using  f (.) as estimated at 
different iterations of learning algorithm

• Potentials:

• Goal: learn function f (.) for gradient-modulated Potts model 
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Sawtooth
4.9%

Poster 
3.7%

Bull
2.8%
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Stereo matching

• Potentials:

• Goal: learn function f (.) for gradient-modulated Potts model 
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High-order Pn Potts model

Cost for optimizing slave CRF: O(|L|) 

• 100 training samples

• 50x50 grid

• clique size 3x3

• 5 labels (|L|=5)

[Kohli et al. CVPR07]

Goal: learn high order CRF with potentials given by

Fast training



Learning to cluster [ICCV 2011]
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Clustering

• A fundamental task in vision and beyond

• Typically formulated as an optimization problem based on a 
given distance function between datapoints

• Choice of distance crucial for the success of clustering

• Goal 1: learn this distance automatically based on training 
data

• Goal 2: learning should also handle the fact that the number 
of clusters is typically unknown at test time
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Exemplar based clustering formulation

set of exemplars 
(cluster centers)

set of datapoints

distance between 
datapoints p and q

penalty for choosing q as 
exemplar (cluster center)

The above formulation allows to:

• automatically estimate the number of clusters (i.e. size of Q) 

• use arbitrary distances 
(e.g., non-metric, asymmetric, non-differentiable)



Exemplar based clustering formulation

set of exemplars 
(cluster centers)

set of datapoints

distance between 
datapoints p and q

penalty for choosing q as 
exemplar (cluster center)

Inference can be performed efficiently using:
Clustering via LP-based Stabilities [Komodakis et al., NIPS 2008]
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Learning to cluster via high-order latent CRFs

• Input:

• K training samples

• Vector valued feature function

ground truth partition of         into clusters       

• Goal: lean distances dp,q and penalties dq,q
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Learning to cluster via high-order latent CRFs

measures inconsistency 
between x and partition   

• Loss function for clustering

• Set of clusterings fully consistent with partition Ck
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1. Training data do not specify ground truth solution xk

(all elements of xk are hidden/latent in this case)

• they only constraint it:

2. Both E(.) and Δ(.) are CRF energies of very high order

Main problems:

latent CRF 
model
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Learning to cluster via high-order latent CRFs

Solution: CRF training via dual decomposition for 
latent CRFs

How to efficiently deal with these problems during 
learning?
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Choosing decomposition for clustering

One slave CRF per datapoint p

One slave CRF per ground truth cluster C

+ +
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Learning to cluster via high-order latent CRFs

• Use block coordinate descent

• Alternately optimize

a.

b.
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Optimizing over 

is known 

• Back to fully supervised learning

• As already explained, in this case training 
requires solving the slave CRFs
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Training high-order latent CRFs via dual 
decomposition

• K training samples 

observed variables 
(per sample)

vector valued feature 
functions

hidden variables

• More generally, dual decomposition can be used for 
training any high-order latent model
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Learning a weighted Euclidean distance

• We consider a weighted Euclidean distance dpq for D-
dimensional datapoints

• Goal: learn weights wi automatically from clustering data 

• Half of the D dimensions are assumed to be noisy
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Learning to cluster scene images
Learn weighted combination of distances (multiple distances 
per feature, multiple features)

clustering accuracy: 
63% (Scene) 

10 of the estimated 
exemplars for Outex



Thank you for your attention!

Questions?


