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* Ubiquitous in computer vision

* segmentation stereo matching
optical flow image restoration
image completion  object detection/localization

* and beyond

* medical imaging, computer graphics, digital
communications, physics...

* Really powerful formulation
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Conditional Random Fields (CRFs)

* Key task: inference/optimization for CRFs/MRFs
e Extensive research for more than 20 years
* Lots of progress

 Many state-of-the-art methods:

* Graph-cut based algorithms
 Message-passing methods
* LP relaxations

* Dual Decomposition
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MAP inference for CRFs/MRFs
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— Hyperedges/cliques C @ .
hyperedges/ _____

* High-order MRF energy minimization problem
MRF¢(U.H) =min » Ug(zg) + » He(x)

unary potential high-order potential
(one per node) (one per clique)
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CRF training

 But how do we choose the CRF potentials?

* Through training

* Parameterize potentials by w

e Use training data to learn correct w

* Characteristic example of structured output
learning [Taskar], [Tsochantaridis, Joachims]
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CRF training

e Equally, if not more, important than MAP inference

* Better optimize correct energy
(even approximately)

* Than optimize wrong energy exactly

 Becomes even more important as we move
towards:

 complex models
* high-order potentials
* |ots of parameters

* |ots of training data
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CRF training

input output
space space

f:Z—X
7 .

can contain any CRF variables
kind of data (structured object)

Hereafter, we will use:
* symbol z to denote elements of space Z

* symbol x to denote elements of space X
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CRF training

e Stereo matching: Goal of training:
e Z:left, right image estimate proper w

e X:disparity map

f =argmin MRF ¢ (x; u. l?)

parameterized
> by w




CRF training

* Denoising: Goal of training:

* Z:noisy input image estimate proper w

e X: denoised output image

X

f =argmin MRF 4 (x; u, l?)

parameterized
> by w




CRF training

* Object detection: Goal of training:
* Z:inputimage estimate proper w

e X: position of object parts

X
f =argmin MRF ¢ (x; u. lll)

parameterized
> by w
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CRF training (some further notation)

MRFGxu hk qu, Tp) +th X,)

Uﬁ(%) — WTgp(xpv Zk): hf:: (Xc) = WTQC(XC: Zk)

vector valued feature /

functions

MRF ¢ (x; w, z* (Z gp(zp, 2¥) + ch(xf,z"“)) = w'g(x,2")
C



Learning formulations
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Risk minimization

arg min MRF ¢ (x; w, z")

K training samples {(x", Zk)}szl



Regularized Risk minimization

ok
.
min R(w) + Z A (xF, &%)

A%

= arg min MRF ¢ (x; w, z")

R(w) = [[w]|*, [[wl[1, etc.
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K

| ' Replace A(.) with easier to handle upper bound L
| (e g., convex w.r.t. w)
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L¢ (x*,2% w) = MRF¢(x"; w,z") — min (MRFg(x; w,z")

—A(

= Upper bounds A(.)

" |Leads to max-margin learning




Max-margin learning

MRFq(x"; w,z") < MRFg(x;w,z") — A(x,x")



Max-margin learning

MRFq(x"; w,z") < MRFg(x;w,z") — A(x,x")

energy of
ground truth



Max-margin learning

MRFq(x"; w,z") < MRFg(x;w,z") — A(x,x")

energy of any other
ground truth energy



Max-margin learning

MRFq(x"; w,z") < MRFg(x;w,z") — A(x,x")

energy of any other desired
ground truth energy margin



Max-margin learning

MRFq(x"; w,z") < MRFq(x;w,z") — A(x,x") + &

energy of any other desired  slack
ground truth energy margin



Max-margin learning

min E .
w
k

subject to the constraints:

MRFq(x"; w,z") < MRFq(x;w,z") — A(x,x") + &

energy of any other desired  slack
ground truth energy margin



Max-margin learning

mm R(w) + Z E

subject to the constraints:

MRFq(x"; w,z") < MRFq(x;w,z") — A(x,x") + &

energy of any other desired  slack
ground truth energy margin



Max-margin learning

mm R(w) + Z E

subject to the constraints:

MRFq(x"; w,2z") < MRFq(x; w,2") — A(x,x") + &




Max-margin learning

mm R(w) + Z £k

subject to the constraints:

MRFq(x";w,z") < MRFqg(x;w,z") — A(x,x") + &

Ior equivalently

mm R(w) + Z £k

£, = MRF ¢ (x"; w,z") — min (MRF¢q(x; w, z") — A(Xaxk))

X




Max-margin learning

CONSTRAINED

mm R(w) + Z £k

subject to the constraints:

MRFq(x";w,z") < MRFqg(x;w,z") — A(x,x") + &

Ior equivalently

mm R(w) + Z £k

£, = MRF ¢ (x"; w,z") — min (MRF¢q(x; w, z") — A(Xaxk))

X




Max-margin learning

CONSTRAINED

mm R(w) + Z £k

subject to the constraints:

MRFq(x";w,z") < MRFqg(x;w,z") — A(x,x") + &

Ior equivalently

UNCONSTRAINED

mm R(w) + Z £k

£, = MRF ¢ (x"; w,z") — min (MRF¢q(x; w, z") — A(Xaxk))

