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Proving Your Hypothesis 

Mathematics 

1. We already know a set of axioms & 
theorems, say K 

2. We want to show the theorem 
(hypothesis) H 

3. We show:     K, H    False  
(contradiction) 

4. Thus, if we trust that K holds indeed, 
H  cannot hold, and  

        H must hold 

Real World 

1. We already “know” K 

2. We want to show a   hypothesis H, e.g., 
“H: medicine A reduces the mortality of 
disease B” 

3. We gather data from the real world.  

     We show that  K,  H  makes it  

     very unlikely to observe our data 

4. We conclude that  

        H   is very unlikely 

       We reject H,    and accept H  

 

Symbol  “” indicates  the negation of a statement 



Notation for the following slides 

• Random variables are denoted with a capital letter, e.g., X 

• Observed quantities of random variables are denoted with their 
corresponding small letter x 

 

Example: 
• G is the expression level of a specific gene in a patient 

• g is the measured expression level of the game in a specific patient 



The Null Hypothesis 

• The hypothesis we hope to accept is called the Alternative Hypothesis 

Sometimes denoted as H1 

 

• The hypothesis we hope to reject, the negation of the Alternative Hypothesis, is 
called the Null Hypothesis 

 Usually denoted by Ho 

 

 

Think of the   Ho  as the “status quo” 



Standard Single Hypothesis Testing 

1. Form the Null  &  Alternative Hypothesis 

2. Obtain  related data 

3. Find a suitable test statistic T 

4. Find the distribution of T given the null 

5. Depending on the distribution of T  &  the observed to = T ( x) 

             decide to reject or not H0 



Test Statistics 

• Test statistic is a function of our data X: T(X)     ( X: random variable ) 
   e.g.,  if  X  contains a single quantity (variable) T(X)  the mean value of X  

 

• T   is a random variable (since it depends on X , our data which is random variable) 

 

• Denote with to = T(x)  the observed value of T in our data 

 

• Instead of calculating  P ( obtaining data similar to X | H0 )  

            Calculate  P ( T  similar to  to | H0 ) 

 

• If   P ( T similar to to | H0)  is  very  low,  reject H0 

 

 



Statistical significance tests 

• Let’s just think about a two-tailed test: “difference” or “no difference”  

• Null hypothesis: there is no difference between A vs. B 

•  Assume that oA & oB are “sampled” independently from a “population”  

• Test statistic: a function of the sample data on which the decision is to be based 

            t ( o1, o2 ) = |e (o1) − e (o2)|    

                e: evaluation metric 

• Find the distribution of t under the null hypothesis  

          Assume that the null hypothesis is true 

 

• Where does the  t ( oA, oB ) lie in this distribution?  

       If it’s somewhere unlikely, that’s evidence that the null hypothesis is false 





The Lake Wobegon Example: “Where all the children are above average!” 

• Let X represent Weschler Adult Intelligence scores (WAIS) 

• Typically, X ~ N(100, 15) (μ0 = 100, σ = 15) 

• Obtain data: 9 children from Lake Wobegon population 

         Their scores: {116, 128, 125, 119, 89, 99, 105, 116, 118} 

          Average of the observations x = 112.8 

         

   Does sample mean provide strong evidence that population mean μ > 100? 

- 



One-Sample z Test 

1.  Hypothesis statements  
H0: µ = µ0 
Ha: µ ≠ µ0 (two-sided) or  
Ha: µ < µ0 (left-sided) or 
Ha: µ > µ0 (right-sided)  

 

3.  Test statistic 
 
 

4.  P-value: convert zstat to P value 

A. Significance statement (usually not necessary) 

n
SE

SE

x
x

x





   where z 0

stat



Example:  Two-Sided Hypothesis Test “Lake Wobegon” 

1. Formulation of the Hypotheses:  
       H0: μ = 100 

       Ha: µ > 100 (one-sided) 
 
       Ha: µ  ≠ 100 (two-sided) 

 



2. Obtain data … 

Obtain data: 9 children from Lake Wobegon population 

          

Their scores: {116, 128, 125, 119, 89, 99, 105, 116, 118} 

          Average of the observations = 112.8 

 



Example:  Two-Sided Hypothesis Test “Lake Wobegon” 

3.   Test statistic 
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Central Limit Theory 

Establishes that, in most situations, when independent random variables are added, 
their properly normalized sum tends toward a normal distribution even if the 
original variables themselves are not normally distributed.  

