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Speech Enhancement Based
on Audible Noise Suppression

Dionysis E. Tsoukalas, John N. Mourjopoulos,Member, IEEE,and George Kokkinakis,Senior Member, IEEE

Abstract—A novel speech enhancement technique is presented
based on the definition of the psychoacoustically derived quantity
of audible noise spectrum and its subsequent suppression using
optimal nonlinear filtering of the short-time spectral amplitude
(STSA) envelope. The filter operates with sparse spectral es-
timates obtained from the STSA, and, when these parameters
are accurately known, significant intelligibility gains, up to 40%,
result in the processed speech signal. These parameters can
be also estimated from noisy data, resulting into smaller but
significant intelligibility gains.

I. INTRODUCTION

T HE PROBLEM of enhancing speech degraded by noise
remains largely open, even though many significant tech-

niques have been introduced over the past decades. This
problem is more severe when no additional information on
the nature of noise degradation is available (in the form of
an independent measurement, for example), in which case
the enhancement technique must utilize only the specific
properties of the speech and noise signals.

Existing enhancement methods can be broadly grouped into
those aiming at improving speech degraded at low signal-to-
noise ratios (SNR’s), mainly in order to facilitate commu-
nication and intelligibility (either by human or by machine
recognizers), and those aiming at improving speech degraded
at relatively high SNR’s mainly in order to enhance its quality
and presentation.

In terms of the methodology adopted by these existing meth-
ods, it is evident that although many, usually older approaches
were based on specific properties of the speech signal itself,
e.g., on speech periodicity [1]–[3], on a model of speech or the
production mechanism, etc. [4]–[9], most recent methods are
based on the manipulation of the short-time spectral amplitude
(STSA) of the degraded signal. Such manipulation schemes
are based on the assumption that speech and additive noise
degradation are uncorrelated and that it is possible to derive
an optimal statistical operator based either on signal spectral
variance (e.g., using various spectral subtraction schemes
[10]–[14]), or on minimum mean square error (MMSE), e.g.,
using various forms of Wiener filtering [15]–[17]. All these
methods are efficiently implemented on the STSA, and it is
also significant that STSA is a relevant signal representation
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from a perceptual point of view. Given that the human auditory
system performs some form of frequency signal analysis and
reconstruction under adverse listening conditions, it is also
appropriate that enhancement methods are modeled on such
procedures. However, hearing models have not been fully
exploited by existing enhancement methods apart from [18],
where lateral inhibition principles are employed.

Here, an enhancement scheme is presented based on the
utilization of a well-known auditory mechanism, noise mask-
ing. In addition, estimation procedures are introduced that can
optimally or conditionally modify psychoacoustically derived
variants of the STSA function. As it is well known from
psychoacoustics [19], speech and other signals can mask noise
components coexisting with them (in an additive STSA sense).
In this sense, the noise degradation perceived by the listener
will vary in time according to the time-varying properties
of speech STSA, and it is this audible noise component of
the degradation that must be removed by the enhancement
scheme. Therefore, the enhancement approach adopted here
is based on the definition of an audible noise component of
the STSA [20], [21], which is extended and used for the
derivation of an optimal modifier that achieves audible noise
suppression. Furthermore, this modification selectively affects
the perceptually significant spectral values, and is therefore
more robust than methods that affect the complete STSA and
less prone to introduction of unwanted distortions.

Based on the above model, it is shown that optimal psy-
choacoustic modification can be achieved when only sparse
clean signal components (i.e., one spectral value per critical
band) are known or have been estimated. Furthermore, it was
found that the necessary clean speech data for enhancement
are as many as the number of critical bands (CB’s) per data
window. Apart from this, the only information about the noise
required by the technique is restricted to a broad estimate of
the noise level per CB.

The performance of the proposed technique was evaluated
using objective measures such as the SNR and the noise-to-
mask ratio (NMR). Furthermore, the technique was assessed
by the diagnostic rhyme test (DRT) and the semantically
unpredictable sentences (SUS) test. From these tests, it was
found that, at very low SNR’s (5 dB), significant improve-
ments could be achieved by the proposed method. It was
also found that the proposed technique could achieve speech
reconstruction for arbitrary low SNR’s given the correct sparse
data. This important result on one hand illustrates the validity
of the proposed psychoacoustic model and on the other hand
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gives an indication of the lower bit rate limits for perceptually
significant speech coding.

In terms of speech enhancement now, and assuming that
no additional information on the clean signal is known, the
proposed technique relies on accurate estimates of these sparse
data (which are either the spectral minimum or the masking
threshold per CB) from the noisy signal. Although this is a
difficult task, two estimation methods are proposed here, the
first one based on the statistical distribution of the spectral
minima per CB and the second one based on an iterative
preprocessing enhancement procedure in conjunction with a
rough estimate of the masking threshold. These estimation
methods were also evaluated in terms of subjective tests and
for several initial SNR conditions, and it was found that in
most cases improvements could be achieved of which the most
significant were for low initial SNR conditions.

This paper is organized as follows. Section II gives the
basic definitions of the proposed psychoacoustic model for
speech enhancement as well as the STSA modification scheme.
Section III provides methods for practical estimation of the
sparse speech data used by the proposed audible noise sup-
pression (ANS) technique. Section IV gives technical details
of the processing scheme and describes the implementation
and testing of the ANS technique. Section V describes the
objective and subjective tests employed for the evaluation of
the technique and presents the results. Finally, conclusions are
drawn and further work is proposed in Section VI.

II. PSYCHOACOUSTICMODEL FOR SPEECHENHANCEMENT

A. Definitions of the Perceptually Significant Spectra

The analysis that follows assumes that the speech and noise
signals are discrete-time and finite in duration. In the case of
additive noise, the noisy speech signal consists of the sum of
the original (clean) speech signal and the noise component, i.e.,

(1)

where is the noise-free speech signal, and, is the
noise component.

