Extraction of Brain Networks from Empirical Data
Neural Systems are Complex Networks
Networks across scales Networks across modes

* micro (neurons, synapses) = structural (anatomical couplings)
= macro (regions, projections) = functional (dynamic interactions)

histological or 3 \, anatomical parcellation

imaging data
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Proving Your Hypothesis

Mathematics Real World
1. We already know a set of axioms & 1. We already “know” K
theorems, say K 2. We want to show a hypothesis H, e.g.,
2. We want to show the theorem “H: medicine A reduces the mortality of
(hypothesis) H disease B”
3. Weshow: K,—H = False 3. We gather data from the real world.
(contradiction) We show that K, —H makes it
4. Thus, if we trust that K holds indeed, very unlikely to observe our data
—H cannot hold, and 4. We conclude that
H must hold

—H is very unlikely
We reject —H, and acceptH

Symbol “—” indicates the negation of a statement



Notation for the following slides

* Random variables are denoted with a capital letter, e.g., X

* Observed quantities of random variables are denoted with their
corresponding small letter x

Example:
* G is the expression level of a specific gene in a patient
e gis the measured expression level of the game in a specific patient



The Null Hypothesis

* The hypothesis we hope to accept is called the Alternative Hypothesis

Sometimes denoted as H,

* The hypothesis we hope to reject, the negation of the Alternative Hypothesis, is
called the Null Hypothesis

Usually denoted by H,,

Think of the Ho as the “status quo”



Standard Single Hypothesis Testing

Form the Null & Alternative Hypothesis
Obtain related data

Find a suitable test statistic T

Find the distribution of T given the null

Depending on the distribution of T & the observed t, =T ( x)
decide to reject or not H,

Al S




Test Statistics

 Test statistic is a function of our data X: T(X) ( X: random variable )
e.g., if X contains a single quantity (variable) T(X) the mean value of X

T isarandom variable (since it depends on X, our data which is random variable)

* Denote with t, = T(x) the observed value of T'in our data

* Instead of calculating P ( obtaining data similarto X | H,)
Calculate P (T similarto t, [ H,)

* If P(Tsimilartot, [ H,) is very low, reject H,




Statistical significance tests

* Let’s just think about a two-tailed test: “difference” or “no difference”
* Null hypothesis: there is no difference between A vs. B
* Assume that o, & og are “sampled” independently from a “population”
* Test statistic: a function of the sample data on which the decision is to be based
t( 04, 02) = |e (01) - € (Oz)l
e: evaluation metric
* Find the distribution of t under the null hypothesis
Assume that the null hypothesis is true

* Where does the t ( 0,, 0g) lie in this distribution?
If it’s somewhere unlikely, that’s evidence that the null hypothesis is false



g.

“Welcome to Lake Wobegon, where all the women
are strong, all the men are good-looking, and all

the children are above average.”
- Garrison Keillor, A Praine Home Companion



The Lake Wobegon Example: “Where all the children are above average!”

 Let X represent Weschler Adult Intelligence scores (WAIS)

* Typically, X~ N(100, 15) (4, =100, c = 15)

 Obtain data: 9 children from Lake Wobegon population
Their scores: {116, 128, 125, 119, 89, 99, 105, 116, 118}
Average of the observations X =112.8

Does sample mean provide strong evidence that population mean p > 100?



One-Sample z Test

. Hypothesis statements
o- H=Ho

: U # Y, (two-sided) or

I U< Y, (left-sided) or

1> Y (right-sided)

d
d

d

. Test statistic X — U
Lstat =
SE.,

9 where SE; =

. P-value: convert z,, . to P value
. Significance statement (usually not necessary)




Example: Two-Sided Hypothesis Test “Lake Wobegon”

1. Formulation of the Hypotheses:
Hy: =100

H_: n > 100 (one-sided)

H,: pn # 100 (two-sided)



2. Obtain data ...

Obtain data: 9 children from Lake Wobegon population

Their scores: {116, 128, 125, 119, 89, 99, 105, 116, 118}
Average of the observations = 112.8



Example: Two-Sided Hypothesis Test “Lake Wobegon”