 

1.  A sample is obtained containing a large number of observations, each 
observation being randomly generated in a way that does not depend on the values 
of the other observations.  

2. If step 1 is performed many times, the computed values of the average will 
be distributed according to a normal distribution.  

   

Example:  Flip a coin many times. The probability of getting a given number of heads in 
a series of K flips will approach the normal distr. with mean =K/2  





P-value: P = Pr( Z ≥  2.56 )  =  0.0052 

 

 

 

 

 

 

 

  

 
 

 

P =.0052  it is unlikely the sample came from this null distribution   

strong evidence against H0 

Sample distribution follows the  
Normal distribution 
according to the Central Limit Theorem 



• Ha: µ ≠100  

Considers random deviations “up” & “down” 
from μ0    tails above & below  ± zstat  

 

Thus, two-sided P  
= 2 × 0.0052  
= 0.0104 

Example - Two-Sided P-value: Lake Wobegon 



Conditions for z Test 

1. Population approximately Normal or large sample (central limit theorem) 

2. The population variance is known!  

 

 
If the population variance is unknown (and therefore has to be estimated from 

        the sample itself) & the sample size is not large (n < 30),  
                                               the Student's t-test may be more appropriate. 



Another Example 



• Background knowledge: Breast Cancer is related to mutations in genes BRCA1 & BRCA2 

• Hypothesis: Gene G is expressed differently in breast cancer patients with mutation in BRCA1 
than BRCA2 

• Data: Obtained 7 patients with BRCA1 mutation & 8 with BRCA2 mutation 

Hedenfalk et al. N Engl J Med. 2001 
Feb 22;344(8):539-48. 
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1. Form the Null Hypothesis 

• Gene G is expressed differently in breast cancer patients with mutation in 
BRCA1 than BRCA2 

 

Mathematically 
• μ1 : be the mean expression level of gene G in patients with BRCA1 mutation 

• μ2 : be the mean expression level of gene G in patients with BRCA2 mutation 

 
H0 : μ1 = μ2 

H1 : μ1 ≠ μ2 



2.  Obtain data…. 



3. Find a suitable test statistic T  (Example) 
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• The larger the difference of the two means, the larger the statistic 

• The larger our sample, the larger the statistic 

• The smaller the sample variance, the larger the statistic 

 

So T will be quite large (in absolute value), when we can confidently say H0 does not hold 

Unpaired Two Sample  t-test 



 3.  Find a suitable test statistic T  (cont’d) 
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Unpaired Two Sample  t-test 



3.  Find the distribution of T   (cont’d) 

For the test of this specific example, we will make the following assumptions: 

a) The data in both groups are distributed normally around a mean value μ1 , μ2 respectively 

b) Their variance is the same in both groups  

c) Each patient was sampled independently 

and most importantly that  THE NULL HYPOTHESIS HOLDS 

                                                 This is an assumption for ALL tests! 

 

Then 

              T(X) has a probability density function of: 
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where the degrees of freedom of the test  v    is  

 15 – 2 = 13 (number of patients – 2) 



The t-statistic was introduced in 

1908 by William Sealy Gosset,  

a chemist working for 

the Guinness brewery in Dublin. 
"Student" was his pen name. 



One sample T-distribution  



Student  t-distribution  (basics) 



t-distribution   
(basics) 



3. Find the distribution of T 
Example 

x 



4. Decide on a Rejection Region 

• Decide on a rejection region Γ in the range of our statistic 

• If  to   Γ ,  then reject H0 

• If  t o  Γ ,  then do not reject H0 

     accept H1 ? 

 

Since  the  pdf  of  T  when the null hypothesis holds is known, 

          P( T  Γ | H0 )  can be calculated 

 



4. Decide on a Rejection Region 

• If  P( T  Γ | H0 )  is too low,  we know we are safely rejecting H0 

 

 

• What should be our rejection region in our example?  
 

 



Γ region of 
rejection 

4. Decide on a Rejection Region 

  Where extreme values of to are: 

• unlikely to come from when H0 is true 

• could come with high probability, when 
H0 is false 

 

    P( T  Γ | H0 ) is the area of the shaded 
region (can be calculated) 

X 
 



Rejection Procedure 

• Pre-select a probability threshold a 

• Find a rejection region Γ = { t: |t|>c }, such that  P( T  Γ | H0 ) = a 

• Decide 
• Reject H0 ,   if to  Γ (recall: to is the observed T in our data) 
• Accept H0 ,  otherwise 

 

What values do we usually use for a in science? 
 0.05 is typical  
 Smaller ones are also used: 0.01 , 0.001 

 

When to  Γ we say the finding is statistically significant at significance level a 

 



                    Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.  
 