Equation (1) has an equivalent representation in the fre-
quency domain. Since, in most practical situations, short-
time spectra will be required, the Fourier transforms of the
windowed noisy and clean speech given by and

, respectively, must be calculated, i.e.,

off

(2)

off

(3)

where , is a window function [22],
is the length of the Fourier transform,is the time-domain

window index, and, off is an offset, assuming that the speech
signal is transformed using overlapping time windows.

Fig. 1. Power spectra of a short-time speech frame for the noisy, clean
speech and its AMT.

The corresponding power spectra are given by and
, respectively, i.e.,

(4)

(5)

The basic principle of the psychoacoustic signal enhancement
technique is the suppression of spectral components contribut-
ing to audible noise. These components can be obtained from
an estimate of the auditory masking threshold (AMT), denoted
as , of the clean signal. The method for the estimation
of the AMT is described in Appendix A. As is known [23],
the AMT determines the spectral amplitude threshold below
which all frequency components are masked in the presence
of the masker signal. Consequently, noisy spectral components
below this threshold will be inaudible due to the effect of the
speech signal.

Typical speech power spectra along with the AMT are
shown in Fig. 1. In mathematical terms, the audible spectral
components can be expressed using the operator, i.e.,
by taking the maximum between the power spectrum of the
speech and the corresponding AMT per frequency component.
This function is defined as the audible spectrum of the speech
and, in fact, it can be shown that reconstruction of the signal
using this function can result in a perceptual equivalent to
the original signal, as is also well established in broadband
audio coding applications [24]. Now, let us define the audible
spectrum of the noisy speech and the audible spectrum of the
clean speech as and , respectively, using the
expressions

if
if

(6)

if
if ,

(7)

Therefore, the audible spectrum of the additive noise, that is,
the spectral components that are perceived as noise, denoted
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Fig. 2. Power spectra of a short-time speech frame for the audible noise
and the pure difference between noisy and clean spectra. Note that resulting
negative amplitude noise components are not shown, and that the audible
noise was shifted for clarity 20 dB upwards.

as , can be expressed by the difference between the
audible spectra of the noisy and the clean speech. In fact, the
main differences between the audible spectrum of noise and
the pure difference between noisy and clean spectra, are the
reduction in the dynamic range and the order of the estimated
noise spectral components. This, in turn, leads to significant
processing advantages, since modification of the noisy speech
spectrum to suppress the audible noise will introduce less
distortion in the speech signal, since only selective frequency
components will be modified. Ideally, given a good estimate
of the audible noise spectrum, modification of the noisy signal
will only affect the audible noise regions and will not distort
in an audible manner the underlying speech signal. Therefore,
the audible spectrum of the noise is defined as

(8)

A typical illustration of the audible noise spectrum and the
pure difference between noisy and clean spectrum is shown
in Fig. 2, for the short-time spectra of Fig. 1. As can be
easily observed in this figure the “pure difference” noise is
an overestimation of the audible noise since components of
the “pure difference” noise appear in spectral areas in which
there is not audible noise.

A more analytic expression for the audible noise can now
be found by substituting (6) and (7) for and ,
respectively, in (8). Then the audible noise can be expressed
as shown in (9) [21], at the bottom of the page, which is a
four-branched function depending on the relative levels of the
power spectra of noisy and clean speech and the corresponding
AMT of the clean signal.

B. Psychoacoustic Criteria for Noise Removal

Examination of (9) results in the following observations:

1) Branch (I) may be positive, negative or zero, depending
on the relative values of and .

2) Branch (II) is always positive or zero as indicated by
the corresponding conditions. Clearly in this case, there
is audible noise that must be removed.

3) Branch (III) is always negative or zero and, conse-
quently, in this case there is not audible noise and no
modification is required.

4) Branch (IV) is zero by definition.

As is also clear from (9), the audible noise spectrum depends
on three functions, the noisy speech power spectrum ,
the clean speech power spectrum , and the AMT

of the clean speech. Since only the noisy speech is
usually available for processing, this function alone has to
be modified for speech enhancement. Therefore, the principle
of the proposed ANS technique is to make the audible noise
spectrum less than or equal to zero by proper
modification of the noisy speech power spectrum .
Consequently, if the noisy speech power spectrum is
suitably modified in order to derive the enhanced speech power
spectrum, denoted by , then the modified audible
noise spectrum, denoted by must satisfy

(10)

As described in Appendix B, the equality above can be di-
rectly obtained from the MMSE estimator, i.e., by considering
minimization of over a specific frequency band.
Furthermore, the inequality introduced in (10) was primarily
considered in order to give a further degree of freedom in the
noise removal process. According to this, a negative value of
the component will mean that: i) either the speech
spectrum was underestimated [Branch I of (9)], in
which case a suboptimal solution may be obtained, or ii)
the speech spectrum was correctly estimated below the AMT

as indicated by the conditions in Branch II of (9) and,
hence, by definition is not audible. Note that Branches III
and IV of (9) will not be affected by the introduction of the

spectrum. From the above, only case i) may affect
the accuracy of the proposed algorithm although, as will be
shown from the results in Section V, this effect is rather small.

Efficient spectral modification of the noisy speech power
spectrum can be achieved by several methods, as has been
shown in the literature (e.g., [10], [16], [25]). Note, however,
that for the class of techniques using linear noise suppression,
the gain applied to each spectral component is a function
of the level of a measurement of the noisy speech and/or
the background noise. Such gain curves, for example, the

if and (I)
if and (II)
if and (III)
if and (IV)

(9)



500 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 5, NO. 6, NOVEMBER 1997

(a)

(b)

Fig. 3. Gain versus the instantaneous SNR for STSA enhancement methods,
for (a) the i) power spectral subtraction and ii) the Wiener filter method,
and (b) for ANS (11). i)�(k; i) = 1, a(k; i) = Dp. ii) �(k; i) = 0:5,
a(k; i) = 10Dp. iii) �(k; i) = 1, a(k; i) = 10Dp. iv) v(k; i) = 2,
a(k; i) = 10Dp. v) �(k; i) = 1, a(k; i) = 1000Dp. vi) �(k; i) = 1,
a(k; i) = 10000Dp, whereDp is the background noise.

power spectral subtraction gain and the Wiener filter gain
[16] are shown in Fig. 3(a) as a function of the instantaneous
SNR. Given that such gain curves imply constraints in the
modification of the noisy speech spectral components, more
flexible suppression functions will be required for audible
noise spectrum suppression. Therefore, in our case, a para-
metric nonlinear function was used, which allows greater
flexibility in gain control. This function is given by

(11)

where and are the time-frequency varying
parameters.