3. Test statistic

SE;, =

g _b 5
yn V9
X — L _ 112.8—-100

stat SE)—( 5

/




Classical CLT [edit]

Let 1.X;. ..., X, } be a random sample of size n — that is, a sequence of independent and identically distributed

random variables drawn from disfributions of expected values given by u and finite variances given by G- Suppose
we are interested in thé& sample average

of these random variables. By the law of large numbers, the sample averages converge in probability and almost
surely to the expected value u as n — oo The classical central limit theorem describes the size and the
distributional form of the stochastic fluctuations around the deterministic number u during this convergence. More
precisely, it states that as » gets larger, the distribution of the difference between the sample average S,, and its
limit &, when multiplied by the factor n (that is ‘a-'E[SH — 1)), approximates the normal distribution with mean 0

apd-variance g°. For large enough #», the distribution of 5, is close to the normal distribution with mean u and

-

variance %. The usefulness of the theorem is that the distribution of R‘E{S’ﬂ — 1) approaches normality regardless

of the snape of the distribution of the individual X;. Formally, the theorem can be stated as follows:



Central Limit Theory

Establishes that, in most situations, when independent random variables are added,
their properly normalized sum tends toward a normal distribution even if the
original variables themselves are not normally distributed.

1. Asampleis obtained containing a large number of observations, each
observation being randomly generated in a way that does not depend on the values
of the other observations.

2. If step 1is performed many times, the computed values of the average will
be distributed according to a normal distribution.

Example: Flip a coin many times. The probability of getting a given number of heads in
a series of K flips will approach the normal distr. with mean =K/2



Classical CLT [edit]

Let 1.X;. ..., X, } be a random sample of size n — that is, a sequence of independent and identically distributed

random variables drawn from disfributions of expected values given by u and finite variances given by G- Suppose
we are interested in thé& sample average

. Il +“"|‘In
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Sa

of these random variables. By the law of large numbers, the sample averages converge in probability and almost
surely to the expected value u as n — oo The classical central limit theorem describes the size and the
distributional form of the stochastic fluctuations around the deterministic number u during this convergence. More
precisely, it states that as » gets larger, the distribution of the difference between the sample average S,, and its
limit &, when multiplied by the factor n (that is ‘a-'E[SH — 1)), approximates the normal distribution with mean 0

and-variance g°. For large enough 2, the distribution of 5, is close to the normal distribution with mean g and

-

([@riance %. The usefulness of the theorem is that the distribution of R‘E{S’ﬂ — 1) approaches normality regardless

of the snape of the distribution of the individual X;. Formally, the theorem can be stated as follows:



P-value: P=Pr(Z> 2.56) = 0.0052

Sample distribution follows the
Normal distribution
according to the Central Limit Theorem

P =.0052 = it is unlikely the sample came from this null distribution =
strong evidence against H,



Example - Two-Sided P-value: Lake Wobegon

* H,: p#100

Considers random deviations “up” & “down”
from p, = tails above & below *z_,

Thus, two-sided P

=2 X 0.0052
=0.0104
0052 0052
| I I | I
mirror -2 - 0 1 2 Zom
image of 2.6
Zomt = -2.50

Z-stat-two-sided.al



Conditions for z Test

1. Population approximately Normal or large sample (central limit theorem)
2. The population variance is known!

If the population variance is unknown (and therefore has to be estimated from

the sample itself) & the sample size is not large (n < 30),
the Student's t-test may be more appropriate.




Another Example



e Background knowledge: Breast Cancer is related to mutations in genes BRCA1 & BRCA2

* Hypothesis: Gene G is expressed differently in breast cancer patients with mutation in BRCA1

than BRCA2

e Data: Obtained 7 patients with BRCA1 mutation & 8 with BRCA2 mutation

Patient number

Expression Level,of
Gene G X

Have mutation in

BRCA1 or not X’

1 (%)

98.2244

69.6810

118.4339

115.2322

150.7729

117.7385

80.6921

142.8455

156.8692

151.9287

147.3357

131.2094

150.3127

147.0670

15 (%:s)

122.3306

SRR I S R S O O O L I O ST L T o e T I Bl

Hedenfalk et al. N Engl J Med. 2001

Feb 22;344(8):539-48.



