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SUMMARY

Neocortical assemblies produce complex activity
patterns both in response to sensory stimuli and
spontaneously without sensory input. To investigate
the structure of these patterns, we recorded from
populations of 40–100 neurons in auditory and
somatosensory cortices of anesthetized and awake
rats using silicon microelectrodes. Population spike
time patterns were broadly conserved across multiple
sensory stimuli and spontaneous events. Although
individual neurons showed timing variations between
stimuli, these were not sufficient to disturb a generally
conserved sequential organization observed at the
population level, lasting for approximately 100 ms
with spiking reliability decaying progressively after
event onset. Preserved constraints were also seen in
population firing rate vectors, with vectors evoked
by individual stimuli occupying subspaces of a larger
but still constrained space outlined by the set of spon-
taneous events. These results suggest that population
spike patterns are drawn from a limited ‘‘vocabulary,’’
sampled widely by spontaneous events but more
narrowly by sensory responses.

INTRODUCTION

Single-unit recordings in sensory cortex have revealed much

about how the firing of individual neurons is modulated by

sensory stimuli. However, any individual neuron functions only

as part of a much larger population whose combined activity

underlies an animal’s processing of information. Characterizing

the structure of neuronal population activity, and the way it is

modulated by sensory stimuli, is a necessary step toward under-

standing the principles of information processing in the cortex.

Much has been learned about the structure of cortical popula-

tion spike patterns by studying spontaneous activity. Cortical

circuits both in vitro and in vivo during resting and sleep sponta-

neously produce periods of activity known as ‘‘upstates’’ (Batta-

glia et al., 2004; Luczak et al., 2007; Massimini et al., 2004;

Petersen et al., 2003; Sirota et al., 2003; Steriade et al., 1993a).

In vitro experiments have shown that neural activity within
upstates has a sequential structure, with the order in which

neurons fire largely conserved from one upstate to the next,

reflecting the interaction of recurrent circuitry and intrinsic

cellular dynamics (Cossart et al., 2003; MacLean et al., 2005;

Mao et al., 2001). In vivo, early evidence for sequentially struc-

tured spiking activity came from studies detecting the presence

of precisely repeating spike motifs (Abeles, 1991), although the

statistical methods employed, as well as the long duration and

high temporal precision of the detected motifs, have been

controversial (Baker and Lemon, 2000; Mokeichev et al., 2007;

Oram et al., 2001). Recent analyses of in vivo population data

using straightforward statistical methods have confirmed that

upstates are indeed sequentially patterned for a period of the

order of 100 ms, with temporal precision decaying as the upstate

progresses (Luczak et al., 2007).

The structure of cortical population activity evoked by sensory

stimuli, and the way this structure varies with the stimulus, is not

yet fully clear. Recordings of single neurons have shown that

spike timing relative to stimulus onset, as well as firing rate, can

vary with the stimulus presented (Heil, 2004; Nelken et al., 2005;

Optican and Richmond, 1987; Oram et al., 2002; Petersen et al.,

2002). From this one might predict that, at the population level,

sensory stimuli induce activity patterns whose neuronal composi-

tion and sequential order both depend on the stimulus (Harris,

2005). On the other hand, in vitro studies suggest that the activity

patterns evoked by thalamic stimulation show the same sequen-

tial order as those occurring spontaneously (MacLean et al.,

2005); from this one might infer that sensory-evoked sequences

in vivo might share the same temporal order as spontaneous

events, with the further implication that temporal order should

be conserved between stimuli. In vivo recordings in hippocampus

and neocortex have shown that spontaneous patterns during

resting or sleep may mimic those seen in prior behavior (Diba

and Buzsaki, 2007; Hoffman and McNaughton, 2002; Ji and

Wilson, 2007; Walker and Stickgold, 2006). While this is usually

interpreted as replay of patterns evoked during the behavior

session, mimicry between spontaneous and sensory-evoked

patterns has also been reported in optical imaging studies, in

the absence of behavioral paradigms (Kenet et al., 2003; Petersen

et al., 2003; Tsodyks et al., 1999).

The ability of sensory stimuli to change the firing rate of indi-

vidual neurons is well known. Less is known about the way firing

rates are coordinated in neural populations. The firing rates of

a set of neurons at any moment can be summarized by a vector
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containing spike counts of all cells in a particular time window. The

numberoffiring rate vectors thatcanbeexpressedbyevena small

numberof neurons is inprinciple astronomical. However, thereare

reasons to suspect constraints on the patterns that can in practice

be expressed by a given circuit. Recordings in several cortical

areas have found persistent correlations between simultaneously

recorded neuronal pairs (Averbeck and Lee, 2003; Gawne and

Richmond, 1993; Jung et al., 2000; Montani et al., 2007; Nar-

ayanan et al., 2005; Zohary et al., 1994). Although these correla-

tions are often of modest magnitude, apparently weak pairwise

correlations may actually reflect strong constraints on patterns

expressible at the population level (Schneidman et al., 2006).

Cortical population patterns evoked by thalamic stimulation

in vitro are subject to similar structural constraints as those occur-

ring spontaneously (MacLean et al., 2005), suggesting that these

constraints may arise from the dynamics of the cortical network.

Here, we characterize the fine structure of sensory responses

and spontaneous activity bursts in the auditory and somatosen-

sory cortices of anesthetized and unanesthetized rats in vivo.

We find that activity patterns produced in response to multiple

sensory stimuli, as well as those occurring during spontaneous

upstates, show largely conserved temporal structure. The possi-

ble population firing rate vectors observed are also restricted,

with sensory responses and spontaneous events being drawn

from a common limited ‘‘vocabulary.’’

RESULTS

Neurons Respond to Tones with Stimulus-Dependent
Firing Rates, but Stereotyped Temporal Profiles
We recorded simultaneously from populations of 40–100 neurons

in rat neocortex using silicon microelectrodes. The first set of

experiments was conducted in auditory cortex under urethane

anesthesia (eight rats) while presenting 500 ms long acoustic

stimuli (five pure tones and five natural sound snippets; see

Experimental Procedures for details). We began the analysis of

this data at the single-cell level. The response of individual

neurons to tone stimuli was visualized by raster plots, and quan-

tified by the perievent time histogram (PETH, Figures 1A–1D).