As can be observed from (11), the enhanced power spectrum
is controlled by the two parameters and which
are assumed to be both positive. Parameter is a
threshold below which all frequency components are highly
suppressed. Parameter controls the rate of suppression.
This rate, however, depends on the ratio ,
i.e., if this ratio is larger than one, then the larger the

, the smaller the suppression becomes, while if it
is smaller than one, the larger the the larger the
suppression becomes. Typical gain curves obtained by (11) are
shown in Fig. 3(b) as a function of the instantaneous SNR.
These gain curves imply, in contrast to the gain curves of
Fig. 3(a), that suppression remains almost constant for the
low-level instantaneous SNR values. This fact may be of
significance, since intelligibility degradation [10], [26] after
processing is mainly due to exaggerated suppression of low-
level speech components, as is the case with the spectral
subtraction and the Wiener filter techniques. Note, also, that
the ratio in (11)
is always below or equal to one, assuming both and

are positive.

C. Parameter Estimation for Psychoacoustic Modification

It is now necessary to introduce expressions for optimum
modification of the noisy speech spectrum by adjusting the
parameters and according to the constraints
specified by the psychoacoustic model. By combining (9)
and (10), substituting for , and taking into
account that only Branch (I) and (II) of (9) must be modified,
we obtain the set of equations shown in (12), at the bottom
of the page, where, as was mentioned, Branches (III) and (IV)
of (9) are not involved in the enhancement process, since they
do not contribute to audible noise components. By substituting
(11) for into (12), we obtain (13), shown at the
bottom of the page, where, hereafter, the common condition

in Branches (I) and (II) of (12) will be
omitted for simplicity.

By solving (13), and since is positive, the following
solutions are obtained as shown in (14), shown at the bottom
of the next page. Note, however, that it is not desirable to
estimate the parameters and for every spectral
component , because in this way the estimation will be very

if and (I)

if and (II)
(12)

if I

if (II)

(13)
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sensitive to specific spectral values. Apart from this, the CB’s
are sufficient for the definition of the perceptually significant
frequency regions. For these reasons, it is desirable to use a
fixed value of and over a specific frequency
range. Therefore, the above process will be applied to a
specific bandwidth of the signal with upper and lower limits
and , which correspond to the lower and upper limits of CB
. In this frequency band, the parameters and

will be constant and denoted by and . Let also
take an arbitrary positive value within this band. Clearly,

specific frequencies within this band may
correspond to maximum values for both and
in (14). If is such a frequency that produces a maximum in
Branch (I) of (14) and produces a maximum for Branch (II),
then these maximum values, denoted as and will
be given in (15), shown at the bottom of the page. Obviously,
the single value within CB will be given by

if
if

(16)

This expression describes the optimum psychoacoustic
solution that satisfies (10) and relies purely on time-varying
model parameters. According to this, enhancement of the
noisy signal is performed by applying (11) to noisy signal
power spectrum using the value of given by (16) in
conjunction with (15) and an arbitrary positive value for .

D. Parameter Error Analysis and Sensitivity

The effect of parameter is only critical to the enhance-
ment procedure in an MMSE sense but not in a psychoacoustic
sense, since audible noise suppression can be performed for
any positive value of , and, in an MMSE sense, its value
can be obtained by minimization of the spectral difference
between the clean and the noisy speech spectral components.
Such a spectral distance, however, will highly depend on the
clean speech spectral components that will be later shown to
be undesirable. Therefore, hereafter, the parameterwill
be considered to be constant through the entire enhancement
procedure. The effect of parameter , however, is crucial

to the performance of the ANS technique. An underestimate
of this parameter may result in insufficient audible noise
suppression, although an overestimate, even when it leads to a
suboptimal solution, will still satisfy the condition of audible
noise removal given by (10). Nevertheless, it is desirable to
estimate the error sensitivity of the ANS with respect to .
For this reason, let’s assume that is an estimate of .
In this case, the normalized error for will be given by

(17)

The normalized error in the approximation of the speech
components will be, for

(18)

where the term
at the denominator of (18) can be considered as

the instantaneous SNR. Let us now examine the asymptotic
behavior of (18). At high SNR’s, i.e., 1,
and since will be significantly smaller than ,
it may be concluded that . This means that at high
SNR’s, errors in will generate insignificant errors in
the approximation of the speech signal. At low SNR’s, i.e.,

1, (18) becomes

(19)

which means that an overestimation of will produce an
underestimation in the speech signal attenuated by ,
although an underestimation of will be amplified by

. Illustration of the speech error for typical
values of the error versus the instantaneous SNR

is shown in Fig. 4. Furthermore, it must be
noted that the speech approximation error cannot be arbitrarily
large due to the factor in (19). If is very large,
then tends to one. Therefore, it may be concluded that
the ANS is very sensitive to underestimation of , which
anyway does not satisfy the target of audible noise removal,
but is less sensitive to overestimation of , since even in

if (I)

if (II)

(14)

if (I)

if (II)

(15)
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Fig. 4. Speech error EX (%) versus the instantaneous SNR
[Yp(k; i)=ab(i)] for typical overestimates of the errorEa. (a) �100.
(b) �1. (c) �0:5.

the worst case, i.e., an arbitrary overestimation of , the
speech signal error will be less than or equal to one.

