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Speech Enhancement Based
on Audible Noise Suppression

Dionysis E. Tsoukalas, John N. Mourjopouldgember, IEEE.and George Kokkinakissenior Member, IEEE

Abstract—A novel speech enhancement technique is presentedfrom a perceptual point of view. Given that the human auditory
based on the _definition of the psychoacoustically derived _quanti?y system performs some form of frequency signal analysis and
of audible noise spectrum and its subsequent suppression Using e consiryction under adverse listening conditions, it is also
optimal nonlinear filtering of the short-time spectral amplitude . '
(STSA) envelope. The filter operates with sparse spectral es-PPropriate that enhancement methods are modeled on such
timates obtained from the STSA, and, when these parameters procedures. However, hearing models have not been fully
are accurately known, significant intelligibility gains, up to 40%, exploited by existing enhancement methods apart from [18],
result in the processed speech signal. These parameters canypere |ateral inhibition principles are employed.
be also estimated from noisy data, resulting into smaller but .
significant intelligibility gains. Here, an enhancement scheme is presented based on the

utilization of a well-known auditory mechanism, noise mask-

ing. In addition, estimation procedures are introduced that can
optimally or conditionally modify psychoacoustically derived

HE PROBLEM of enhancing speech degraded by noisariants of the STSA function. As it is well known from

remains largely open, even though many significant tecpsychoacoustics [19], speech and other signals can mask noise
niques have been introduced over the past decades. Tdusnponents coexisting with them (in an additive STSA sense).
problem is more severe when no additional information dn this sense, the noise degradation perceived by the listener
the nature of noise degradation is available (in the form @fill vary in time according to the time-varying properties
an independent measurement, for example), in which casfespeech STSA, and it is this audible noise component of
the enhancement technique must utilize only the speciflie degradation that must be removed by the enhancement
properties of the speech and noise signals. scheme. Therefore, the enhancement approach adopted here

Existing enhancement methods can be broadly grouped iigobased on the definition of an audible noise component of
those aiming at improving speech degraded at low signal-te STSA [20], [21], which is extended and used for the
noise ratios (SNR’s), mainly in order to facilitate commuderivation of an optimal modifier that achieves audible noise
nication and intelligibility (either by human or by machinesuppression. Furthermore, this modification selectively affects
recognizers), and those aiming at improving speech degraded perceptually significant spectral values, and is therefore
at relatively high SNR’s mainly in order to enhance its qualityhore robust than methods that affect the complete STSA and
and presentation. less prone to introduction of unwanted distortions.

In terms of the methodology adopted by these existing meth-Based on the above model, it is shown that optimal psy-
ods, it is evident that although many, usually older approachgisoacoustic modification can be achieved when only sparse
were based on specific properties of the speech signal itsgléan signal components (i.e., one spectral value per critical
e.g., on speech periodicity [1]-{3], on a model of speech or thgnd) are known or have been estimated. Furthermore, it was
production mechanism, etc. [4]-[9], most recent methods &etind that the necessary clean speech data for enhancement
based on the manipulation of the short-time spectral amplitugee as many as the number of critical bands (CB’s) per data
(STSA) of the degraded signal. Such manipulation schemgmkdow. Apart from this, the only information about the noise
are based on the assumption that speech and additive neéfuired by the technique is restricted to a broad estimate of
degradation are uncorrelated and that it is possible to deriyg noise level per CB.
an optimal statistical operator based either on signal spectralrhe performance of the proposed technique was evaluated
variance (e.g., using various spectral subtraction schemgsng objective measures such as the SNR and the noise-to-
[10]-[14]), or on minimum mean square error (MMSE), e.gmask ratio (NMR). Furthermore, the technique was assessed
using various forms of Wiener filtering [15]—{17]. All thesepy the diagnostic rhyme test (DRT) and the semantically
methods are efficiently implemented on the STSA, and it ifhpredictable sentences (SUS) test. From these tests, it was
also significant that STSA is a relevant signal representati@dund that, at very low SNR’s«5 dB), significant improve-
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gives an indication of the lower bit rate limits for perceptually 120
significant speech coding.

In terms of speech enhancement now, and assuming that g 100
no additional information on the clean signal is known, the E 80
proposed technique relies on accurate estimates of these sparse §
data (which are either the spectral minimum or the masking :,l’ 60
threshold per CB) from the noisy signal. Although this is a §
difficult task, two estimation methods are proposed here, the 2 40 Noisy Clean AMT (clean) -
first one based on the statistical distribution of the spectral 20 1 , ‘

minima per CB and the second one based on an iterative

preprocessing enhancement procedure in conjunction with a

rough estimate of the masking threshold. These estimation Frequency (Hz)

methods were also evaluated in terms of subjective tests aifd 1. Power spectra of a short-time speech frame for the noisy, clean

for several initial SNR conditions, and it was found that ifPeech and its AMT.

most cases improvements could be achieved of which the most

significant were for low initial SNR conditions. The corresponding power spectra are giverthgk, <) and