1. Form the Null Hypothesis

* Gene G is expressed differently in breast cancer patients with mutation in
BRCA1 than BRCA2

Mathematically

* U,: be the mean expression level of gene G in patients with BRCA1 mutation
* U,: be the mean expression level of gene G in patients with BRCA2 mutation

Ho: Uy = U,
H, :u, # U,



2. Obtain data....

DATA: BY THE NUMBERS




3. Find a suitable test statistic T (Example)

* The larger the difference of the two means, the larger the statistic
* The larger our sample, the larger the statistic

* The smaller the sample variance, the larger the statistic

So T will be quite large (in absolute value), when we can confidently say H,does not hold



3. Find a suitable test statistic T (cont’'d)

T(X) = Unpaired Two Sample t-test

T

k =#{x. : X :1} I =#{x. X° =2}

m= T m=p Fx me S

{x:x? =1} {x X7 =2} K+1 {xi}

:\/k+l—1z(xi_




3. Find the distribution of T (cont’d)

For the test of this specific example, we will make the following assumptions:
a) The data in both groups are distributed normally around a mean value u,, u, respectively
b) Their variance is the same in both groups
c) Each patient was sampled independently

and most importantly that THE NULL HYPOTHESIS HOLDS

This is an assumption for ALL tests!

Then
T(X) has a probability density function of:

where the degrees of freedom of the test V is
15 -2 =13 (number of patients — 2)



The t-statistic was introduced In
1908 by William Sealy Gosset,
a chemist working for

the Guinness brewery in Dublin.
"Student" was his pen name.




Sampling distribution [ edit] One sample T-distribution

Let x4, ... X, be the numbers observed in a sample from a continuously distributed population with expected value
B 5 B e o
T
1 i
2 =42
8 = i — L) .
n—1 g( : }

The resulting f-value Is

T— [

s/yn
The t-distribution with n — 1 degrees of freedom is the sampling distribution of the t-value when the samples consist
distributed population. Thus for inference purposes f is a useful "pivotal quaniity” in the case when the mean and val

-

t




Student t-distribution (basics)

Probability density function [edi]

Student's t-distribution has the probability density function given by

-1 1

where p is the number of degrees of freedom and I' is the gamma function. This may also be written as

41

)= ﬁﬂé, ) (1 " g)_T’




t-distribution

(basics)

Density of the t-distribution (red) for 1, 2, 3, 3, 10, and 30 degrees of freedom compared to the standard normal distribution
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3. Find the distribution of T

Frobability density function of our statistic

Example 04

0.35
0.3F
0.25

0.2F

p(t)

0.15F

01F Observedivalue T{x)

0.05 F \A
T ————



4. Decide on a Rejection Region

* Decide on a rejection region I in the range of our statistic
*If t, € ', then rejectH,

*If t_ I, then do not reject H,
accept H,?

Since the pdf of T when the null hypothesis holds is known,
P(T el [ H,) can be calculated



4. Decide on a Rejection Region

*If P(T el[ Hy) istoo low, we know we are safely rejecting H,

 What should be our rejection region in our example?



4. Decide on a Rejection Region

0.4

Where extreme values of t, are:

* unlikely to come from when H, is true .|

* could come with high probability, when

H,is false 0251

0.2F

P(T el [ Hy) is the area of the shaded
region (can be calculated)

0.1F

0.05 |

0.35F

0.15 |

I’ region of

rejection




Rejection Procedure

* Pre-select a probability threshold a
* Find a rejection region I'={t: [t|>c}, suchthat P(T el [ H,)=a
* Decide

* Reject H,, ift, el (recall: t, is the observed T in our data)
* Accept H,, otherwise

What values do we usually use for a in science?
0.05 is typical
Smaller ones are also used: 0.01, 0.001

When t, € I we say the finding is statistically significant at significance level a



Issues to be Considered

* When there exist two or more tests that are appropriate in a given situation,

how can the tests be compared to decide which should be used?

« |fatestis derived under specific assumptions about the distribution of the
population being sampled,

how well will the test procedure work when the assumptions are violated?

Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.