E. Psychoacoustic Speech Enhancement and
Reconstruction Based on Sparse Speech Data

The previously described parametric speech enhancement
approach has the disadvantage of relying on a good estimate
of the clean speech spectrum, per data window, which is not
easily estimated, especially at low SNR’s. For this reason, it
will be now shown that a relaxation in the requirement of
estimating the complete speech spectrum [i.e., ] can
be introduced, which will only rely on a single value of the

components per CB, referred to, thereafter, as sparse
speech estimation. This approach, which optimizes the clean
speech spectrum estimation within subband regions, has the
advantage that such sparse speech components can be more
easily detected in noisy signals, so that further enhancement
will only rely on these data and not on the exact estimation of
the complete speech spectrum. Furthermore, the enhancement
parameters are only estimated (and updated) per subband
region allowing flexible modification of the noisy signal.

By definition [23], the AMT of the speech signal
within each critical frequency band is constant, i.e.,

(20)

Let us now assume, as is approximately true in most practical
cases, that

1) the noise has zero mean and is uncorrelated with
the speech , so that [25]

(21)

where, is the mean power spectrum of the noise;
2) the power spectrum of the noise remains constant within

the same CB, i.e.,

(22)

Under these assumptions, by substituting (20)–(22) in (14),
and assuming again that the maximum values for and

correspond to the frequencies and , respectively,

we obtain

(I)

(II) (23)

Note, however, that , and are not neces-
sarily the same as those implied in (15). In (23), and

depend only on and (which, in
turn, depend on the frequenciesand ), and on and

, which are independent of frequency within the same CB.
Therefore, it can be shown (see Appendix C) that frequency

will now correspond to the minimum value of for
all : , if , and to
the maximum value of for all :

. Therefore, the number of parameters required for speech
enhancement has been reduced to the minimum and maximum
spectral components and , the AMT
and the broad noise level per CB.

Application of the nonlinear law given by (11) to the noisy
speech spectrum, for this value of [obtained by (16) and
(23) and ] per CB, will give an enhanced speech
spectrum that satisfies (10), i.e., in such a case, the
audible noise spectrum will be for all frequency
components.

Note, however, that the solution given by (16) and (23) is
not unique due to the inequality implied by (16). In fact, if

has such a value that , then will
be also a solution that satisfies (10). However, cannot
be arbitrary large, since the enhanced speech spectrum will be
finally reduced to zero as can be easily observed in (11). Apart
from this, it is desirable to obtain such a solution for , so
that dependence on the clean speech frequency components is
minimized, i.e., only a few speech components are required
for the evaluation of . Two classes of sparse spectral data
were derived in this way: one containing the minima of the
spectrum and the other containing the AMT. Both approaches
require the same number ofa priori known data, i.e., one
spectral value per CB.

1) Audible Noise Suppression Using Spectral Minima:One
way to obtain the required sparse data is to estimate
from the first branch of (23) using the minimum speech power
spectrum component, denoted by , in the specific
CB instead of the partial minimum component (from
those components above the AMT). However, in such a case,
it must be shown that the new parameter is larger than
the corresponding implied by (16) and (23). Therefore,
if is given by

(24)
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then it can be shown (Appendix D) that

(I)

(II) (25)

and, hence, is also a solution that satisfies (10). In such a
way, the amount of the clean speech data required for audible
noise suppression has been reduced to one minimum spectral
component per CB.

2) Audible Noise Suppression Using the AMT Values:The
second way to reduce the speech dataa priori required for the
enhancement is to estimate from the first branch of (23)
using the AMT instead of the partial minimum compo-
nent (from those components above the AMT). In
this case, will be given by

(26)

Using this estimate, it can be shown (see Appendix E) that

(I)

(II) (27)

and, hence, is also a solution that satisfies (10). Further-
more, the number of the clean speech data has been reduced
to one AMT value per CB.

The solutions given by (24) and (26) indicate that enhance-
ment of the noisy speech is possible using one value per
critical band, either the spectral minimum or the AMT of the
clean speech, and the broad noise level. This result is of great
importance, since the problem of speech enhancement has been
now reduced to that of determining only a few components per
data window, i.e., selective minima of the speech signal or its
AMT values. Given that the number of these data is equal to
or less than the number of CB’s, there are, therefore, up
to 22 data values for a 16 kHz sampling rate speech
signal (or 18 for an 8 kHz sampling rate speech signal)
[19, ch. 6].

3) The ANS as a Speech Reconstruction Technique:Apart
from this, and as will be shown in Section V, the proposed
method can theoretically [i.e., when the speech spectrum
minima or the AMT are accurately known, using (24) or
(26)] improve speech intelligibility irrespective of initial SNR,
indicating the correctness of the psychoacoustic model prin-
ciples. Furthermore, the technique can theoretically work for
very low SNR’s, since the preceding theory did not make any
assumptions for the input SNR. In fact, the proposed method
can work even for input SNR , i.e., when the noisy
signal consists only of the noise component given that the
sparse speech parameters are known. As will be shown in
Section V, intelligible speech will be reconstructed from such
a noisy input. This, in turn, suggests a finding of importance,
i.e., that a lowest limit of psychoacoustically valid bit rate
of the speech can be determined, which will be given by a
finite set of frequency speech components, e.g., one per CB,
sufficient for resynthesis of the speech signal. In this context,
it was also found that the sparse data for reconstruction can

be described by 4-bits numbers. In this case, the ANS can
achieve a bit rate of 2750 b/s instead of the 256 000 b/s for a
16 KHz, 16-b resolution speech signal.