X
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Choice 2: logistic loss

K

min R(w —I—ZLG x" zk W)
k=1

La (xk, zk;w) — MRF ¢ (x";w,z") + l{:}gz e~ MRFa (x;iw.z")
\ X

J

Y
partition function

" Can be shown to lead to maximum likelihood learning
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Max-margin vs Maximume-likelihood

max-margin

\
( \
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max-margin

\
( \
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Max-margin vs Maximume-likelihood

max-margin

\
( \

La (Xk, z": W) :[:\-"IRFg(Xk; w, zk)]+[1na1.}{](—1\-'IRF'G(X; W, zk) + A(X,Xk))

x

=

b (a5 :[MRFG(X’“; W, zk)]{log 2 %MRFG(X;W‘“)

|
maximum likelihood




Solving the learning

formulations




Maximum-likelihood learning



Maximum-likelihood learning

K
min £ (jw|[2 + 3" Le (x*, 255 w)
Vo2 k=1

LG (Xk:' zk; W) — }\IRFg(Xk W, zk) 4 l{:}g Z E—I‘»*IRFG(X;W:ZPE)

‘ }
Y

partition function




Maximum-likelihood learning

K
min EHW\ %+ Z Lg (x*,2"; w)
w2 k=1
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Maximum-likelihood learning

K
min EHW\ %+ Z Lg (x*,2"; w)
w2 k=1

LG (}(Jik’:I Zk; W) — }\IR.FG(Xk; W, Z"T") + l{:}g Z E—MRFQ(X,W; )
X |

Y
partition function

= Differentiable & convex

* Global optimum via e.g. gradient descent



Maximum-likelihood learning

K
min EHW\ %+ Z Lg (x*,2"; w)
w2 k=1

LG (Xk:' Zk; W) — }\IRFg(Xk W, Z'I"') 4 l{:}g Z E—I‘»*IRFG(X;W:ZPE)

gradient —>V,, = w+ 3 (g(x"”‘,z’“) - p(xfw, Zk)g(xazk))
k

4

Recall that: MRF¢(x;w,z") = wl g(x,z")
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Maximum-likelihood learning

K
min EHW\ %+ Z Lg (x*,2"; w)
w2 k=1

LG (Xk:' zk; W) — }\IRFg(Xk W, zk) 4 l{:}g Z E—I‘»*IRFG(X;W:ZPE)

gradient —>V,, = w+ 3 (g(x"”‘,z’“) - p(xfw, Zk)g(xazk))
k

X
\ J
|

—

= Requires MRF probabilistic inference

* NP-hard (exponentially many X): approximation via loopy-BP
27?7
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Max-margin learning (UNCONSTRAINED)

K

min R(w —I—ZLG x" zk W)
k=1

Lg (Xk,zk; w) = MRF & (x";w,z") — min (MRF g (x; w,z") — .A(X,Xk))

= Convex but non-differentiable

" Global optimum via subgradient method



Subgradient

subgradient at x,




Subgradient

subgradient at x, = gradient at x, subgradient at x
1

~ o

g(xz)"'hz'(x‘xg)




Subgradient
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Subgradient

Lemma. Ler f(-) = maxy;m—1.... M fm(:), with fm(-) con-
vex and differentiable. A subgmdrem of f at'y is given by
V fi(y), where m is any index for which f(y) = fam(y).
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Subgradient

Lemma. Ler f(-) = maxy;m—1.... M fm(:), with fm(-) con-
vex and differentiable. A subgradient of f at 'y is given by
V fmly), where m is any index for which f(y) = fm(y).

L¢ (Xk, z": w) = MRF ¢ (x"; w,z") — min (MRF g (x; w, z") — A(x, X‘I”))

x

MRF¢(x;w,z") = wl g(x, z")

subgradient of L = g(x", z") — g(%", z")

\
£* = arg min (MRFg(X; w,z") — A(X;Xk))




Max-margin Iearning (UNCONSTRAINED)

min R(w) + ZLG x" Zk W)
W k=1
Lo (Xk?zk; W) — h-[RFG(xk; W, zk) — min (I\IRFG(X; W, zk) — A(X,Xk))

total subgr. = subgradient [R(wW)]| + Z (9(x*,2") — g(x*, Zh))
k




Max-margin Iearning (UNCONSTRAINED)

min R(w) + ZLG x" Zk W)
W k=1
Lc (Xk,zk; W) — MRF o (x": W, zk) — min (I\IRFG(X; W, zk) — A(x,x

Subgradient algorithm

Repeat
1. compute global minimizers X" at current w
2. compute total subgradient at current w
3. update W by taking a step in the negative total subgradient
direction
until convergence

k

total subgr. = subgradient,, | Z (x*,2") — g(x*,2"))
k




Max-margin Iearning (UNCONSTRAINED)

min R(w) + ZLG x" Zk W)
b k=1
La (Xk,zk; w) = MRF & (x":w, zk) — min (I\IRFG(X; W, zk) — .&(X,Xk))

Stochastic subgradient algorithm

Repeat
1. pick k at random
2. compute global minimizer %* at current w
3. compute partial subgradient at current w
4. update w by taking a step in the negative partial subgradient

direction
until convergence

partial subgradient = subgradient, [R(w)] + g(x*,z") — g(%",z")
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k=1

Lo (x*,2% w) = MRFg(x"; w, z") —[m'm (MRF¢g(x; w,z") — A(x, Xk))]

Stochastic subgradient algorithm /‘

Repeat

direction

1. pick k at random

2. compute[global minimizer X" |at current W,

until convergence

3. compute partial subgradient at current
4. update w by taking a step in the negs

MRF-MAP estimation per iteration

ive partial subgradient

partial subgradient = subgradient,, [R(w)] + g(x",z
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min R(w —|—ZLG x" zk W)
k=1

Lo (x*,2% w) = MRFg(x"; w, z") —[m'm (MRF¢g(x; w,z") — A(x, Xk))]

Stochastic subgradient algorithm /‘

Repeat

direction

1. pick k at random

2. compute[global minimizer X" |at current W,

until convergence

3. compute partial subgradient at current
4. update w by taking a step in the negs

ive partial subgradient
MRF-MAP estimation per iteration

(unfortunately NP-hard)

partial subgradient = subgradient,, [R(w)] + g(x",z
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min EHWH2 — Z Er
w2 -

subject to the constraints:

MRF¢(x*; w,z") < MRFg(x;w,2z") — A(x,x*) + &

\/

linear in W

* Quadratic program (great!)