Issues to be Considered 

• When there exist two or more tests that are appropriate in a given situation,  

         how can the tests be compared to decide which should be used? 

 

• If a test is derived under specific assumptions about the distribution of the 

population being sampled,  

        how well will the test procedure work when the assumptions are violated? 



Parametric versus non-Parametric Tests 

• Parametric test 

Makes the assumption that the data are sampled from a particular class of 
distributions 

        It then becomes easier to derive the distribution of the test statistic 

 

• Non-Parametric test 

No assumption about a particular class of distributions 



Permutation Testing 

• Often in biological data, we do not know much about the data distribution 

• How do we obtain the distribution of our test statistic? 

• Great idea in statistics: permutation testing 

• Recently practical because it requires computing power (or a lot of patience) 

 



Permutation Testing 

1. In our first example, we want to calculate p ( t | H0 ) 

2. If  H0 , then it does not matter which group each value xi
1 comes from 

3. Then, if we permute the group labels, we would get a value for our test 
statistic given the null hypothesis holds 

4. If we get a lot of such values, we can estimate (approximate)  p( t | H0 ) 

 



Permutation Testing Revisited 

• Decide what can be permuted, if the null hypothesis is true 

• For all  (as many as possible) permutations of the data, calculate the test statistic 
on the permuted data: tB 

• Estimated p-value = # { |tB|   |to| } / #B 

 



True distribution calculated 
theoretically 

Estimated distribution from our 
data: 100 permutations 



Does It Really Work? 

True distribution calculated 
theoretically Estimated distribution from our data: 1,000 

permutations 



Does It Really Work? 

True distribution calculated theoretically 
Estimated distribution from our data: 10,000 
permutations 



p-value is defined as the 

probability of obtaining a result 

equal to or more extreme than 
what was actually observed 



The 
Significance 

Level 



Calculating 
the 
Distribution 



What you 
SHOULD 
do 



Statistical Errors 

• Type 1 Errors 

-Rejecting H0 when it is actually true      

-Concluding a difference when one does not actually exist 

 

• Type 2 Errors 

-Accepting H0 when it is actually false (e.g. previous slide) 

-Concluding no difference when one does exist 

  

Errors can occur due to biased/inadequate sampling, poor experimental design or 

the use of inappropriate/non-parametric tests. 



Regarding the Choice of a Test 

When we cannot reject H0,  it does not mean H1 holds! 

• It could be that we do not have enough power, i.e., 

H1 is not that “different enough” from H0 to distinguish it with the given 
sample size  

of all possible tests for a hypothesis choose the one with the maximum power 
 

Power analysis methods need to be employed. 





Directional STTC  
Temporal Correlation Metric 

Extended STTC metric to take into consideration the order of the 
correlation of the spike trains of two neurons 



Directional STTCAB represents a measure of the chance that firing events of A will precede firing 
events of B  
 



Advantages of Directional STTC vs. other correlation 
metrics 



Example – Degree of connectivity considering the significant directional 
STTC edges 



Conditional STTC (A->B |C)  



 Significant Motifs 

Directional edge “AB” indicate that firing events of A proceed firing events of B by a specific lag 
Circular shuffling by random delays of the neural traces is used to assess significance of 
directional edges  
Null distribution: STTC values for the circular shifted neurons  
Significant edge: real STTC value higher than 3 standard deviation  of null distribution  
 



Example: Null distribution test for directional STTC  
 

For a given pair (A,B) 

1. Circular shift the spike train of the neuron A, A1 

2. Estimate the directional STTC(A1,B) 

3. Repeat the above steps 100 times 

4. Estimate the mean & standard deviation of the obtained STTC values 

5. The statistical significant threshold (thr) = mean + 3 std dev 

 

If the directional STTC (A, B) > thr , the edge (A,B) is  statistically significant.  

 

The criterion can be strengthen with more repetitions (e.g., 1000), a larger 
number of std dev (e.g., 5). 



Strengthen the Criterion of Significant Edge 

• Reject the null hypothesis test 

• The total number of spikes of A within a STTC lag of spikes of B is above 3. 