III. M ETHODS FOR THEESTIMATION

OF THE SPARSE DATA FOR ANS

A. A Statistical Estimator for the Minimum
Spectral Value per Critical Band

In order to model the minima of the speech spectrum, it is
possible to express them as a function of the mean value of
the speech spectrum per critical band, i.e.,

(28)

where is the mean spectral value in bandand time
window , given by

(29)

In order to use a statistical model for the estimation of
the unknown function , it is desirable to measure the
probability distribution of the minimum spectral component
per CB and that of the mean spectral values per CB. Such
measurements were made during this work using speech
material from the ESPRIT PROJECT 6819 (SAM-A) speech
data base. According to these measurements, the probability
distribution of the minimum spectral component follows a
Rayleigh distribution for most of the CB’s, as shown in
Fig. 5(a). The distribution of the mean spectral value on the
other hand, was found to approach a normal distribution for
all bands, as shown in Fig. 5(b). As can be easily observed
in this plot, the conditional mean spectral value distributions,
given the minimum value, are shifted versions of the mean
spectral value distribution. This suggests that the minimum
component per CB can be modeled as linear combination of
the mean spectral values per CB which, in turn, can be more
easily estimated in noisy conditions.

Following the above statistical measurements, let us now
define the probability density function (pdf) of the minimum
power spectrum component per CB as

(30)

and the probability of the mean spectral value given the
minimum component as

(31)

where and
are the variances of the minimum and the mean

power spectrum for critical band, respectively. Then, in



504 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 5, NO. 6, NOVEMBER 1997

(a)

(b)

Fig. 5. Experimental distributions of speech spectral parameters for a typical
critical band. (a) i) Minimum power spectrum component and ii) correspond-
ing Rayleigh pdf. (b) i) Mean power spectral amplitude and conditionals
(ii)–(iv), given the minimum spectral component.

an MMSE sense, the estimator for the minimum spectral
component will be given by

(32)

By substituting (30) and (31) for and
, respectively, in (32) the following solution

is obtained (see Appendix F):

(33)

In the above expression, there are several terms to be ex-
plained. First, is the function

(34)

where is the error function [27, Eq. 8.250.1].

The terms and are defined as

(35)

A similar result was obtained by Ephraim in an earlier work
[15] in which estimation of the STSA of the speech was
achieved by an MMSE estimator. Although, in that work, the
estimator was obtained by the mean probability of the spectral
component given the noisy observation, it is believed that
similar principles also apply here, so that finally the
term, although here cannot be interpreted as thea priori SNR,
can be estimated using

(36)

where

if
if

and

Since the variance of the mean spectrum is also generally
unknown, this parameter was adaptively estimated during
processing according to the expression

(37)

In practice, it was found that this parameter after a few
windows reached a constant value. Furthermore, the mean
spectral value was obtained after application of the
spectral subtraction method.

B. A Clean Speech AMT Estimator in the Presence of Noise

In this section, it is shown that a satisfactory estimate
of the clean speech AMT can be also obtained from the
noisy data using an iterative procedure at some expense of
computational efficiency. Specifically, this procedure consists
of passing the noisy signal through the nonlinear filter given
by (11) several times. As will be shown, each time the signal
passes through such process, a better approximation of the
noise-free speech can be obtained and, consequently, a more
accurate AMT estimate can be derived. In some respect, this
process of iterative updating of the AMT values resembles a
similar procedure by Lim [4] for updating the noisy speech
AR parameters.

Let us consider the case when the AMT of the clean
speech is known. Then the parameter of the nonlinear
function will be given by of (26). The enhanced speech
power spectrum for 1 will be

(38)

1As will be shown in Section V, the best performance is obtained by this
value of�b(i).
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TABLE I
SIMULATION RESULTS FOR THECLEAN SPEECHAMT ESTIMATOR

Let us now assume that the AMT is not known but
an approximation denoted by is known, which satisfies
the constraint

(39)

where has a small value, i.e., is an overestima-
tion of .

Then, the iteration of the enhancement procedure will
produce the enhanced power spectrum given by

(40)

where is given by

(41)

and the initial conditions are given by
and .

Apparently, since , from (40) it can be easily
shown that

(42)

Furthermore, from (39) it is easy to show that
. Note also that parameter will be decreasing

with the number of iterations, because it is proportional to
the amount of background noise measured during nonspeech
activity intervals. This ensures that the above process will
practically converge to a finite state when reaches zero,
which means that no more suppression is needed. Therefore,
the amount of suppression is larger for small values ofand
smaller for large values of. Since, however, the dynamics of
the iterative process are very complicated due to the nonlinear
suppression law, simulation was performed to validate the
proposed iterative procedure, and results are presented in terms
of the SNR and NMR measures (described in Section V) in
Table I.

To initialize this iterative process, the first approximation of
the AMT of the speech signal can be easily obtained
by the power spectral subtraction technique, which was ex-
perimentally found to satisfy the condition implied by (39),
although it was also found that even the noisy signal can be
used, in which case more iterations must be performed.

Fig. 6. General block diagram for the ANS technique.

IV. I MPLEMENTATION

A. Algorithm Description

The proposed technique was simulated on a general purpose
computer. The speech material was digitized using 16 kHz
sampling rate and 16-b resolution, and was stored into files.
Noise, also stored in files, was added to the speech signal to
produce noisy signals at specific SNR’s. After processing, the
speech material was also stored into files for further evaluation
using objective and subjective measures. The general block
diagram of the proposed ANS method is shown in Fig. 6. The
steps of the algorithm are summarized below.

1) Short-time windows of the noisy speech are transformed
into the frequency domain using the short-time fast
Fourier transform (STFFT), as implied by (2).

2) The power spectrum of the noisy speech is obtained
using (4), and the phase information is extracted.

3) The power spectrum of the noisy speech is processed
using the nonlinear law given by (11) in conjunction
with the previously estimated parameters and
per CB.
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Fig. 7. Parameter extraction block diagram for the ANS technique.

The modulus of the modified power spectrum is transformed
back into the time domain using the short-time inverse fast
Fourier transform (FFT) and the original (noisy signal) phase
information. The enhanced speech is reconstructed using the
overlap-add method.

B. Parameter Estimation

The parameter extraction procedure is shown in Fig. 7.
This diagram describes three different approaches, one for
validation of the technique and two based on the proposed
sparse data estimators.