Although the firing rate evoked in any given neuron varied with

tone frequency, PETH shapes were largely conserved across

tone frequencies. Between neurons, however, PETH shapes

differed considerably. PETH shapes showed strongest consis-

tency in the period of�100ms followingstimulus onset (Figure S1,

available online). To quantify the preservation of temporal struc-

ture across stimuli, we computed for each PETH a measure of

mean spike latency (MSL; defined as the mean spike time in the

100 ms after stimulus onset; see Experimental Procedures; for

analysis of first spike times see Figure S2). Figure 1E plots each

neuron’s MSL to its preferred tone frequency versus its average

MSL to all other tones. For neurons with short latency (MSL below

40 ms for best frequency), the majority of points are below the

diagonal, confirming that for such neurons preferred stimuli often

induce earlier firing (p < 0.001, paired Wilcoxon signed rank test;

for neurons with MSL > 40 ms this effect was present but less

robust, p < 0.05 in three out of eight animals). Nevertheless, the

wide scatter between neurons and robust correlation (mean R =

0.72 ± 0.24; p < 0.001 for all eight data sets individually) confirms
414 Neuron 62, 413–425, May 14, 2009 ª2009 Elsevier Inc.
Figure 1. Individual Neurons Respond to Different Tones with

Stereotyped Temporal Profiles, but Varying Firing Rates

(A–D) Raster plots showing responses of representative neurons to presenta-

tions of five pure tones (100 trials for each tone). Red lines represent perievent

time histograms (PETHs).

(E) Scatter plot showing each neuron’s mean spike latency (MSL) to its

preferred tone frequency versus to all other tones. The red line corresponds

to equal latencies. Blue dots indicate putative interneurons as defined by spike

width. While neurons typically show earlier firing to their preferred tone, this

difference is an order of magnitude smaller than the differences between cells.
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Figure 2. Similar Temporal Activity Patterns

Initiated by Presentation of Tones and

Natural Sounds

(A) Raster plots showing spike times for two repre-

sentative neurons to repeated presentations of

a pure tone stimulus.

(B) Average activity of 90 simultaneously recorded

neurons to tone stimuli. Gray bars show pseudo-

color representations of each neuron’s perievent

time histogram normalized between 0 and 1; red

dots denote each neuron’s MSL in the 100 ms

after tone onset. Neurons are ordered vertically

by the mean latency to all stimuli (see text), to illus-

trate sequential spread of activity.

(C) Response of the same two neurons as in (A) to

a natural sound (insect vocalization; sound spec-

trogram shown below rasters), illustrating temporal

response profiles similar to those of the tone.

(D) Response of the same population as (B),

displayed in the same vertical order, indicating

that the sequential order of firing is preserved.

The dots on the right indicate at which electrode

shank neurons were recorded.

(E) Scatter plot showing each neuron’s MSL for

tones and natural sounds with putative interneu-

rons marked in blue. The distribution of points

along the diagonal indicates preservation of

sequential structure across conditions.

(F) Histogram of rank correlations between mean

spike times for individual tone presentations and

mean response profile across all tones (see

Figure S4A).

(G) Histogram of rank correlations between mean

spike times for single natural sound presentations

and average across all tones. The prevalence of

positive correlations indicates that for the majority

of trials, the sequence of neuronal activation was

preserved.
that temporal profiles are diverse between neurons, and largely

conserved within the responses of each cell to different tones.

The mean latency measure does not fully summarize the shape

of PETHs; for example, a number of PETHs had a bimodal

structure (e.g., Figure 1C). To confirm that PETH shapes were

preserved between stimuli, beyond the conservation of mean

latency, we employed a ‘‘PETH consistency measure’’ (Luczak

et al., 2007), which showed that a neuron’s PETH is more similar

to 83% of its own responses to different tones than to presenta-

tions of the same tone to another neuron (see also Figure S3). In

cortex, spike width can be used to classify cells into putative

fast spiking and pyramidal cells (Bartho et al., 2004; Luczak

et al., 2007); however, we did not observe a significant difference

between MSLs of these cell classes (p > 0.1, Figure 1E). We

conclude that, if a neuron is driven to fire in response to a given

tone, it will do so with a stereotyped cell-specific temporal profile.

Responses to Natural Sounds Show Similar Temporal
Organization to Responses to Tones
The fact that individual neurons have consistent and stereotyped

PETHs, and that these differ between neurons, indicates that at
the population level, responses have a sequential organization.

To visualize this organization, Figure 2B shows in grayscale the

mean PETHs of a simultaneously recorded population to all

tones, sorted by mean response time with MSL indicated by

red dots; raster plots for two of the individual neurons are shown

above in Figure 2A. To determine whether this sequential organi-

zation was preserved in responses to more complex sensory

stimuli, we similarly analyzed the response of the same popula-

tion to a natural sound stimulus (insect vocalization; Figures 2C

and 2D), with neurons sorted in the same order as in Figure 2B.

The sequential structure was largely preserved in response to

this stimulus. To statistically confirm this finding, we again per-

formed a correlation analysis of MSLs (Figure 2E; R = 0.69 ±

0.21; p < 0.001 individually for all five rats to which natural sounds

were presented). As before, no significant difference was found in

MSL between putative pyramidal cells and interneurons (p > 0.1).

In addition to latency analysis, we also quantified PETH consis-

tency across stimuli (79% similarity; Figure S3). We therefore

conclude that presentation of natural sounds initiates—at least

for the first 100 ms—activity patterns whose temporal structure

is homologous to those evoked by tones.
Neuron 62, 413–425, May 14, 2009 ª2009 Elsevier Inc. 415
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Figure 3. Spontaneous Upstates Initiate

Sequential Patterns Homologous to Evoked

Responses

(A) Representative raw data plot showing a tone

response and spontaneous firing event. The green

trace is a synchronization pulse indicating the

duration of a tone stimulus; blue traces show local

field potentials (LFPs) from four separate recording

shanks; underneath is a raster plot showing the

spike trains of simultaneously recorded neurons.