Parametric versus non-Parametric Tests

e Parametric test

Makes the assumption that the data are sampled from a particular class of
distributions

It then becomes easier to derive the distribution of the test statistic

* Non-Parametric test
No assumption about a particular class of distributions



Permutation Testing

e Often in biological data, we do not know much about the data distribution
* How do we obtain the distribution of our test statistic?

* Great idea in statistics: permutation testing

* Recently practical because it requires computing power (or a lot of patience)



Permutation Testing

1. In our first example, we want to calculatep (t | H,)
If H,,then it does not matter which group each value x! comes from

3. Then, if we permute the group labels, we would get a value for our test
statistic given the null hypothesis holds

4. If we get a lot of such values, we can estimate (approximate) p(t [ H,)



Permutation Testing Revisited

* Decide what can be permuted, if the null hypothesis is true

* For all (as many as possible) permutations of the data, calculate the test statistic
on the permuted data: t,

* Estimated p-value = #{ |t;] > [t | } / #B



p(t/HO

25

FPermutation Estimate of p{t|HO) using 100 permutations

20 F

10

Estimated distribution from our
data: 100 permutations
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Does It Really Work?

Probability density function of our statistic Permutation Estimate of p(t|HO) using 1000 permutations
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True distribution calculated _ o _
theoretically Estimated distribution from our data: 1,000

permutations



Does It Really Work?

Probability density function of our statistic

0.4 Permutation Estimate of p(t|HD) using 10000 permutations
2 T T T T ! 70 T T T T T
035} -
60 |
03F -
50
025+ =
40+
= 02f -
30
015+ -
a1k i 20F
' Observedivalue T(3)
0.05 - 107
D | | 1 D
B 4 2 0 2 4 b B
t=T(X) t

Estimated distribution from our data: 10,000

True distribution calculated theoretically -
permutations




p-value is defined as the
probability of obtaining a result
equal to or more extreme than
what was actually observed

distribution of the test statistic
under the null hypothesis

value of test statistic
on the observed data

~

.

significance level




* The area to the right of t(o4,0p) is the “significance
level—the probability that some t* > t(04,0p) would be
generated if the null hypothesis were true.

e Also called the [p-value|

values suggest the null hypothesis is false, given
hservation of t(o4,0p).

The
L Smal
Significance & "
Level

*| Corol

ary: all else being equal, a large difference between

e(04) and e(op) yields a smaller significance level (as
one would hope!).

* Values below 0.05 are typically considered “good
enough.”

So all we have to do is calculate the distribution of t.




The classical approach:

* Keep adding assumptions until we arrive at a known
distribution which we can calculate analytically.

* E.g.: Student’s t-test.

Calculating . Ass.umu._e that e(04) a_nd 'e(o,?) are sample means from
a bivariate Normal distribution with zero covariance.

the ' . Then we know t is distributed according to Student’s

Distribution t-distribution if the null hypothesis is true.

* Back in the stone age, computing with rocks and twigs,
making those assumptions made the problem tractable.

* But the problem with this approach is that you may
falsely reject the null hypothesis if one of the additional
7. assumptions is violated. (Type | error.)



* Simulate the distribution using a randomization test.

* It's just as good as analytical approaches, even when the
analytical assumptions are met! (Hoeffding 1952)

What you * And it's better when they're not. (Noreen 1989)
SHOULD © Bestofall: dirt simple.

do Intuition:

* Erase the labels “output of A" or “output of B" from all
of the observations.

* Now consider the population of every possible labeling.
(Order relevant.)

* |f the systems are really different, the observed labeling
should be unlikely under this distribution.




Statistical Errors

* Type 1 Errors
-Rejecting H, when it is actually true
-Concluding a difference when one does not actually exist

* Type 2 Errors
-Accepting Hy when it is actually false (e.g. previous slide)
-Concluding no difference when one does exist

Errors can occur due to biased/inadequate sampling, poor experimental design or
the use of inappropriate/non-parametric tests.



Regarding the Choice of a Test

When we cannot reject H, it does not mean H; holds!

* It could be that we do not have enough power, i.e.,

H,is not that “different enough” from H,to distinguish it with the given
sample size

of all possible tests for a hypothesis choose the one with the maximum power

Power analysis methods need to be employed.