1) The first approach tested was to use the AMT of the
noise-free signal in conjunction with (26). Although this
method has no meaning in terms of enhancement, it
was used in order to show the validity of the proposed
method. Apart from this, it is worth it to evaluate the
performance of the ANS technique in performing a data
compression task, i.e., when the algorithm is fed with
the noise signal (SNR ) and only parameters
of a speech signal per data window are known. This
method will hereafter be called thedebugmethod and
will be denoted by “ .”

2) The second method tested was based on the statistical
model for the estimation of the minimum spectral com-

ponent in conjunction with (24). This method will be
referred to as theminima method and will be denoted
by “ .”

3) The third method tested was based on the clean speech
AMT estimator in conjunction with (26). This method
will be called the threshold, and will be denoted by
“ .” In utilizing this method, it was found that up
to three iterations were necessary for sufficient noise
suppression. This is also validated by the results in
Table I, where it is shown that after the third iteration
there are only negligible changes in the objective SNR
and NMR measures.

C. The Noise Data

In order to simulate the proposed technique in a real
environment, the type of noise used in the tests should be
of practical importance. For these tests, the noise data were
drawn from the NOISEX-92 CD-ROM’s [28]. From the noise
data in these CD-ROM’s, and for the tests described in the
following sections, the noise denoted as “6-Speech Noise”
was chosen. This noise is stationary and has a mean slope
of 8 dB/octave, while its main energy is concentrated toward
the lower frequencies or, in other words, toward significant
frequencies of the speech signal and is therefore, more immune
to the application of enhancement.
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V. TESTS AND RESULTS

A. ANS Performance Limit Evaluation

The performance limit of the ANS technique was evaluated
by means of objective measures. This evaluation was mainly
performed in order: 1) to show the negligible influence of

, 2) to compare the performance of the technique with the
theoretical STSA limit, and 3) to compare the ANS technique
[(15) and (16)] to the sparse data approach (debug method).
The STSA theoretical limit was obtained by reconstructing
the speech signal using the clean signal spectral amplitude
components combined with the phase of the noisy signal,
and indicates the maximum theoretical SNR improvement
for STSA-based enhancement methods. The ANS limit was
obtained from (11), (15), and (16) by using all the spectral
components of the noisy and noise-free speech. The debug
method was obtained from (11) and (26). Experiments were
performed using approximately 400 s of speech signal from
20 speakers drawn from the ESPRIT PROJECT 6819 (SAM-
A) speech data base. Results are presented in Fig. 8 (for
the SNR and the NMR measures, described in detail in the
next paragraph). As can be observed in this figure, the ANS
technique is less sensitive to the influence of the parameter

, although best results were obtained for for
the ANS limit and for for the debug method. Note
also that, in terms of the SNR, the ANS technique can achieve
an SNR improvement of up to 9.7 dB (for input SNR 5
dB), which is about 2 dB lower than the theoretical STSA
enhancement limit (11.6 dB). In terms of the NMR, the ANS
technique can achieve slightly better performance compared to
the theoretical STSA enhancement limit. This important result,
it is believed, is mainly due to the fact that the target of the
ANS technique is suppression of the audible noise, which can
be more appropriately measured using the NMR than the SNR
criterion. Furthermore, results for the debug method have very
small differences compared to the ANS limit, which shows that
the ANS is less sensitive to the assumptions made by (21) and
(22). Therefore, for the subsequent experiments, the value of
parameter will be equal to one.

B. Objective and Subjective Evaluation

1) Objective Evaluation Tests:Objective evaluation of the
proposed method was performed using the classical SNR
method and the NMR method. The SNR was measured using
[29]:

SNR [dB] (43)

where is the noise-free speech signal, and is the
signal under test, i.e., the noisy or enhanced speech. The NMR
method is an objective method based on subjective quantities,
and indicates the occurrences of audible noise components
(i.e., noise components above the signal’s AMT). This method

(a)

(b)

Fig. 8. Enhancement performance for different values of�b(i), obtained
for the ANS method [enhancement limit by (16), the debug condition (26)],
and the theoretical limit for STSA methods. The noisy signal SNR was�5
dB and the corresponding NMR 16.5 dB. (a) SNR performance. (b) NMR
performance.

was found by researchers to have a high degree of correlation
with subjective tests [30]. For the NMR method, the following
expression was used:

NMR [dB]

(44)

where is the total number of windows, is the number of
CB’s, is the number of frequency components for CB,
and is the power spectrum of the noise at frequency
bin and time window , estimated by the difference between
the noisy and clean signals in the time domain.

Note that (44) is in accordance with the time-domain
segmental SNR [29].

2) Subjective Evaluation Tests:For the subjective evalua-
tion, two tests were performed. The first test, at word level, was
the diagnostic rhyme test (DRT) [31], whereas the second test,
at sentence level, was the semantically unpredictable sentences
(SUS) test [32]. From those, the DRT was performed on Greek
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and English-language speech data, while the SUS test was
performed only on Greek-language speech data. Note that
both the DRT and a restricted form of the SUS test have
been used for the evaluation of many speech enhancement
techniques [10], [13], [25], [26]. A limited two-speaker (one
male and one female) DRT test in English was performed
using six listeners and 96 word-pairs. The speakers were
native English speakers, while all listeners were either native
English speakers or had extensive knowledge of the English
language. This test was mainly performed in order to be able
to compare its results with the corresponding Greek-language
DRT test. For the Greek-language DRT, the word-pair material
was created from two-syllable words drawn out of two Greek
lexicons and by converting all material to phonetic form.
A total of 192 word-pairs (384 words) were finally used.
This material was spoken by four speakers (two male and
two female) having normal Greek accents. A total of 20
subjects participated in the test. For the SUS, test sentences
based on five syntactical structures were created using a
corpus of over 10 million words. Finally, a total of 80
sentences were used for the training and the evaluation session.
All sentences were spoken by four speakers (two male and
two female) and a total of 20 subjects participated in the
test.

C. Results

Typical time-domain plots for the ANS technique are shown
in Fig. 9, which illustrates the significant noise suppression
effect of the method.