At bottom is the multiunit firing rate (MUA)

computed by averaging all neurons. Neurons are

sorted by average spontaneous MSL to facilitate

visual examination of temporal patterns.

(B) Raster plots showing spike times for the same

neurons as in Figures 2A and 2C, triggered by

upstate onsets. Note the similar temporal pattern

to Figure 2.

(C) Average upstate-triggered activity of all neu-

rons, sorted in the same order as in Figures 2B

and 2D.

(D) Cross-correlograms of one neuron’s spike times

with the summed activity of all other cells, during

different experimental conditions. Vertical arrows

indicate thecenter ofmass (meanspike time)ofcor-

relograms (mcc). Cross-correlograms are normal-

ized between 0 and 1 to facilitate comparison.

(E) Conservation of mcc across different stimuli and

spontaneous events, indicating preservation of

sequential order. Each point represents the values

of mcc for a given cell in the conditions indicated on

the axes.

(F) Histogram of rank correlations between mean

spike times for single-trial tone presentations and

average mean spike times for spontaneous events.
The analyses presented above were based on PETHs, which

are computed from a neuron’s response averaged over multiple

stimulus presentations. How closely do responses on single

trials match this average picture? To address this, we performed

a direct comparison of spike times on each individual trial to the

mean temporal profile represented in the PETHs. For each trial,

a mean spike time was computed for each neuron firing, and

the sequence in which neurons fired on that trial compared to

the PETH means by rank correlation (see Experimental Proce-

dures and Figure S4A). Figures 2F and 2G show histograms of

rank correlations comparing single-trial sequences evoked by

tones and natural sounds, respectively, to PETHs computed

from all tones, indicating that single-trial spike sequences

showed significant similarity to those predicted from the PETHs

(t test: p < 0.01 for each experiment; see Figure S4C for an alter-

native approach yielding similar results). As with PETHs, the

match of single trials to the average was strongest in the initial

response period (�100 ms), but decayed thereafter (Figure S4B).

Spontaneous Upstates Have a Sequential Structure
Similar to Sensory-Evoked Responses
During sleep, quiet waking, and anesthesia, cortical activity is

characterized by an alternation of ‘‘downstates’’ of network

silence and ‘‘upstates’’ of generalized spiking and neuronal

depolarization, which occur spontaneously in the absence of

sensory stimulation (Figure 3A; Figure S5; DeWeese and Zador,
416 Neuron 62, 413–425, May 14, 2009 ª2009 Elsevier Inc.
2006; Luczak et al., 2007; Steriade et al., 1993a; Steriade et al.,

2001). We next asked whether spike patterns accompanying

upstates are also temporally homologous to those evoked by

sensory stimuli. Figures 3B and 3C show upstate-triggered

PETHs of the same neurons as in Figure 2, displayed in the

same vertical order. Again, a similar sequential ordering was

seen. To statistically confirm this similarity, a slightly different

approach was used, as the beginnings of upstates are not exper-

imentally controlled. To measure a cell’s position in the firing

sequence accompanying an upstate, without requiring a precise

trigger event, we defined a measure mcc, the center of mass of its

cross-correlogram with the summed activity of all other neurons

computed in the first 100 ms after the onset of each event type

(see Experimental Procedures). Values of mcc were correlated

between spontaneous events and stimulus classes, demon-

strating that firing order is consistent between sensory stimuli

and spontaneous events (Figures 3D and 3E; Rureth: spont-ton =

0.60 ± 0.14, n = 8 rats; Rureth: spont-nat = 0.57 ± 0.18; Rureth: ton-nat =

0.65 ± 0.07, n = 5 rats; p < 0.001 for each comparison). Consis-

tency of firing order was again confirmed at the single-trial level

by rank correlation (Figure 3F; t test: p < 0.01 for each experiment).

Although single-trial responses showed significant homology

to the mean, spike timing patterns were not identical across

trials, even for repetitions of a single stimulus. Further analyses

(Figures S6 and S7) suggested that spike timing variability in

the initial 100 ms period is close to that predicted from the
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PETHs, under an inhomogeneous Poisson model. After the initial

100 ms of tone stimuli, spike timing relative to onset is looser.

However, use of the mcc measure in the late response period

(300–500 ms after event onset) suggested that temporal relation-

ships between neurons are preserved throughout sensory

responses and upstates (Figures S5, S8A). With natural sound

stimuli, neurons can exhibit stimulus-locked timing later into

the stimuli, presumably in response to acoustic features in this

period (Figure S9).

Preservation of Sequential Structure in Unanesthetized
Animals
To verify that the above results, obtained under urethane anes-

thesia, generalize to unanesthetized animals, we performed

three further recordings in unanesthetized subjects in a passive

listening condition (see Experimental Procedures). As previously

reported for resting animals (Luczak et al., 2007; Petersen et al.,

2003; Poulet and Petersen, 2008), spontaneous global fluctua-

tions in network activity were seen, although the length and

depth of downstates was reduced compared to the anesthetized

condition (Figures 4A and 4B). Consistent sequential activation

of neurons between tone responses and upstates was again

seen (Figures 4C–4E; Runanesth: spont-ton = 0.53 ± 0.17; p < 0.001

for all three data sets), with rank correlation analysis indicating

a significant homology of single trials to the population mean

(Figures 4F and 4G, t test: p < 0.01 for each experiment). Again,

temporal relationships between cells persisted after the imme-

Figure 4. Preservation of Sequential Struc-

ture between Sensory-Evoked and Sponta-

neous Events in Unanesthetized Animals

(A and B) Representative raw data plots from an

unanesthetized, head-fixed subject in a passive

listening paradigm. Again, global fluctuations in

activity are seen, although downstates are typi-

cally shorter than they are under anesthesia.

(C and D) Similar analysis as in Figures 3B and 3C,

showing preservation of individual neurons’ PETH,

and conservation of sequential structure.

(E) Conservation of mcc across tones and sponta-

neous events in unanesthetized animals (similar

analysis to Figure 3E).

(F and G) Histograms of rank correlations between

mean spike times for single tone presentation and

average across all tones and spontaneous events,

respectively.

diate onset period, as shown by correla-

tion of mcc in the entire stimulated and

unstimulated periods (Figure S8A).