Ta: the proportion of total recording time which lies within At of
any spike from A. Te calculated similarly.

2At
A |11 I
0 Time (s) T

Ta is given by the fraction of the total recording time (black) which
is covered (tiled) by blue bars. Here Ta is 1/3.

Pa: the proportion of spikes from A which lie within £At of any ‘
spike from B. Pe calculated similarly.

e L 1 gmenl(Pale, PeTay
A | |1 | 2 \1-PaTs 1-PeTA

1

0 Time (s) T

Px is the number of green spikes in A (3) divided by the total
number of spikes in A (5). Here P is 3/5.




Directional STTC
Temporal Correlation Metric

Extended STTC metric to take into consideration the order of the
correlation of the spike trains of two neurons



Directional STTC,; represents a measure of the chance that firing events of A will precede firing

events of B
_ A+
_ 1 Py -Tpg- | Pp —Ty+
SITTCap =5 (I—PA'TB— | 1—Pg+TA+)
I l I ! | I l T : l : : >
e egd 8|
[ | 1 | I | I 1
B B
At ty t; t; ty Ts-

Pg': fraction of firing events of A that occur within an interval At prior to firing events of B
T p-: fraction of total recording time covered by the intervals At prior to each spike of B
At: specific lag (input in directional STTC)



Advantages of Directional STTC vs. other correlation
metrics

P, -Tp— | P§+ _TA"'
1-P8-Tp- * 1-P4*T 4

STTCyp =+ (

)

Relative spike-time shifts (lag parameter)

Local fluctuations of neural activity or noise
* accounting the amount of correlation expected by chance (T 4+ & Tg-)

The presence of periods without firing events
» only the firing events contributes on the correlation metric of directional STTC (P?~ & P4™)



Example — Degree of connectivity considering the significant directional

STTC edges 1 . — . —
0.8
0.6
LL
O
O
04r¢
—=Degree of con
0.2 Outgoing con |-
Incoming con
O 1 1 1 | |

0 10 20 30 40 90 60
Degree of connectivity



Conditional STTC (A->B |C) STTCY,

Np2 Niin

- A A+

N TB - Ng T—\ +
NCA ' NCA )

= A+B
| - T]g— | f\"u Ta+

. ]
STTCp = 3(

Na is the number of firing event in A & Ns is the number of firing event in B.

T 4+ is the fraction of the total recording time which is covered by the tiles +At after each spike of A,
that fall within the tiles At after each spike of C.

T g- is the fraction of the total recording time which is covered by the tiles At before each spike of B.



Significant Motifs

ﬁ40 doublets (e.g. A->B)
X
> — Control
7,
2 30
O)
@
— 20
-
S
Y= I triplets
5) 10 (e.g. A->B|C)
N
0 t, t+600] Sync [t, t+450]

Directional edge “A—=>B” indicate that firing events of A proceed firing events of B by a specific lag
Circular shuffling by random delays of the neural traces is used to assess significance of
directional edges

Null distribution: STTC values for the circular shifted neurons

Significant edge: real STTC value higher than 3 standard deviation of null distribution



Example: Null distribution test for directional STTC

For a given pair (A,B)

1. Circular shift the spike train of the neuron A, Al

Estimate the directional STTC(A1,B)

Repeat the above steps 100 times

Estimate the mean & standard deviation of the obtained STTC values
The statistical significant threshold (thr) = mean + 3 std dev

A S

If the directional STTC (A, B) > thr, the edge (A,B) is statistically significant.

The criterion can be strengthen with more repetitions (e.g., 1000), a larger
number of std dev (e.g., 5).