Objective results were obtained for the complete test data
base created for the described intelligibility tests and are
presented in Fig. 10. These results are plotted for the Greek-
language speech data DRT (G-DRT), the English-language
speech data DRT (E-DRT), and the SUS test (SUS), for
various initial SNR conditions (i.e., , 5, 0, 5 dB). At
each initial SNR condition, the following processing categories
are included: “ ” for the “debug” approach, “ ” for the
noisy signal, “ ” for the “threshold” approach, and “ ”
for the “minima” approach. From these results, the following
observations can be made.

1) There are no significant differences with respect to the
type of speech material used for the objective tests (i.e.,
DRT or SUS).

2) As expected, the best results were obtained for the debug
condition, indicating also the validity of the proposed
psychoacoustic and sparse data model. This is also
obvious from the SNR dB results.

3) In all cases, improvements were measured by the use
of the two types of sparse-data estimators, with the
threshold approach having a small advantage over the
minima approach for most conditions, and particularly
for the NMR tests.

4) For most cases, the proposed estimation methods
achieved results close to the debug “” method, with
typical SNR improvement of 10 dB and typical NMR
improvement of 20 dB.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9. Time domain plots for a typical sentence. (a) Noisy speech (SNR
= 0 dB). (b) Noise-free speech. (c) ANS limit (16). (d) ANS by “debug”
parameters. (e) ANS by “minima” parameters. (f) ANS by “threshold”
parameters.
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Fig. 10. Objective ANS method performance for the English language speech data DRT (E-DRT), the Greek language speech data DRT (G-DRT), and the
SUS test. Initial SNR condition is also indicated for each curve. The horizontal axis denotes the processing category, where “N” stands for the noisy signal,
“D” for the “debug” method, “T” for the “threshold” approach, and “M” for the “minima” approach (see text). (a) SNR performance. (b) NMR performance.

Fig. 11. Intelligibility scores for the English language speech data DRT (E-DRT), the Greek language speech data DRT (G-DRT), and the SUS test.
Initial SNR condition is also indicated for each curve. The horizontal axis denotes the processing category, where “N ” stands for the noisy signal,
and “O” for the noise-free signal.

These objective improvements were also confirmed to a
large extent by the subjective tests, as is shown by the results of
Fig. 11 and Table II, where the standard error (SE) among the
individual listeners scores is also included. For all the above
results, an additional category is also included, that of the

noise-free speech signal, denoted by “.” From these results,
the following observations can be made.

1) The debug method, for initial SNR dB, achieved
scores of 72.22% (for E-DRT), 85% (for G-DRT), and
73.36% (for SUS), indicating again the validity of the
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TABLE II
INTELLIGIBILITY SCORES AND LISTENER STANDARD ERROR (SE) FOR THE ENGLISH LANGUAGE SPEECH DATA DRT (E-DRT), THE GREEK LANGUAGE

SPEECH DATA DRT (G-DRT), AND THE GREEK LANGUAGE SPEECH DATA SUS TEST PERINITIAL SNR VALUE AND PROCESSINGCATEGORY

proposed ANS model and also that the method can
also be used for speech reconstruction (e.g., for data
compression applications), using noise excitation and
the proposed nonlinear enhancement filter fed by sparse
data parameters derived from noise-free speech. This
result indicates that the intelligible, psychoacoustically
significant bit rate of speech can be very low, but it
is also believed that the above scores can be further
improved by the use of additional voicing (pitch) infor-
mation and by minimization of the spectral difference
between reconstructed and source speech, adjusting the
parameter per data window and critical band.

2) The debug method achieved also intelligibility improve-
ment for all other SNR conditions, although these im-
provements were smaller for the better initial SNR’s.
Specifically, at SNR dB, the debug method
improvements were 22% (for G-DRT), 38.89% (for E-
DRT), and 34.46% (for SUS). The smaller improvements
at SNR 0 and 5 dB were somewhat expected, given
the satisfactory initial (noisy speech) intelligibility.

3) The proposed estimators achieved intelligibility im-
provements for most conditions and tests. These
improvements were larger for lower initial SNR’s
(mainly for the previously explained reasons), and
were lower than those achieved by the debug method,
indicating that there is further scope for improving
the parameter estimation process of the ANS method.
Specifically, at SNR dB, the DRT intelligibility
improvement was better for the minima method with
33.34% (for E-DRT) and 20.83% (for G-DRT), the
threshold method achieved improvements of 13.75%

(for G-DRT) and 27.78% (for E-DRT). At this condition,
the SUS test was less successful, with a small
4.72% improvement for the threshold method and an
intelligibility degradation for the minima method. At
higher SNR’s, some intelligibility improvements were
also measured, except for the case of SNR5 dB,
where intelligibility degradation was measured for G-
DRT. Nevertheless, it is believed that these results
have smaller significance due to the already fair signal
presentation combined with the possibility of statistical
errors, due to the relatively small scale of the tests.

VI. CONCLUSIONS

A novel speech enhancement technique was developed,
analyzed, and tested. The technique relies on the definition of
the psychoacoustic quantity of audible noise, derived from the
signal’s STSA. This quantity describes the amount of noise
perceived as degradation by the auditory mechanism (inner
ear) and it is shown that its suppression can lead to objectively
and subjectively enhanced speech.

The main advantages of the proposed approach over previ-
ously developed enhancement methods, are derived from the
selective and limited number of spectral regions specified for
processing. At one hand, this minimizes the processing arti-
facts and at the other hand, as was shown, this approach leads
to reduced requirements for thea priori known or estimated
clean speech data. The required audible noise suppression was
achieved by the introduction of a flexible frequency-domain
nonlinear filter, whose time-varying parameters were derived
from such sparse data estimates. These estimates were shown
to be as many as the number of CB’s (per data window), and
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were found to be either the spectral minima, or alternatively,
the masking threshold value. For each approach, a suitable
estimation procedure was also derived, allowing parameter
extraction from noisy data.