Sequential Structure of Sensory-
Evoked Responses in
Somatosensory Cortex
To investigate whether consistent tem-

poral patterns are specific to auditory

cortex, or a more general feature of

cortical processing, we conducted addi-

tional experiments in somatosensory

cortex (three rats, urethane anesthesia). Sensory responses

were evoked by whisker stimulation (200 ms long air puffs

with 1 s interstimulus interval; Figure 5A). As in auditory cortex,

consistent temporal profiles of activation were observed

between spontaneous and evoked events (R = 0.57 ± 0.12,

Figures 5B and 5C).

Conserved Constraints on Population Firing
Rate Vectors
Population spike patterns thus show constrained temporal struc-

ture that is largely conserved across stimuli and spontaneous

upstates. However, the number of spikes fired by a given neuron

can vary strongly with the stimulus. We next asked whether the

possible combinations of neural firing rates, like the temporal

pattern of spikes, were subject to conserved constraints across

stimuli and spontaneous events. For this analysis we therefore

discarded temporal information and summarized each popula-

tion pattern by a vector containing the firing rates of each

recorded neuron during the first 100 ms after stimulus or upstate

onset.

To gain insight into the nature of constraints on firing rates, we

initially focused on cell pairs. Figure 6A illustrates, for one pair of

cells, the number of spikes fired in individual upstates (black

dots), responses to a representative tone (green), and responses

to a natural sound (red). The region occupied by upstate spike

counts has a triangular shape, suggesting the presence of a

constraint on the possible spike count combinations: if neuron
Neuron 62, 413–425, May 14, 2009 ª2009 Elsevier Inc. 417
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2 fired in any given upstate, neuron 1 almost always fired also.

The regions occupied by the responses to the two stimuli

differed, but both fell within the region outlined by the set of

spontaneous events. Figure 6B shows, in outline view, the

regions occupied by responses to the two stimuli and sponta-

neous upstates, and a set of vectors in which spike count corre-

lations had been destroyed by shuffling (spontaneous spike

counts were shuffled for each neuron separately, preserving

each cell’s firing rate distribution but destroying relations

between neurons). Part of the realm of shuffled responses

(marked in gray) is not occupied by either spontaneous or

evoked responses, indicating that these spiking combinations

are not produced by the circuit.

We next asked whether a similar phenomenon occurs at the

level of the full spike count vectors. Visualization of high-dimen-

sional data requires techniques to map this data into two dimen-

sions. We used multidimensional scaling (MDS; Kruskal and

Wish, 1978), a nonlinear method whereby points which are close

in the original high-dimensional space will also be placed close by

in the 2D projection (Figures 6C and 6D; see Experimental Proce-

dures). It can be seen that each stimulus produces response

vectors that occupy a specific subspace within the realm outlined

by spontaneous activity, which is itself contained in the realm out-

lined by shuffled patterns. To statistically confirm this visual

impression, we computed for each sensory response the differ-

ence between the Euclidean distances to its closest neighbor in

the spontaneous events (Espont), and to its closest neighbor in

the shuffled spontaneous events (Eshuf; Figures 6E and 6F;

distances were calculated in the original, high-dimensional

space, not the 2D MDS projection). Nearly every evoked event

lay closer to a true spontaneous event than a shuffled one (p <

0.01 for all experiments, paired Wilcoxon signed rank test).

Similar results were seen in the unanesthetized data (Figure 6G;

p < 0.01 for all experiments), and also when computing count

vectors from time bins 300–500 ms after onset (Figure S8B).

Thus, spike count vectors accompanying spontaneous events

Figure 5. Preservation of Temporal Structure between Sensory-

Evoked and Spontaneous Events in Somatosensory Cortex

(A) Representative raw data plots of spontaneously occurring upstates

and air-puff-evoked activity.

(B) Conservation of mcc across different stimuli and spontaneous events,

indicating preservation of sequential order.

(C) Histogram of rank correlations between mean spike times for single air

puff and average mean spike times for spontaneous events.

occupy only a small subspace of the space of possible rate

vectors, and responses to individual sensory stimuli occupy

subspaces of this ‘‘allowed region.’’

Analysis of Firing Rate Correlations
The above analyses demonstrated that spontaneous and

evoked activity patterns are subject to similar constraints

on population firing rates. To gain insight into the character

of these constraints, we took a geometrical approach. The

firing rates of a set of n neurons can be represented by a point

in an n-dimensional vector space. Characterizing the distri-

bution of points in this space is equivalent to characterizing

the constraints on population activity. While complete analysis

of the structure of high-dimensional distributions is notoriously

complex (Agresti, 2002; Scott, 1992), analysis of firing rate corre-

lations between neuronal pairs will allow us to build up a basic

geometric intuition for the sizes and orientations of these sets.

The correlations between a set of simultaneously recorded

neurons may be summarized by a correlation matrix, in which

the (i,j)th element gives the correlation between cells i and j.

Figure 7A shows a pseudocolor representation of the correlation

matrix for spontaneous upstates. For ease of visual analysis,

neurons were ordered by a search algorithm so that the most

positive correlations were close to the diagonal (see Experi-

mental Procedures). Figure 7B shows the correlation matrix for

all sensory responses, with neurons arranged in the same order.

The visual similarity of these matrices was confirmed by correla-

tion of their off-diagonal elements (Figure 7D; p < 0.001 for all

data sets; see Experimental Procedures for how significance

was assessed).

The correlations shown in Figure 7B are derived from presen-

tations of all stimuli, without regard to stimulus identity. These

correlations could arise from two sources: trial-to-trial correla-

tions in the responses of the population to repetitions of a single

stimulus (typically called ‘‘noise correlations’’); or systematic

correlations in the mean responses to multiple stimuli (typically

called ‘‘signal correlations’’). Figure 7C shows the noise correla-

tion matrices for repeated presentations of a single tone and

natural sound. The visual similarity of these matrices to

Figure 7A was again confirmed by correlation of off-diagonal

elements (Figure 7D; p < 0.001 for all data sets). The correlation

matrix for signal correlation (correlation between average spike

counts for each type of stimulus) was also significantly similar

to spontaneous correlations (p < 0.01 for all data sets,

Figure S10D). We thus hypothesize that the effect suggested

by Figure 6, the constraint of sensory responses to the realm out-

lined by spontaneous upstates, arose both because the mean

responses to individual stimuli were inside this realm, and also
418 Neuron 62, 413–425, May 14, 2009 ª2009 Elsevier Inc.
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because fluctuations around these means were aligned along

a direction similar to that of spontaneous fluctuations. This was

further supported by repeating the analyses of Figures 6E and

6F after eliminating noise correlations by shuffling, and directly

shifting the mean vectors (Figure S10).