* But exponentially many constraints
(not so great)
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Max-margin learning (CONSTRAINED)

What if we use only a small number of
constrains?

e Resulting QP can be solved

e But solution may be infeasible

Constraint generation to the rescue

* only few constraints active at optimal solution !!
(variables much fewer than constraints)

* Given the active constraints, rest can be ignored

* Then let’s try to find them!
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Constraint generation

1. Start with some constraints

2. Solve QP

3. Check if solution is feasible w.r.t. to all constraints
4. If yes, we are done!

5. If no, pick a violated constraint and add it to the
current set of constraints. Go to step 2

(optionally, we can also remove inactive constraints)




Constraint generation

* Key issue: we must always be able to find a violated
constraint if one exists



Constraint generation

* Key issue: we must always be able to find a violated
constraint if one exists

* Recall the constraints for max-margin learning

MRFq(x"; w,z") < MRFq(x;w,z") — A(x,x") + &



Constraint generation

* Key issue: we must always be able to find a violated
constraint if one exists

* Recall the constraints for max-margin learning

MRFq(x"; w,z") < MRFq(x;w,z") — A(x,x") + &

* To find violated constraint, we therefore need to
compute:

%* = arg min (MRF(;(X; w,z") — /—\(X:Xk))

(just like subgradient method!)
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. For each k, if the following constraint is violated
then add it to set C:

MRFq(xF:w,z") < MRF&(%%; w,z") — ARF, xF) + &

. If no new constraint was added then terminate.
Otherwise go to step 2.




Constraint generation

1. Initialize set of constraints C to empty

2. Solve QP using current constraints C and
obtain new (W,£)

3. Compute|global minimizers }"ck]at current w

4. For each K, if the following constraint is violated

then add it to set C:
MRFq(x":w,z") < MRF¢

“w,zb) — ARE xF) + &

5. If no new constraint was added then terminate.
Otherwise go to step 2.

MRF-MAP estimation per sample

(unfortunately NP-hard)
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Max-margin learning (CONSTRAINED)

M 2
min anH — Zk:&c

subject to the constraints:

MRFq(x"; w,z") < MRFq(x;w,z") — A(x,x") + &

Alternatively, we can solve above QP in the dual
domain

dual variables << primal constraints

Too many variables, but most of them zero at
optimal solution

Use a working-set method
(essentially dual to constraint generation)



CRF Training via Dual

Decomposition [CVPR 2011]



CRF training

e Existing max-margin (maximum likelihood) methods:



CRF training

e Existing max-margin (maximum likelihood) methods:

* use MAP inference (probabilistic inference) w.r.t.
an equally complex CRF as subroutine



CRF training

e Existing max-margin (maximum likelihood) methods:

* use MAP inference (probabilistic inference) w.r.t.
an equally complex CRF as subroutine

* have to call subroutine many times during learning



CRF training

e Existing max-margin (maximum likelihood) methods:

* use rence (probabilistic in W.r.t.
an equally comple routine

* ha

all subroutine many times du rning

e Suboptimal



CRF training

e Existing max-margin (maximum likelihood) methods:

* use rence (probabilistic in w.r.t.
an equally comple routine

* ha

all subroutine many times du rning

e Suboptimal
 computational efficiency ?



CRF training

e Existing max-margin (maximum likelihood) methods:

* use rence (probabilistic in w.r.t.
an equally comple routine

* ha

all subroutine many times du rning

e Suboptimal

 computational efficiency ?
e accuracy ?



CRF training

e Existing max-margin (maximum likelihood) methods:

* use rence (probabilistic in w.r.t.
an equally comple routine

* ha

all subroutine many times du rning

e Suboptimal

 computational efficiency ?
e accuracy ?
* theoretical guarantees/properties ?



CRF training

e Existing max-margin (maximum likelihood) methods:

rence (probabilistic in w.r.t.
routine

* use
an equally comple

* ha

all subroutine many times du rning

e Suboptimal

 computational efficiency ?
e accuracy ?
* theoretical guarantees/properties ?

* Key issue: can we more properly exploit CRF structure
during training?
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CRF Training via Dual Decomposition

Efficient max-margin training method

Reduces training of complex CRF to parallel training of a
series of easy-to-handle slave CRFs

Handles arbitrary pairwise or higher-order CRFs
Uses very efficient projected subgradient learning scheme

Allows hierarchy of structured prediction learning
algorithms of increasing accuracy

Very flexible and adaptable

* Easily adjusted to fully exploit additional structure in any
class of CRFs (no matter if they contain very high order
cligues or not)



Dual Decomposition for MRF

Optimization
(short review)
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et al. ICCVO7, PAMI11]
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subproblems (have only local view)



MRF Optimization via Dual
Decomposition

* Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

complex

dual

high-order MRF decomposition

Master =

master

RN

slave 1 | = = =|slave N

e -

simple slave MRFs

MRF¢(u,h) «— (MAP-MRF on hypergraph G)
min MRF;(x;u,h) : Zup Tp) +Zh X¢)

peV ceC



MRF Optimization via Dual
Decomposition

Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

complex
high-order MRF

dual

decomposition

master

slave 1

@

S

«[ slave N

_

Set of slaves = {MRFg,(6*,h)}
(MRFs on sub-hypergraphs G; whose union covers G)
Many other choices possible as well