The most significant result that has emerged from the above
analytic and experimental procedure is that only a limited and
small number of psychoacoustically derived spectral data (per
data window) is required to reconstruct intelligible speech,
irrespective of the initial SNR condition. It is then up to
the development of suitable estimators that can extract these
sparse-data from the noisy signal. A secondary finding of
this work was the definition of the lower, psychoacoustically
derived intelligible speech reconstruction bit rate, which can be
achieved when the ANS technique is driven by noise excitation
and clean-speech sparse data.

The objective and subjective tests described support the
above statements. Specifically, a general agreement was found
between objective and subjective tests, and in all cases sig-
nificant improvements were achieved by the ANS technique,
given correct sparse data (debug method). These were larger
for low initial SNR’s (e.g., 5 dB), where intelligibility
improvements approaching 40% were measured, although
these were smaller for better initial SNR conditions. Smaller
but significant improvements were also measured when the
noisy speech signal alone was used for the extraction of the
enhancement parameters, with intelligibility improvement of
up to 33% for the DRT and initial SNR 5 dB.

In terms of computational complexity, the ANS technique
requires calculation of two FFT’s, estimation of the AMT (or
alternatively, estimation of the spectral minimum per CB), and
some simple arithmetic operations. This computational load
was found to be approximately 1.5 times the real duration
of the speech data when implemented on a PC-486 type
computer. Therefore, implementation of the ANS method may
be possible in real-time on a general purpose DSP board.

Nevertheless, the significantly lower performance of the
ANS method for estimated parameters (compared to the debug
condition) indicates that there is further scope for development
in the parameter estimation procedure. Furthermore, it is
believed that the ANS technique would be improved if a
suitable model existed for estimation of the clean signal’s
masking threshold from the noisy properties and the noisy
speech signal, given that the current technique relies on a
rather heuristic AMT estimator. Furthermore, the speech re-
construction technique that has emerged from the ANS method
can be further improved by further investigations into the
form of nonlinear filter and also in the excitation input signal
properties. Finally, another possible area of improvement
would be for applications when the statistics of the speech
(i.e., after analysis of the speaker’s data) and/or the noise are
known in advance and used for optimal adjustment of the
ANS estimators.

APPENDIX A

The algorithm for the estimation of the AMT is briefly
described here, although a more detailed description can be

found in [23]. First, the total power of the spectrum of the
signal per CB is found as follows:

(A.1)

where, and are the lower and upper limits of CB,
is the total number of CB’s, and is the power

spectrum of the speech signal. The total power spectrum per
CB is then convolved with the basilar membrane spreading
function Sp , which provides information on masking of
signals by signals in the bark domain, as follows:

Sp

(A.2)

The noiselike or tonelike nature of the signal is determined
by the statistical characteristics of the power spectrum and is
mathematically given by the spectral flatness measure (SFM):

SFM SFM SFM (A.3)

where and are the respective geometric and arith-
metic means of the signal’s power spectrum. From this mea-
sure, the tonality of the signal is found using

ton
SFM
SFM

(A.4)

where SFM is defined as the SFM value of a sine
wave. Therefore, ton for SFM SFM (sine wave
input), whereas ton for SFM (white noise input).

An offset is then estimated by which the threshold has to
be reduced in order to take into account the signal tonality

ton

(A.5)

The auditory masking threshold can now be calculated using

(A.6)

Finally, normalization and comparison to the absolute auditory
threshold is performed.

APPENDIX B

Consider minimization of the MSE of the audible noise
spectrum over some constant parameter , i.e.,

(B.1)

where, it is assumed that the enhanced speech power spectrum
depends on and . From (B.1), it follows
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that the MMSE solution is given by

(B.2)

By substituting for , where
is equal to either [Branch I of (9)] or

[Branch II of (9)], (B.2) becomes

or

(B.3)

Given that in general cannot be zero, one
solution will require that

for

or

for (B.4)

where is an arbitrary spectral region.
Consequently, (B.4) is also an MMSE solution for the

audible noise removal problem.

APPENDIX C

Branch (I) of (23) can be also written as

(C.1)

from where it is clear that if , then
, so that is inversely proportional to and,

hence, the maximum corresponds to the minimum
for those speech components above the AMT. If,

however, , then is not necessarily the
minimum spectral component in CB.

From Branch (II) of (23) it is clear that is propor-
tional to , and, therefore, corresponds to
the maximum spectral component in CBfor those compo-
nents below the AMT.

APPENDIX D

It will be shown that given by (24) is greater than or
equal to and given by (23).

At first, it is easy to notice that since Branch (I) of (23) takes
its maximum value by the minimum , for those values
of above the AMT , as was shown in Appendix
C, it takes a larger value by the minimum for
all components within the CB, irrespective of whether these

components fall above or below the AMT . Therefore,
provided that

(D.1)

and also that , then

(D.2)

i.e., Branch (I) of (25) is satisfied. Assume now that there exist
frequency components within CB below the AMT

, i.e.,

(D.3)

so that Branch (II) of (23) has to be taken into account.
Consider now the expression , which by using
(D.3) can be also written as

(D.4)

From (D.1) it is clear that and conse-
quently (as shown in Appendix C) .
Therefore, the second branch of (25) is satisfied.

APPENDIX E

It will be shown that given by (26) satisfies the
conditions implied by (27). At first, it is easy to notice that
since Branch (I) of (23) is satisfied by the minimum ,
for those values of above the AMT , it is also
satisfied by the AMT , so that Branch (I) of (27) is
satisfied.

Consider now that there are frequency components below
the AMT so that (D.3) is valid. The quantity ,
which can be written as
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(E.1)

Since, however, , it is concluded that
and, therefore, the second branch

of (27) is satisfied.

APPENDIX F

By substituting (30) and (31) into (32) and using [27, Eq.
3.462.1], we obtain

(F.1)

where are parabolic cylinder functions [27, Eq. 9.240],
and, is given by

(F.2)

By using [27, Eqs. 9.247.1, 9.254.1, and 9.254.2], (F.1) can
be written as

(F.3)

where .
Then, by using (34) and (35), (F.3) can be written as

(F.4)
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