To obtain an estimate of the strength of these constraints on

population rate vectors, we next asked what the volumes of

the spaces outlined by spontaneous events and sensory

responses were (note that as MDS does not preserve volume,

this cannot be determined from Figure 6D). Volumes were esti-

mated by calculating the square root determinant of the cell-

by-cell spike count covariance matrix (see Figure S11). Volumes

were expressed as a fraction of the volume that would be avail-

able to a population displaying the same range of firing rates, in

the absence of correlational constraints, as estimated by the

volume of the shuffled spontaneous vectors. The volume fraction

depended on the size of the population considered. Figure 7E

shows volume fractions for the set of responses to a single

sensory stimulus, the pooled responses to the 10 stimuli we pre-

sented, and the set of spontaneous events, averaged over

randomly chosen cell subsets of varying sizes, out of 55 cells

recorded in one experiment. In all cases the volume fraction

decreased monotonically with the number of cells considered,

Figure 6. Combinatorial Constraints on Population Firing

Rate Vectors

(A) Spike counts of two neurons (recorded from separate tetrodes)

during the first 100 ms of spontaneous upstates (black), responses

to a tone (green), and responses to a natural sound (magenta).

Data were jittered to show overlapping points. Note that regions

occupied by responses to the sensory stimuli differ, but are both

contained in the realm outlined by spontaneous patterns.

(B) Contour plot showing regions occupied by points from (A). The

blue outline is computed from spike counts shuffled between

upstates, indicating the region that would be occupied in the

absence of spike count correlations.

(C) Firing rate vectors of the entire population, visualized using

MDS; each dot represents the activity of 45 neurons, nonlinearly

projected into 2D space.

(D) Contour plot derived from MDS data, with responses to indi-

vidual stimuli marked separately. Sensory-evoked responses

again lie within the realm outlined by spontaneous events.

(E) Scatter plot showing the Euclidean distances from each

evoked event to its closest neighbor in the spontaneous events

(Espont), and in the shuffled spontaneous events (Eshuf). Dashed

red line shows equality.

(F and G) Histograms showing the difference between distances

to shuffled and spontaneous events (Eshuf � Espont). Top and

bottom: data from all anesthetized and unanesthetized experi-

ments, respectively. Almost every evoked event was closer to

a true spontaneous vector than to a shuffled vector.

suggesting that each additional neuron added further

constraints at the population level (the distribution of

slopes across experiments is shown in Figure 7F).

Predicting Receptive Fields from Spontaneous
Correlations
To further illustrate the conservation of relationships

between neurons in spontaneous and evoked condi-

tions, we used a prediction method. If linear relationships

provide a good approximation to the restrictions on population

rate vectors, and if these relationships are conserved between

spontaneous and evoked activity, then it should be possible to

predict a neuron’s receptive field based only on its correlations

with the rest of the population during spontaneous activity, and

from the receptive fields of these other cells. We predicted the

firing rate rj of neuron j as a weighted sum of the rates of all other

neurons rj =
P

ri*wi, with weights fit to optimize the prediction on

spontaneous data (Figure 8A; Harris et al., 2003; Itskov et al.,

2008; Luczak et al., 2004). Figures 8B and 8C show the original

and predicted receptive field of a representative neuron.

Repeating this analysis for all cells, we found that the mean

correlation between original and predicted receptive fields was

R = 0.62 ± 0.24 (112 neurons from three experiments in which

tuning curve stimuli were presented). To ensure that this effect

did not simply reflect similarity of receptive fields of neighboring

neurons, we repeated the above analyses excluding neurons

recorded from the same shank as the predicted neuron, again

finding a significant effect (R = 0.56 ± 0.25). This indicated that

receptive field predictability reflects a more complex organiza-

tion of correlations in the population than simple tonotopy (this

is also visible in the correlation matrices of Figure 7B, where
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even neurons at distant shanks can have substantial correlation).

Thus, any particular cell’s sensory tuning can be largely pre-

dicted from the tuning of its peers, and its correlation with

them during spontaneous activity.

Geometrical Interpretation of Firing Rate Constraints
The geometrical picture painted by the above results is illus-

trated in Figures 8D–8F. MDS analysis (Figure 6) suggested

that clusters corresponding to individual stimuli are confined to

the same subregion as spontaneous events, but said little about

the structure of these clusters. The conservation of correlation

matrices and prediction analysis (Figures 7 and 8A–8C) sug-

gested a simple picture in which constraints on rate vectors

can be approximated by linear correlations. Geometrically, a

correlation matrix defines the orientation of the corresponding

cluster (Figures 8D and 8E). The fact that both noise and signal

correlation matrices were similar to the correlation matrix for

spontaneous events (Figures 7A–7D and S10) thus suggests

that the corresponding clusters have a similar orientation. The

geometrical interpretation of this is shown in Figure 8F, in which

spontaneous rate vectors are shown as occupying a narrow

subspace of theoretically possible vectors, with individual stimuli

occupying smaller subspaces of similar orientation.

DISCUSSION

To study the structure of neocortical population spiking activity

in vivo, we recorded the stimulus-driven and spontaneous

activity of neural populations of auditory and somatosensory

cortices. We found that population patterns occurring spontane-

ously and in response to sensory stimulation were subject to

common constraints, on both the order in which neurons fire,

and the possible combinations of neural firing rates. Although it

is only experimentally possible to present a finite number of

stimuli, the fact that similar constraints applied to each stimulus

we (arbitrarily) chose to present suggests that these constraints

will likely apply to all stimuli. These results therefore suggest that

the population spike patterns expressible by the cortical circuit

are restricted to a limited vocabulary, with spontaneous events

widely sampling this vocabulary, and responses to sensory

stimuli sampling smaller subspaces of it.