] T
simple slave MRFs



MRF Optimization via Dual
Decomposition

* Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

complex
high-order MRF

dual

decomposition

master _master-slave
" coordination
slave 1 =| slave N
— _

. Y
simple slave MRFs

e Optimization proceeds in an iterative fashion via

master-slave coordination
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Set of slave MRFs
{MRFG@, (92 h)}

lconvex dual relaxation

DUAL h) = ma MRF¢. (6%, h
(c;y(u,h) = max Z ¢ (0" h)

S.t. Z@z = Up (-

€1,

For each choice of slaves, master solves (possibly different)
dual relaxation
* Sum of slave energies = lower bound on MRF optimum
* Dual relaxation = maximum such bound



MRF Optimization via Dual Decomposition

Set of slave MRFs
{MRF¢, (6, h)}

lconvex dual relaxation

DUAL h) = ma MRF¢. (6%, h
(c;r(u,h) = 1%19‘1}{ Z a, ( )

S.t. Z@l = Up (-

€1,

Choosing more difficult slaves — tighter lower bounds
—> tighter dual relaxations



Dual Decomposition for MRF

Optimization
(short review finished)




Max-margin learning via dual decomposition

K
min R(w) + Z L¢ (Xk, z": w)

W
k=1

Lq (Xk,zk; W) = BIRFG(XEQW,ZE) — min (I\IRFQ(X; W,Zk) — A(X,XE))



Max-margin learning via dual decomposition

K
min R(w) + Z L¢ (Xk, z": w)

W
k=1

La (Xk, zk;w) — I\IRFg(Xk; uk, hk) — min (MRFg(X; uk,hk) — A(ijk))



Max-margin learning via dual decomposition

K
min R(w) + Z L¢ (Xk, z": w)

W
k=1

La (Xk, zk;w) = MRF¢(x"; u®, h*) — min (MRF¢(x; u® h") — A(ijk))

A(x, x®) = Zﬁp(mp,x’g) +- Zcﬁ'c(xmx?) A(x,x) =0
D c




Max-margin learning via dual decomposition

K
min R(w) + Z L¢ (Xk, z": w)

W
k=1

La (Xk, zk;w) = MRF¢(x"; u®, h*) — min (MRF¢(x; u® h") — A(ijk))

A(x,x%) = Zﬁp(mp,x’g) + Zcﬁ'c(xcjxﬁf) A(x,x) =0

loss-augmented potentials



Max-margin learning via dual decomposition

K
min R(w) + Z L¢ (Xk, z": w)

W
k=1

Lo (ij zk;w) — h-[RFG(Xk‘;_ u”, hk) — min MRF g (x; ak l_lk)

A(x,x%) = Zﬁp(mp,x’g) + Zcﬁ'c(xcjxﬁf) A(x,x) =0

loss-augmented potentials



Max-margin learning via dual decomposition

K
min R(w) + Z L¢ (Xk, z": w)

W
k=1

Lo (ij zk;w) — h-[RFG(Xk‘;_ u”, hk) — min MRF g (x; ak l_lk)

loss-augmented potentials



Max-margin learning via dual decomposition

K
min R(w) + Z L¢ (Xk, z": w)

W
k=1

Le (x*,2"; w) = MRF¢(x"; @*, h*) — min MRF¢ (x; ", h")

loss-augmented potentials



Max-margin learning via dual decomposition

K
min R(w) + Z Lo (x®, @, h"; w)

W
k=1

Lo (x®, @ h*;w) = MRF¢(x"; @", h*) — min MRF¢(x; @", h*)

A(x, x®) = Zﬁp(mp,x’g) +- Zcﬁ'c(xmx?) A(x,x) =0

p
— l

u
/ he(-) = el

loss-augmented potentials




Max-margin learning via dual decomposition

K
min R(w) + Z Lo (x®, @, h"; w)

W
k=1

Lo (xF, @, b%; w) = MRF ¢ (x": a*, h¥) @FG(X; @

Problem
Learning objective intractable due to this term
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K
min R(w) + Z Lo (x®, @, h"; w)

W
k=1

Lo (x®, @ h*;w) = MRF¢(x"; @", h*) — min MRF¢(x; @", h*)

Solution: approximate this term with dual relaxation

from decomposition {G; = (V;,C;) il
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Max-margin learning via dual decomposition

min R(w) + Z Z Le, (x%, 008 hF w)

w,{00i-k)}

Solution: approximate this term with dual relaxation
from decomposition {G; = (V;,C:) ).,

min MRF g (x; 1‘1;"'j l_lk) DUAL{Gi } (ﬁka Ek)

* - k) 1Lk
DUAL(¢,, (3", h*)= max Y MRFg, (0“" h*)
CRR)

s.t. Z Qz(fﬂ’“)(-) —q

i€T,



Max-margin learning via dual decomposition

w,ﬁ}ﬁlﬂ; }R(W) T Z Z Lg; (st 9(1.’;{)? h"; W)

min R(w) + Z Lo (x*, ", b w)

W
k=1




Max-margin learning via dual decomposition

k i
o Y08 = ()
icT,
K
min R(w) + Z Lo (xF, a" h*; w)
k=1

Essentially, training of complex CRF decomposed
to parallel training of easy-to-handle slave CRFs !!!
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Max-margin learning via dual decomposition

* Global optimum via projected subgradient method
(slight variation of subgradient method)

Projected subgradient

Repeat
1. compute subgradient at current w
2. update W by taking a step in the negative subgradient
direction
3. project into feasible set
until convergence




Projected subgradient learning algorithm

* Input:
e K training samples {(Xkazk)};il

* Hypergraph G = (V,C)
(in general hypergraphs can vary per sample)