• The total number of spikes of B within a STTC lag of spikes of A  is above 3. 

 



1. Control group: each neuron trace is circular shifted by random delay 
2. For each pair of ‘shifted’ neurons estimate the directional STTC & null distribution 
3. Identify the significant edges of the control group  
 

The real neuron traces appear higher values of directional STTC & percentage of significant edges  



Kolmogorov-Smirnov (K-S) Test 

• Non-parametric test of the equality of continuous 1D probability distributions 
• Quantifies a distance between two distribution functions 
• Can serve as a goodness of fit test  

 
• Null hypothesis 
   H0: Two samples drawn from populations  
    with same distribution 
 
The maximum absolute difference between 
the two CDFs 



Kolmogorov-Smirnov (K-S) Test 

• Non-parametric test of the equality of continuous 1D probability distributions 

• Quantifies a distance between two distribution functions 

• Can serve as a goodness of fit test  

n & m: size of the sample datasets 



Kolmogorov-Smirnov (K-S) Test 

• Kolmogorov computed the expected distribution of the distance of 
the two CDFs when the null hypothesis is true. 



Example: Kolmogorov-Smirnov Test 

                Decision                      p-value                      Distance 
Lag            True Null   Null Null     True Null  Null Null         True Null    Null Null  
1                       1             0                  0               0.5427              0.79           0.0076 
2                       1             0                  0               0.2126              0.78           0.0100 
3                       1             0                  0               0.98485            0.75           0.0043 
4                       1             0                  0               0.9937              0.72           0.0040 
5                       1             0                  0               0.9769              0.68           0.00453  

For all neuron pairs (A, B), populate the following distributions with 
Population 1:  real STTC of the pair (A,B) 
Population 2: random circular shift in one of the two spike trains of (A,B) 
Population 3: random circular shift in one of the two spike trains of (A,B) 
 
True Null: Population 1 vs. Population 2 
Null Null: Population 2 vs. Polulation 3 
 

Distance of the two 
distributions 
In Sup norm 



Example: Null distribution test for directional STTC  
 

For a given pair (A,B) 

1. Circular shift the spike train of the neuron A, A1 

2. Estimate the directional STTC(A1,B) 

3. Repeat the above steps 100 times 

4. Estimate the mean & standard deviation of the obtained STTC values 

5. The statistical significant threshold (thr) = mean + 3 std dev 

 

If the directional STTC (A, B) > thr , the edge (A,B) is  statistically significant.  

 

The criterion can be strengthen with more repetitions (e.g., 1000), a larger 
number of std dev (e.g., 5). 



Strengthen the Criterion of Significant Edge 

• Reject the null hypothesis test 

• The total number of spikes of A within a STTC lag of spikes of B is above 3. 

• The total number of spikes of B within a STTC lag of spikes of A  is above 3. 

 



1. Control group: each neuron trace is circular shifted by random delay 
2. For each pair of ‘shifted’ neurons estimate the directional STTC & null distribution 
3. Identify the significant edges of the control group  
 

The real neuron traces appear higher values of directional STTC & percentage of significant edges  



Kolmogorov-Smirnov (K-S) Test 

• Non-parametric test of the equality of continuous 1D probability distributions 

• Quantifies a distance between two distribution functions 

• Can serve as a goodness of fit test  

n & m: size of the sample datasets 



Kolmogorov-Smirnov (K-S) Test 

• Kolmogorov computed the expected distribution of the distance of 
the two CDFs when the null hypothesis is true. 



Example: Kolmogorov-Smirnov Test 

                Decision                      p-value                      Distance 
Lag            True Null   Null Null     True Null  Null Null         True Null    Null Null  
1                       1             0                  0               0.5427              0.79           0.0076 
2                       1             0                  0               0.2126              0.78           0.0100 
3                       1             0                  0               0.98485            0.75           0.0043 
4                       1             0                  0               0.9937              0.72           0.0040 
5                       1             0                  0               0.9769              0.68           0.00453  

For all neuron pairs (A, B), populate the following distributions with 
Population 1:  real STTC of the pair (A,B) 
Population 2: random circular shift in one of the two spike trains of (A,B) 
Population 3: random circular shift in one of the two spike trains of (A,B) 
 
True Null: Population 1 vs. Population 2 
Null Null: Population 2 vs. Polulation 3 
 

Distance of the two 
distributions 
In Sup norm 