Precision and Variability of Population Activity Patterns
Previous work has shown that individual neurons can exhibit

changes in timing depending on the stimulus (Heil, 2004; Nelken

et al., 2005; Optican and Richmond, 1987; Oram et al., 2002;

Panzeri et al., 2001; Petersen et al., 2002). Based on these

single-cell results, one might hypothesize that different stimuli

may evoke completely different firing sequences (in fact, we

hypothesized just this in a recent review article: Harris, 2005).

Our present results suggest that this hypothesis is inaccurate.

Although individual neurons did show changes in spike timing

between stimuli, these were not sufficient to disrupt a sequential

structure broadly conserved between stimuli, and the order in

which active neurons fired on any trial could be predicted even

from the mean response to other stimuli.

A number of previous studies have described spike patterns,

sometimes several seconds in length, that repeat with millisecond

Figure 7. Analysis of Pairwise Correlations

during Evoked and Spontaneous Condi-

tions

(A) Correlation matrix between spike counts of 45

neurons calculated during upstates. For ease of

visualization, neurons were ordered so that the

highest correlations are close to the diagonal.

(B) Spike count correlation matrix for responses to

all sensory stimuli (five tones and five natural

sounds), with neurons ordered the same as in

(A). The dots on the right indicate at which shank

neurons were recorded.

(C) Correlation matrices for repeated presenta-

tions of a single tone and a single natural sound

(‘‘noise correlations’’), with neurons again ordered

the same as in (A); note the similar appearance of

all matrices.

(D) Box plots showing distribution across experi-

ments of elementwise correlation coefficients

between correlation matrices (diagonal excluded).

(E) The volume of response space occupied by

spontaneous events (black), all evoked activity

(red), and the responses to a single stimulus

(green), was estimated as a fraction of the volume

occupied by shuffled spontaneous events as the

square root ratio of covariance matrix determi-

nants (see Figure S11). Note the monotonic

decrease with population size.

(F) Box plots showing distribution of slopes of

log-volume fraction as a function of population

size for anesthetized (left) and unanesthetized

(right) experiments.
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Figure 8. Preserved Constraints on Firing

Rate Vectors Allow Prediction of a Neuron’s

Sensory Tuning Based on Spontaneous

Activity, and a Geometrical Interpretation

of These Constraints

(A) Prediction of a neuron’s receptive field from

correlations with simultaneously recorded neurons

during spontaneous activity, and from the recep-

tive fields of these other neurons. Here, w denotes

a vector of weights, optimized to maximize predic-

tion of the target neuron’s activity during sponta-

neous activity, and r denotes the receptive field

vectors of N other neurons.

(B and C) Actual and predicted receptive fields for

a representative neuron. On average, predicted

and actual receptive fields showed a correlation

of 0.62 (see text for details).

(D and E) General relationship between correlation

matrix and cluster orientation. (D) shows a set of

simulated spike count vectors with the correlation

matrix shown in (E); the values of the correlation

matrix provide information about the orientation

of the cluster relative to the coordinate axes.

(F) Cartoon illustrating the geometrical interpreta-

tion of our findings. The gray area illustrates the

space of all rate vectors theoretically possible in

the absence of relationships between neurons. The black outline represents the space of spontaneous events; this is shown elongated and of small volume

to illustrate strong constraints at the population level. Responses to individual stimuli occupy smaller subsets within this (colored blobs; the irregular shape illus-

trates possible non-Gaussianity of these clusters). The orientations of the spaces for individual stimuli (corresponding to noise correlation matrices) are approx-

imately aligned with the space of spontaneous events. The mean response to each stimulus also lies within the space of spontaneous events (see Figure S10).
precision more often than expected under shuffling manipula-

tions (Abeles, 1991; Ikegaya et al., 2004; Nadasdy et al., 1999).

Our results suggest a different timescale, with sequential organi-

zation seen for approximately the first 100 ms of responses, and

spiking reliability decaying progressively after stimulus onset (see

also Luczak et al., 2007). This apparent discrepancy most likely

reflects a difference of statistical methodology rather than one

of biology. If a search is conducted for repeating patterns of

millisecond precision, these are the only sequences that can be

found; if such patterns are found more often than after shuffling,

it shows that the original and shuffled data are different, but

does not indicate that the particular precision searched for is bio-

logically meaningful. Previous work has shown that the structure

of precisely repeating patterns can be predicted from individual

neurons’ temporal responses to behavioral events or upstate

onsets (Baker and Lemon, 2000; Luczak et al., 2007; Oram

et al., 2001), suggesting that repetition of millisecond-scale spike

templates could be a consequence of response stereotypy at

slower timescales.

Possible Mechanisms of Constrained Activity
Sensory responses and spontaneous upstates are likely initiated

by different mechanisms. While sensory responses reflect the

effects of thalamic input, upstates are believed to be of cortical

origin (Sanchez-Vives and McCormick, 2000; Steriade et al.,

1993b; Timofeev et al., 2000). One might therefore expect that

spontaneous and evoked patterns would propagate differently

through cortical circuits. By contrast, our analyses show that

both types of activity are subject to common constraints within

local populations. We therefore suggest that these constraints

arise largely from the dynamics of the local cortical circuit.
One can imagine a number of ways in which the physical prop-

erties of a neural circuit could impose consistent constraints on

the spike patterns it can generate. First, cortical neurons express

diverse sets of voltage-gated ion channels, and are diverse in

their intrinsic physiological properties (Storm, 2000; Sugino

et al., 2006; Vervaeke et al., 2006). This may contribute to the

consistent cellular timing we observe with, for example, cells of

low threshold firing earliest (Kang et al., 2008). Second, connec-

tivity within cortical circuits is far from homogenous; for example,

strong reciprocal connectivity occurrs more than expected by

chance (Song et al., 2005). Such connectivity patterns may

impose constraints on the possible cell groups that can be active

at any time. We observed conserved correlations in firing rate not

just locally, but also between neuronal pairs recorded from

shanks over 1 mm apart (c.f. Eggermont, 2007). Examination of

cross-correlograms, however, typically did not indicate a func-

tional monosynaptic connection between correlated pairs (data

not shown). These correlations may thus reflect larger-scale

network interactions, such as the consistent participation of cells

in neuronal assemblies spread over wide cortical areas (Harris,

2005). Although sensory response latencies have been shown

to vary across cortical layers (Armstrong-James et al., 1992;

Wallace and Palmer, 2008), this is unlikely to account for our

results: because we used multishank probes inserted perpen-

dicular to the cortical surface, all tetrodes were at approximately

the same depth; furthermore, consistent timing differences were

seen even between neurons recorded from a single tetrode.