 Vector valued feature functions {g, (-, )}, {gc(-. )}
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Vk, choose decomposition {G; = (V;, C;)}iv, of hypergraph G

Vk, i, initialize 0“*) so as to satisfy Z OFF) () = ak ()

ieZ
repeat Y

// optimize slave MRF's | o
Vk, i, compute mmimizer %% —arg min MRFg; (x; 0'"*) hk)

/[ update w |
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Projected subgradient learning algorithm

Vk, choose decomposition {G; = (V;, C;)}iv, of hypergraph G

Vk, i, initialize 0“*) so as to satisfy Z OFF) () = ak ()

ieZ
repeat Y

// optimize slave MRF's
Vk, i, compute mmimizer %% —arg min MRFg; (x; 0'"*) hk)

/[ update w |
W «— W — Q¢ -4— fully specified from % (BF)

// update 0%

i NG 2 a2 =.
Q;E) ?k)(') += ¢ ([.’L‘;() k) :} — JEIP[I;T } )

until convergence

(we only need to know how to optimize slave MRFs !!)



Projected subgradient learning algorithm

* Incremental subgradient version:

* Same as before but considers subset of slaves per
iteration

* Subset chosen
e deterministically or

* randomly (stochastic subgradient)
* Further improves computational efficiency

* Same optimality guarantees & theoretical
properties



Projected subgradient learning algorithm

Vk, choose decomposition {G; = (V;, C;)}iv, of hypergraph G

Vk, i, initialize 0“*) so as to satisfy Z OFF) () = ak ()

ieZ
repeat Y

// optimize slave MRFs
Vi, compute minimizer X% =arg min MRF¢q, (x; o'k h*)

/[ update w |
W «— W — Q¢ -4— fully specified from % (HF)
/| update 6% |

(?};) e . (1,k) 2 jeT [iz(aj’m:'}
Op (1) += [mp’ :'}_ -

until convergence
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Projected subgradient learning algorithm

* Resulting learning scheme:
v’ Very efficient and very flexible

v Requires from the user only to provide an optimizer
for the slave MRFs

v’ Slave problems freely chosen by the user

v’ Easily adaptable to further exploit special structure of
any class of CRFs



Choice of decompositions{G;}
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Choice of decompositions{G;}

Fo = true loss (intractable)

F{a,1=loss when using decomposition {G }

* Fo=Ficy)
(upper bound property)

. {Gi}<{G;}

(hierarchy of learning algorithms)
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Choice of decompositions{G;}

Gsingle = {Ge}eec denotes following decomposition:
— One slave per clique ¢ € C
— Corresponding sub-hypergraph G. = (V,,C,.):

Ve = {plp € ¢}, Cc = {c}

Resulting slaves often easy (or even trivial) to solve even
if global problem is complex and NP-hard

— |leads to widely applicable learning algorithm

Corresponding dual relaxation is an LP

— Generalizes well known LP relaxation for pairwise
MRFs (at the core of most state-of-the-art methods)
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Choice of decompositions{G;}

* But we can do better if CRFs have special structure...

* Structure means:
* More efficient optimizer for slaves (speed)

* Optimizer that handles more complex slaves
(accuracy)

(Almost all known examples fall in one of above two cases)

 We are essentially adapting decomposition to exploit the
structure of the problem at hand



Choice of decompositions{G;}

* But we can do better if CRFs have special structure...

* E.g., pattern-based high-order potentials (for a clique )
[Komodakis & Paragios CVPRO9]
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c(x) w*  otherwise
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P subset of E‘C‘ (its vectors called patterns)



Choice of decompositions{G;}

* But we can do better if CRFs have special structure...

* E.g., pattern-based high-order potentials (for a clique )
[Komodakis & Paragios CVPRO9]

(Ye(x) ifx P

H.(x) = <
c(x) w*  otherwise

\

P subset of E‘C‘ (its vectors called patterns)

* We only assume:
— Set P is sparse

— ltholds 9.(x) < Y1** Vx € P
— No other restriction
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Choice of decompositions{G;}

* Tree decomposition Giree = {Ti}fg\il
(T; are spanning trees that cover the graph)

* No improvement in accuracy

DUALg,,.. = DUALg,, ... = Fa,.. = Fo

single single

 But improvement in speed
(DUALg, . converges faster than DUALg

single )
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Image denoising

* Piecewise constant images

* Potentials: UE (Xp) = ‘Xp - Zp‘ hgq (Xp’xq):V (‘Xp _XQD

* Goal: learn pairwise potential V()
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Stereo matching
Ileft(p)_lright(p_xp)‘
he (xp,xq): f (‘VI 'eﬁ(p)‘)[xp -+ xq]

* Goal: learn function f(:) for gradient-modulated Potts model

» Potentials: U} (xp) —
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Stereo matching

» Potentials: U} (Xp) = ‘ 1 (p)—1"™" ( p—xp)‘
P (%52 = £ (V1 (P [, 7]

* Goal: learn function f(-) for gradient-modulated Potts model

“Venus” disparity using f (-) as estimated at
different iterations of learning algorithm



Stereo matching
Ileﬁ(p)_lright(p_xp)‘
he (xp,xq) = f (‘VI 'eﬁ(p)‘)[xp = xq]

* Goal: learn function f(-) for gradient-modulated Potts model

» Potentials: U} (xp) —
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Stereo matching
Ileft(p)_lright(p_xp)‘
he (xp,xq): f (‘VI 'eﬁ(p)‘)[xp -+ xq]

* Goal: learn function f(:) for gradient-modulated Potts model

» Potentials: U} (xp) —
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High-order P" Potts model

Goal: learn high order CRF with potentials given by

he(x) =

max

B =wy-27

B7 ifx, =1, Vpe€c
c otherwise |,

[Kohli et al. CVPRO7]