Strengthen the Criterion of Significant Edge

* Reject the null hypothesis test
* The total number of spikes of A within a STTC lag of spikes of B is above 3.
* The total number of spikes of B within a STTC lag of spikes of A is above 3.
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1. Control group: each neuron trace is circular shifted by random delay
2. For each pair of ‘shifted” neurons estimate the directional STTC & null distribution
3. Identify the significant edges of the control group

The real neuron traces appear higher values of directional STTC & percentage of significant edges




Kolmogorov-Smirnov (K-S) Test

* Non-parametric test of the equality of continuous 1D probability distributions
* Quantifies a distance between two distribution functions
e Can serve as a goodness of fit test

* Null hypothesis
Ho: Two samples drawn from populations
with same distribution

O
oo

o
o

The maximum absolute difference between
the two CDFs

Cumulative Probability
o
~

Q
N




Kolmogorov-Smirnov (K-S) Test

* Non-parametric test of the equality of continuous 1D probability distributions
* Quantifies a distance between two distribution functions

* Can serve as a goodness of fit test

1
ﬂﬂrm — Bup |F1r“{m} - FE,H‘I (T':l|1.
x
=
. L : = 08
where If] n and gy are the empirical distribution functions Q
o]
T'he null hypothesis is rejected at level ae it DE_ 0.6
T S
-+ 1m i =
n,m ~ c{ﬂ}\/ n & m: size of the sample datasets % 04
! 0.10 [0.05 | 0.025 | 0.01 | 0.005 | 0.001 g
e(a) (122 [1.36 [1.48 |[163 173 195 | O 02

and in general by 0

o= Tu®)




Kolmogorov-Smirnov (K-S) Test

* Kolmogorov computed the expected distribution of the distance of
the two CDFs when the null hypothesis is true.



Example: Kolmogorov-Smirnov Test

Decision
Lag True Null Null Null
0

U WN R
Y T =
o O O O

True Null Null Null

0

0
0
0
0

p-value

0.5427
0.2126
0.98485
0.9937
0.9769

Distance
True Null  Null Null
0.79 0.0076
0.78 0.0100
0.75 0.0043
0.72 0.0040
0.68 0.00453

For all neuron pairs (A, B), populate the following distributions with

Population 1: real STTC of the pair (A,B)
Population 2: random circular shift in one of the two spike trains of (A,B)
Population 3: random circular shift in one of the two spike trains of (A,B)

True Null: Population 1 vs. Population 2
Null Null: Population 2 vs. Polulation 3

Distance of the two
distributions
In Sup norm



Example: Null distribution test for directional STTC

For a given pair (A,B)

1. Circular shift the spike train of the neuron A, Al

Estimate the directional STTC(A1,B)

Repeat the above steps 100 times

Estimate the mean & standard deviation of the obtained STTC values
The statistical significant threshold (thr) = mean + 3 std dev

A S

If the directional STTC (A, B) > thr, the edge (A,B) is statistically significant.

The criterion can be strengthen with more repetitions (e.g., 1000), a larger
number of std dev (e.g., 5).



Strengthen the Criterion of Significant Edge

* Reject the null hypothesis test
* The total number of spikes of A within a STTC lag of spikes of B is above 3.
* The total number of spikes of B within a STTC lag of spikes of A is above 3.
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1. Control group: each neuron trace is circular shifted by random delay
2. For each pair of ‘shifted” neurons estimate the directional STTC & null distribution
3. Identify the significant edges of the control group

The real neuron traces appear higher values of directional STTC & percentage of significant edges




Kolmogorov-Smirnov (K-S) Test

* Non-parametric test of the equality of continuous 1D probability distributions
* Quantifies a distance between two distribution functions

* Can serve as a goodness of fit test
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Kolmogorov-Smirnov (K-S) Test

* Kolmogorov computed the expected distribution of the distance of
the two CDFs when the null hypothesis is true.



Example: Kolmogorov-Smirnov Test

Decision
Lag True Null Null Null
0
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True Null Null Null

0

0
0
0
0

p-value

0.5427
0.2126
0.98485
0.9937
0.9769

Distance
True Null  Null Null
0.79 0.0076
0.78 0.0100
0.75 0.0043
0.72 0.0040
0.68 0.00453

For all neuron pairs (A, B), populate the following distributions with

Population 1: real STTC of the pair (A,B)
Population 2: random circular shift in one of the two spike trains of (A,B)
Population 3: random circular shift in one of the two spike trains of (A,B)

True Null: Population 1 vs. Population 2
Null Null: Population 2 vs. Polulation 3

Distance of the two
distributions
In Sup norm