Repeated presentation of a single stimulus led to variations in

response from trial to trial, which were subject to the same

constraints as variations in mean responses between stimuli.

Although trial-to-trial variability is often called ‘‘noise,’’ this
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variability may largely reflect systematic coding of variables not

under experimental control (Harris, 2005). Only a small fraction

of the input to a cortical column arises from primary sensory

thalamus, and responses in sensory cortex can be affected by

cognitive factors such as reward and attention (Brosch et al.,

2005; Fritz et al., 2007; Shuler and Bear, 2006), other sensory

modalities (Brosch et al., 2005; Ghazanfar and Schroeder,

2006), and ongoing oscillations (Hasenstaub et al., 2007;

Womelsdorf et al., 2007). We hypothesize that on any trial, these

factors, together with direct sensory information from the

ascending pathways, determine the activity pattern produced

by the circuit; but in all cases the dynamics of the local circuit

impose common constraints on the patterns produced.

Relation to Memory Replay Studies
A large number of studies have suggested that spontaneous

activity in resting or sleep replays firing patterns seen during prior

behavior (Diba and Buzsaki, 2007; Hoffman and McNaughton,

2002; Ji and Wilson, 2007; Walker and Stickgold, 2006). In our

data, similarity between spontaneous and evoked activity is

unlikely to reflect replay of the specific stimuli we presented;

indeed, the animal had never heard these sounds before the

experiment. Instead, we hypothesize that this similarity arises

because of constraints imposed by the cortical circuit on all spike

patterns it can possibly produce. Nevertheless, our results do not

contradict the possibility that stimulus replay can occur. For

example, after a salient experience of a particular sensory stim-

ulus, spontaneous patterns might preferentially occupy regions

of the space of possible events close to the pattern evoked by

that stimulus. Our results do however suggest that for experi-

mental characterization of replay, firing rate vectors might be as

useful as temporal order and correlation (Battaglia et al., 2005).

Significance of Constraints for Information Encoding
Our results indicate conserved constraints on the activity of

cortical populations. What is the significance of these constraints

for encoding of sensory information? The fact that timing differ-

ences between stimuli occur within a broadly conserved sequen-

tial pattern does not imply that timing information cannot be

extracted by downstream structures—it simply implies that to

do so, the downstream structures must detect variations on a

common temporal theme. While accurate information-theoretic

analysis of large populations requires currently unrealistic

amounts of data, previous studies of single neurons in auditory

cortex have shown that both spike times and rates can carry

information about stimuli, with partial redundancy between

them (Nelken et al., 2005). Our data are consistent with these

studies, but suggest that spatiotemporal constraints may limit

the information carried by both timing and rates in a population.

Although the total strength of constraints increases with the

number of neurons considered, the size of the possible vocabu-

lary also increases, just less rapidly than in a hypothetically

unconstrained situation. We thus anticipate that large enough

cortical populations could still encode arbitrarily large ensembles

of stimuli, but that this would take more neurons (or more spikes)

than in the absence of constraints.

Viewed from one perspective, such redundancy might appear

inefficient. Elimination of redundancy has been suggested to be
422 Neuron 62, 413–425, May 14, 2009 ª2009 Elsevier Inc.
an important function of sensory systems: in populations of

primary receptors, activity is likely to be highly correlated, due

to statistical regularities in patterns of sensory stimulation, as

well as overlapping receptive fields; it has been proposed that

higher processing centers remove these correlations, thereby

achieving an ‘‘economy of impulses’’ (Barlow, 1962; Chechik

et al., 2006). Our data suggest that in auditory cortex, this

process is at best incomplete. Another possibility however is

that constraints impose a degree of redundancy that is actually

beneficial. While redundant codes might require a larger number

of neurons, they can be ‘‘robust,’’ in the sense that the code can

still be read if the activity of component cells is unavailable or

corrupted. In written language, it is precisely because only a

small set of letter combinations form meaningful words that we

can understand words in which letters are missing or misprinted.

A certain amount of redundancy in cortical coding may thus be

beneficial, particularly given that any downstream neuron will

only sample a subset of the neurons in the auditory cortex. The

fact that constraints are consistent across multiple stimuli and

spontaneous patterns might allow downstream structures to

consistently utilize this redundancy, to correctly interpret the

activity of cortical populations.

EXPERIMENTAL PROCEDURES

Surgery and Recording

For anesthetized experiments, Sprague-Dawley rats (300–500 g) were anaes-

thetized with urethane (1.5 g/kg) and held with a custom naso-orbital restraint.

After preparing a 3 mm square window in the skull over auditory cortex (eight

rats) or somatosensory cortex (three rats), the dura was removed and silicon

microelectrodes (Neuronexus technologies, Ann Arbor MI) were inserted.

Probes had eight or four shanks spaced by 200 mm, with a tetrode recording

configuration on each shank (25 mm spacing between sites; a shank typically

yielded 5–15 well-isolated units). For awake head-fixed experiments, we used

an incremental training procedure (see, e.g., de Kock and Sakmann, 2008;

Hromadka et al., 2008; Luczak et al., 2007; Robbe et al., 2006). A headpost

was implanted on the skull of the animal under ketamine-xylazine, and a well

was drilled above the auditory cortex and covered with wax and dental acrylic.