Cost for optimizing slave CRF: O(|L|) = Fast training

x 10

-IIE- [92]

[\

objective function

4

CJO

20 40
time (secs)

60

100 training samples

50x50 grid
clique size 3x3
5 labels (|L|=5)



Learning to cluster [ICCV 2011]
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Clustering

A fundamental task in vision and beyond

Typically formulated as an optimization problem based on a
given distance function between datapoints

Choice of distance crucial for the success of clustering

Goal 1: learn this distance automatically based on training
data

Goal 2: learning should also handle the fact that the number
of clusters is typically unknown at test time
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datapoints p and g

SN

min & — mind, , + d,
Q) =D mindy,+ ) dog

QCS

/ * qeQ

set of exemplars set of datapoints
(cluster centers)
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Exemplar based clustering formulation

distance between penalty for choosing q as
datapoints p and g exemplar (cluster center)

=T

min £(Q 111111 dp g + E dg.q
QCS 4€Q

/ Q‘ qeQ

set of exemplars set of datapoints
(cluster centers)

The above formulation allows to:
e automatically estimate the number of clusters (i.e. size of Q)

e use arbitrary distances
(e.g., non-metric, asymmetric, non-differentiable)



Exemplar based clustering formulation

distance between penalty for choosing q as
datapoints p and g exemplar (cluster center)

=T

min £(Q 111111 dp g + E dg.q
QCS qe

/ Q) qeQ

set of exemplars set of datapoints
(cluster centers)

Inference can be performed efficiently using:
Clustering via LP-based Stabilities [Komodakis et al., NIPS 2008]



Exemplar based clustering as a high-order CRF

min E dy T
x

p.qES

S.1. me =1, Vp
g€eS
Tpqg < Tqq; Vp, q
Tpe € {0,1}, Vp,q.
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Exemplar based clustering as a high-order CRF

, _ x,, =1 < g Is chosen as exemplar
min E Ay o Tpq | . .
x f x, =1< p is assigned to exemplar ¢
P.gES o
St E ::BW =1, Vp - each datapoint p can be assigned to
oy exactly one exemplar
g

If p is assigned to g, then g must be

Tpa < Toa VD, q <
P 1 chosen as exemplar

Tpq € 10,1}, Vp,q.




Exemplar based clustering as a high-order CRF

x,, =1 ¢q Is chosen as exemplar

min E Ay o Tpq | |
x f x, =1< p is assigned to exemplar ¢
P.gES o
St E :37;1)(; =1, Vp = each datapoint p can be assigned to
exactly one exemplar

If p is assigned to g, then g must be
chosen as exemplar

Tpqg < Tqq; VD, q <
Tpq € 10,1}, Vp,q.

deqmpq +ZO $pq<$qq ZO(Z qu:l)

unary TE‘I‘I]IE p’lll"‘ﬁ 1se TE‘] 1115

higher-order terms

5(a) = {O, a 1S true

oo, a1s false
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Learning to cluster via high-order latent CRFs

* Goal: lean distances dp,q and penalties dq,q

* Input:

K
« K training samples {Cka z" }k:l

ct = {Cr}
ground truth partition of Sk into clusters

UiCF = SF, G N CF =0,V #

 Vector valued feature function gpq(-)

dlpc,q — WTgpq (Zk)
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e Loss function for clustering
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Learning to cluster via high-order latent CRFs

e Loss function for clustering
&(XC‘E” ) = « ‘l—zqu‘—ﬁYY(l_prq)

Yﬁk g€ CecCk peC geC

measures inconsistency
between x and partition C*

 Set of clusterings fully consistent with partition CX

= {x: A(x;C*) =0}
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Learning to cluster via high-order latent CRFs
Main problems:

1. Training data do not specify ground truth solution xk

(all elements of XX are hidden/latent in this case) | |atent CRE

* they only constraint it: xF ¢ X(Ck) model

2. Both E(.) and A(.) are CRF energies of very high order

Z dququ +ZO (Zpg g Tqq) +Z (Zggﬂpq = 1)

unary TE‘.‘I‘llh p’lll"‘ﬁ. ise TE‘I s

higher-order terms

A(x:C") =« Z I]__Z:qu‘ +53 Z Z( ZCTM)

CeCk geC CeCk peC

high-order terms
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Learning to cluster via high-order latent CRFs

How to efficiently deal with these problems during
learning?

Solution: CRF training via dual decomposition for
latent CRFs




Learning to cluster via high-order latent CRFs

EF(x;w) := E(x;d*) — A(x;CF)



Learning to cluster via high-order latent CRFs
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Learning to cluster via high-order latent CRFs

(dp,q +B-[3CeCk i pqe O]) Tpg

Ef(x;w) = Z’l_!/];q(qu) T Zépq(qu:xqq)‘F

Zqﬁp Xp T Z QbC XC ﬁ‘sk‘

CeCk



Learning to cluster via high-order latent CRFs

(dp,q + - [HO cC":pqe O]) "Lpq 0 (qu < :qu)

N _—

Ef(x;w) = Zﬂfgq(qu) T Z Ppa(Tpgs Tgq)+
P:q P:q

D bp(xp) + > delxe) - BISH

CeCk
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up (Tpg) + Z¢pq (Tpg> Tqq)+
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Learning to cluster via high-order latent CRFs

(dp,q + - [HO cC":pqe O]) "Lpq 0 (qu < :qu)