After recovery theanimal was trained daily to remainmotionless in the restraining

apparatus for increasing periods. Excessive movement or signs of stress or

discomfort were used to indicate the end of the training session; in some cases

chocolate milk reward was given during training. Typically 6–8 days of training

were required to reach the target of 1 hr fixation. On the day of the surgery, the

animal was briefly anesthetized with isoflurane and the dura was resected;

after a 1 hr recoveryperiod, recording began. Only experimentswhere the animal

stayed motionless for at least an hour, indicated by stable, clusterable recorded

units, were included in this study (3/7 rats). The location of the recording sites

was estimated to be primary auditory cortex by stereotaxic coordinates,

vascular structure (Doron et al., 2002; Rutkowski et al., 2003; Sally and Kelly,

1988), and tonotopic variation of frequency tuning across recording shanks;

for somatosensory experiments, by stereotaxic coordinates and robust whisker

responses. Electrodes were estimated to be in deep layers by field potential

reversal (Kandeland Buzsaki,1997),most likely layerV based onelectrode depth

and the presence of broadly tuned units of high background rate (S. Sakata and

K.D. Harris, 2007, Soc. Neurosci., abstract). Units were isolated by a semiauto-

matic algorithm (http://klustakwik.sourceforge.net) followed by manual clus-

tering (http://klusters.sourceforge.net; Hazan et al., 2006). To ensure accurate

estimation of PETHs, only neurons with firing rates higher than 2 Hz were used

in further analysis (nureth = 274 cells, nunanesth = 81 cells, nsomatosens = 131 cells).

Stimuli

As stimuli we used pure tones (3, 7, 12, 20, or 30 kHz at 60 dB), and in five anes-

thetized experiments, we also used five different natural sounds (extracted

http://klustakwik.sourceforge.net
http://klusters.sourceforge.net
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from the CD ‘‘Voices of the Swamp,’’ Naturesound Studio, Ithica, NY). Each

stimulus had duration of 500 ms followed by 1500 ms of silence (for unanesthe-

tized animals 1 s tones were presented followed by 1 s silence). All stimuli were

tapered at beginning and end with a 5 ms cosine window. Experiments took

place in single-walled sound isolation chamber (IAC, Bronx, NY) with sounds

presented free field (RP2/ES1, Tucker-Davis, Alachua, FL). Spontaneous

activity was recorded for 10 min before and after presenting stimuli; during

stimulus presentation, activity occurring >300 ms after stimulus offset and

before the next stimulus onset was also regarded as spontaneous. For

somatosensory experiments stimuli consisted of 200 ms air puffs directed at

contralateral whiskers.

Upstate Detection

Upstate onsets were identified from the spiking activity of all recorded cells as

the time of the first spike marking a transition from a period of global silence

(30 ms with at most one spike from any cell) to a period of activity (60 ms with

at least 15 spikes from any cells; Luczak et al., 2007). To ensure our results

did not dependon these particular criteria, analyses were repeatedwith different

parameter values (number of spikes in preupstate window between 0 and 2;

number of spikes in following window between 5 and 25). These changes

resulted in a different number of detected upstates (within ± 20%) but did not

affect our conclusions. The number of analyzed upstates per experiment

(±SD) was 701 ± 246. Note that measures used for statistical analysis (mcc and

population vectors) are by design unaffected by the precise upstate onset time.

Mean Spike Latency

For each neuron stimulus- and upstate-triggered PETHs were computed using

a 10 ms Gaussian smoothing kernel. Mean latency was defined as the center of

mass of the PETH in the 0–100 ms period (equivalent to mean spike time in that

time window). To ensure that our results did not depend on these specific defi-

nitions, the time of PETH maximum was used as an alternative timing criterion;

both procedures resulted in similar conclusions.

mcc

As upstate onsets can only be determined approximately, accurate estimation

of firing sequences during upstates requires a measure insensitive to exact

onset time. We therefore computed for each neuron a measure mcc, defined

as the center of mass of the cross-correlogram of this neuron with the summed

activity of all other simultaneously recorded cells, computed in the first 100 ms

after the approximately determined onset of each event type (see Figure 3D and

text below Figure S8). Analyses were repeated by computing mcc using multiunit

activity taken only from each neuron’s local recording shank; for all data sets

this resulted in changes in mcc of <5%, indicating that consistent sequential

activation was found within local populations, rather than just reflecting spatial

spread of activity across multiple shanks (c.f. Luczak et al., 2007).

Single-Trial Rank Correlation Measure

To analyze the preservation of firing sequences on single trials, we compared

the sequence of firing evoked by a single stimulus presentation to the mean

response to this or other stimuli. Because neurons may fire more than one

spike in response to a stimulus, we first calculated for each trial the mean spike

time for each firing neuron, in the 100 ms window after stimulus onset. Simi-

larity to the mean response sequence was assessed by Spearman’s rank

correlation of single-trial firing times with the mean spike times computed

from the same neurons’ PETHs (Figure S4A). Only trials with at least three

neurons active in the 100 ms window were considered. To confirm that the

distribution of rank correlations across events was significantly different

from zero, a t test was used. In addition to this approach, a measure based

on pattern matching gave similar results (Figure S4C).

Multidimensional Scaling

MDS was performed in MATLAB with Euclidian metric and Kruskal’s normal-

ized stress1 criterion (Kruskal and Wish, 1978). Due to the increase in compu-

tational demands with the number of data points, analysis was performed on

a random subset of the data (150 points of each class in Figure 6C; the precise

number of points chosen did not affect results).
Matrix Reordering

To allow visual comparison of correlation matrices (Figures 7A–7C), neurons

were reordered so that the most positive correlations were placed close to

the diagonal. This was achieved with a greedy stepwise search algorithm, opti-

mizing the Frobenius inner product of the reordered correlation matrix with

a Toeplitz matrix whose entries decayed exponentially with distance from

the main diagonal.

Statistical Assessment of Matrix Similarity

The similarity between correlation matrices was assessed using the correlation

coefficient of off-diagonal elements as an intuitive measure. Nevertheless,

because these elements are not statistically independent, the significance of

this correlation cannot be assessed by standard linear regression. We there-

fore assessed significance with a randomization method, comparing against

a null distribution obtained by randomly reassigning cell identities within

each group separately.

SUPPLEMENTAL DATA

The supplemental data for this article include 11 supplemental figures and can

be found at http://www.neuron.org/supplemental/S0896-6273(09)00237-2.
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