0 (Zq%q - 1) _a|l B quc Fag

Xp = 1Tpqlq € S}~ o X ={Tq¢q|qeC}




Choosing decomposition for clustering
EF(x;w) = Zﬂ’;q(qu) + chpq(quaxqq)‘F

Zgbp Xp + Z QbC’ XC /G‘Sk‘



Choosing decomposition for clustering

E :uqq Tqq) + E u $pq ) + E :@pq (Tpgs Tgq)+

P,q:p#q

Z@p (xp) + Y dc(xc) ..5\3;"\ :

CeCk
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C'eCk

One slave CRF per ground truth cluster C
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geC
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E:uqq Tqq) + E u ¢(Zpq) +E Q‘»‘pq Tpq, Tqq)+
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Choosing decomposition for clustering

Zuqq (Tqq) + Z u ¢(Zpg) +Z[¢pq $pq:d"3qq]+

P,q:p#q

S 5 s -5
CeCk

One slave CRF per datapoint p

EE(x;w,0%) Zﬁpq:cqq Z g (Tpg) _|_Z[pq(mqumqq)]+[¢p(xpﬂ_6

q:q#p q

One slave CRF per ground truth cluster C

(x; W, 9‘1“ Z chmqq oo (xc)
geC



Choosing decomposition for clustering

Ef(x:w) = quk ($qq)]+ Z [qu($pq)]+ Z[ pq(qu:mqq)]*

q P,q:p#q

D> o xp| > dclxc) - IS .
CeCk

p

One slave CRF per datapoint p

Ej(x;w,0"%) Zm Z Upq %q Z[pq(mpqvmqq)]+[¢p(xpﬂ_ p

qq#p q

One slave CRF per ground truth cluster C

(x; W, 9‘1“ Z chmqq oo (xc)
geC



Choosing decomposition for clustering

E:uqq Tqq) + E u ¢(Zpq) +E Q‘»‘pq Tpq, Tqq)+

P,q:p#q

Z@’)p (Xp) + Z do(xc) ‘SR‘ ;

C'eCk

One slave CRF per datapoint p
Er" (x; w, 0%) Z qu:cqq Z ﬂgq(mpq) + Z qﬁpq(mpq,mqq) — qﬁp(xp) — 3
q

q:q#p

One slave CRF per ground truth cluster C

(x; W, 9‘1” Zécqmqq b (x¢)
geC



Choosing decomposition for clustering

E u ¢(Zpq) +§ @pq Tpq, Tqq)+

P,q:p#q

) +Z¢C XC ‘SR‘ 3

¢p(xp) &
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Choosing decomposition for cIustering

P,q:p#q

,) + Z qﬁc XC) ‘S;‘" :

Z u ¢(Tpq) +Z¢Pq (Zpg, Tqq) ¢p(xp) &)




Learning to cluster via high-order latent CRFs

| = (X" w, " ko gk
{xkex(ckl)l;—}ﬁ,{ekeek}R(W) *Z Z L:E;;(X W, 0 )—i—z Z L:EE(X :w, 0 )

k peSk k Ceck
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X



Learning to cluster via high-order latent CRFs

: k iy
{xkEX(CkI)I;}Er,{QkEQk} Z Z L:Ek X" W, 07) +Z 2 ’C'Ejri x" W, 07)

k peSk Cceck

Lz(x":w,0%) = E(x":;w, %) — min E(x; w, 8"
E

X

* Use block coordinate descent
* Alternately optimize

a. {x*}

b. {w,{@k € @k}}



Optimizing over {x*}

c ") C 0"
xkex Ckn;m}g} ;p;h Ek x": w, +ZC;k Bk ( X" w, 0%)

Lz(xFw,0%) .= E(x";w, 8%) — min E(x; w, 8")

X




Optimizing over {x"}

| = (X k ok, k
{xkEX(C‘“I)I;.lg k -}R(W)*Z Z ’EE;;(X W, 0 )+Z Z ﬁgg(x W, 0%)

Lz(xFw,0%) .= E(x";w, 8%) — min E(x; w, 8")

X

k : I
X" =arg min F(x;d
gxeX(Ck‘) ( )



Optimizing over {x"}

| = (X k ok, k
{xkefl.”(ckl)lf,lﬁ k -}R(W)*Z Z L:E}f(x 'w,0 )+Z Z Lpr(x"1w,0 )

Lz(xFw,0%) .= E(x";w, 8%) — min E(x; w, 8")

X

x" = arg min F(x; dk)
: xEX (CF)
optimal cluster

centers (exemplars)

T = {acdeeer o =argmin b,

peC



Optimizing over {x"}

| = (X k ok, k
{xkeﬂf(ckl)lilﬁ k -}R(W) *Z Z L:E;‘;(X 'w,0 )+Z Z Lpr(x"1w,0 )

Lz(xFw,0%) .= E(x";w, 8%) — min E(x; w, 8")

X

x" = arg min F(x; dk)
: xEX (CF)
optimal cluster

centers (exemplars)

T = {cdoeer o =argmin Y db,

peC

= 1 & q < Qk ij — 1 & q = argmianQk dg’q

k
aq Pq
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i R(w) + Lz 0") L 9"
{%ﬂlﬂ,{eke@k} () ;p;k (s w, +Z,C;k B (3w, 07)

Lz(xFw,0%) .= E(x";w, 8%) — min E(x; w, 8")

X
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i R(w) + LE inwaf"k + Lz (x":w, 0"
{ },w,{0kcOF} ( ) Z Zk E;;( ; ) Z Zk E(I_}( ; : )
k peS k CceC

Lz(xFw,0%) .= E(x";w, 8%) — min E(x; w, 8")

X

{x*1 is known
* Back to fully supervised learning

* Asalready explained, in this case training
requires solving the slave CRFs
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Solving slave CRF £

(x;w,0") Z cha:qq : |1 — Z T qq

qeC qeC

|

0F < al, if 2a+2q,60[9§,—a}_ <0
0, otherwise

Vq e, :”i:qq:{
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Solving slave CRF E;

EkXWQR ZQ mqurZ upq qu+Zé (Tpg < Tgq) —O(prql)

q:q#p

define 0F = uF (1) + 0%]+,Yq # p and 9_;; = 0%



Solving slave CRF E;

E’I‘“XWHF‘ ZQ mqurZu qu+20 Tpg < Tgq) —O(prql)

q:q#p

define 0F = ul (1) + [0F].,Yq # p and 6} = 0%

|

Vg #p, Tqq [9’; < 0]
Vq, Tpq < |q = q|, where § = arg min é’;
q



Learning scheme

Data: training samples {C*,z"}i-,, features { foq(-)}

repeat
/* Optimize over x”* */
compute optimal set of exemplars Q"
set mnglﬁq c QF, $'§q:1@q:arg mg}g d’;’q, Vp#£q
g€

/* Apply T rounds of projected subgradient */

repeat T' times {
get solutions X of slaves E;f_, E¥, to estimate subgradient
update w, 0" via projected subgradient update

}

until convergence

k,p }A{k,O
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Training high-order latent CRFs via dual
decomposition

* More generally, dual decomposition can be used for
training any high-order latent model

observed variables
(per sample)

« K training samples {x* z*} &

hidden variables

MRF ¢ ((x,%); u®, h¥) = Zu ((@p, Zp)) + Y hE((%e,%e))



Training high-order latent CRFs via dual
decomposition

* More generally, dual decomposition can be used for
training any high-order latent model

observed variables

(per sample)

« K training samples {x* z*} &

hidden variables

MRF¢q((x, X -u” hk Zu a:p,:r;p —|—th XC,XC

ug((f’t’p: Tp)) =W Qp((mp: Tp), Zk)

h'f_j((xc:- it‘)) — WTQC((XC:' iﬂ)? Zk)

vector valued feature
functions
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Learning a weighted Euclidean distance

We consider a weighted Euclidean distance dqu for D-
dimensional datapoints

d,pq — Z?-:l "I.U-z;(g;; — m(z]>2

Half of the D dimensions are assumed to be noisy

Goal: learn weights w; automatically from clustering data



Learning a weighted Euclidean distance
dyy = Y7 wi(zl, — x!)* | D =100




Learning a weighted Euclidean distance

D . Py
dpg = )iy wi(x, — -:z:ﬁ])z D =100

\I—estifnated Weight\

0.5¢

POV GV, VN W TN

20 40 60 80 100
dimension index




Learning a weighted Euclidean distance

0.5¢

5 P
dpg = ) _izq WilT, — T,

\I—estifnated Weight\

N s e e e

/

POV GV, VN W T

20 40

60 80 100

dimension index

)2

D =100

noisy dimensions get

e suppressed weights

after training



Learning a weighted Euclidean distance

X 10

5

—learning objective function

L

5 10 15
time (secs)

| 0.5}

\I—estifnated Weight\
e
20 40 60 80 100

dimension index

X

D P
dpg = Y =g wilx, —

D =100

noisy dimensions get

e suppressed weights

after training



Learning a weighted Euclidean distance

5

5X 10 | |
—learning objective function
4
3
2l 0.5
1 _k
0
0 5 10 15 O
time (secs)
12 : : ,
| 0 exemplars
10r | Sosl
o 0n -
8t o
£ 0.6
6 1l
O | 0.4
do 8 |8
B o 0.2
2r & ©
ol o 0

D . N
(pg = Z-,;Zl wz;(g:ljJ _ -:(:‘)2

q

1:—*v—'---vw-'1

\I—estifnated Weight\

POV GV, VN W T

//

20 40 60 80 100

dimension index

Il carnt distance
B2 distance

5 35 65
p (num. of noisy dims)

95

D =100

noisy dimensions get
suppressed weights
after training
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Learning to cluster texture images

Learn weighted comb. of distances between features: d(-) = >, wrd! (+)

30— 60

clustering

| accuracy:

| * 100% (Outex)
* 86% (UIUC)

20} | 40

10} I 1 20}
0— _ 0—
A S

S PR R ™SSR
0}%%@ 8] % @ Q;GJ J\GD@% @4’30 @Q\
< © &P
(a) Outex (b) UIUC

learnt weights



Learning to cluster texture images

Learn weighted comb. of distances between features: d(-) = Zf wrd! (+)

30

20r

10;

60
clustering
| 49 | accuracy:
| ool | * 100% (Outex)
e 86% (UIUC)
. . | 0 .
P P F K S S S @ -
) o)
b@(\(ogﬁ\ WV \é,\zb@&@ Q‘&% _@%‘
(a) Outex

10 of the estimated
exemplars for Outex




Learning to cluster scene images

Learn weighted combination of distances (multiple distances
per feature, multiple features)



Learning to cluster scene images

Learn weighted combination of distances (multiple distances

per feature, multiple features)

0w © <

19484
LI/BHIN
cl/BHIW

2lyo/8HIN
Jq4/Uo)X8)

||/uo}xa}
Zl/uolxel
21y2/u0)xa}
1g4a4s asieds
L|/41S asieds
ZIAlis esieds
Zlyoaus asieds
Jqinyls esusp
LIS asuap
clMIs esusp
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1 €lidgl
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1 Jq4/Poy asuap
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Learning to cluster scene images

Learn weighted combination of distances (multiple distances

per feature, multiple features)
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Learning to cluster scene images

Learn weighted combination of distances (multiple distances
per feature, multiple features)
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clustering accuracy:
63% (Scene)

10 of the estimated
exemplars for Outex




Thank you for your attention!

Questions?