This paper is organized as follows. Section Il gives thg’p(/g, i), respectively, i.e.,

basic definitions of the proposed psychoacoustic model for

speech enhancement as well as the STSA modification scheme. ~ Yp(k: 1) =[Yu(k, i)I>,  0<k<K -1 (4)

Section Il provides methods for practical estimation of the Xp(ky 4) =| X (k, )% 0<k<K-1. (5)

sparse speech data used by the proposed audible noise sup- . . o

pression (ANS) technique. Section IV gives technical detaif§1® Pasic principle of the psychoacoustic signal enhancement

of the processing scheme and describes the implementafigfi?niaue is the suppression of spectral components contribut-

and testing of the ANS technique. Section V describes tHi © audible noise. These components can be obtained from

objective and subjective tests employed for the evaluation 3 €Stimate of the auditory masking threshold (AMT), denoted

the technique and presents the results. Finally, conclusions &¢ (: ), of the clean signal. The method for the estimation

drawn and further work is proposed in Section VI. of the AMT is described in Appendix A. As is known [23],
the AMT determines the spectral amplitude threshold below

Il. PSYCHOACOUSTICMODEL FOR SPEECH ENHANCEMENT which all frequency components are masked in the presence

of the masker signal. Consequently, noisy spectral components

A. Definitions of the Perceptually Significant Spectra below this threshold will be inaudible due to the effect of the

) speech signal.
The analysis that follows assumes that the speech and NoiSgynical speech power spectra along with the AMT are

signals are discrete-time and finite in duration. In the case fo\wn in Fig. 1. In mathematical terms, the audible spectral
additive noise, the noisy speech signal consists of the Sumc%fmponents can be expressed usingitiae { } operator, i.e.,
the original (clean) speech signal and the noise component, ilﬁ/!taking the maximum between the power spectrum of the
y(n) = z(n) + d(n), 0<n<N-1 (1) speech and the corresponding AMT per frequency component.
This function is defined as the audible spectrum of the speech
wherez(n) is the noise-free speech signal, andy) is the  and, in fact, it can be shown that reconstruction of the signal
noise component. using this function can result in a perceptual equivalent to
Equation (1) has an equivalent representation in the figre original signal, as is also well established in broadband
quency domain. Since, in most practical situations, shoHydio coding applications [24]. Now, let us define the audible
time spectra will be required, the Fourier transforms of t"@bectrum of the noisy speech and the audible spectrum of the

windowed noisy and clean speech given By(k, i) and clean speech ad,(k, i) andA,(k, i), respectively, using the
X (k, 1), respectively, must be calculated, i.e., expressions

0 1000 2000 3000 4000

K-1
Yok, i) = > yn+offywmI, 0<k<K-1 Ay(k, i) = max {Y,(k, i), T'(k, 1)}
=0 Yk, d), i Yk, @) > T(k, 4)
(2) Tk, d), i Yp(k, 6) <T(k, 4),
L= . O<Sk<K-1 6)
Xolk i) = 3 alntofumif’,  0<k<K-1 Ag(k, 1) = max {X,(k, §), T(k, i)}
n=0
3) _ [ Xk ), i Xp(k, d) 2 Tk, §)
, , T(k, i), it Xp(k, i) < T(k, i),
where I} = ¢=3(27kn/K) ay(k) is @ window function [22], 0<k<K—1. 7)

K is the length of the Fourier transformis the time-domain
window index, and, offis an offset, assuming that the speectiherefore, the audible spectrum of the additive noise, that is,
signal is transformed using overlapping time windows. the spectral components that are perceived as noise, denoted
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140 B. Psychoacoustic Criteria for Noise Removal
180 r ' Examination of (9) results in the following observations:
%, ﬁg ' l 1) Branch (I) may be positive, negative or zero, depending
E 100 NV ‘\)\ I ’m on the relatiye values of},(_l?,i) anpr(k,i)_. _
S g0 | \M{W : 2) Branch (Il) is e_llways pg_smve or zero as _|nd|cated by
& 8o (V 'W MWH ( the corresponding conditions. Clearly in this case, there
g 70 © W. M is audible noise that must be removed.
s 60 3) Branch (lll) is always negative or zero and, conse-

50 + T Audible Noise Pure differen quently, in this case there is not audible noise and no

40 — : ‘ ‘ modification is required.

0 1000 2000 3000 4000 4) Branch (IV) is zero by definition.
Frequency (Hz) As is also clear from (9), the audible noise spectrum depends

Fig. 2. Power spectra of a short-time speech frame for the audible no@B three functions, the noisy speech power spectriy(#, ),

and the pure difference between noisy and clean spectra. Note that resultiyg clean speech power spectr'_ggf})(]f7 i), and the AMT

negative amplitude noise components are not shown, and that the audi : . . .

noise was shifted for clarity 20 dB upwards. T‘Fk, i) of the clean speech. _Smce pnly thg noisy speech is
usually available for processing, this function alone has to

. _ be modified for speech enhancement. Therefore, the principle
as Aq(k, ), can be expressed by the difference between the he proposed ANS technique is to make the audible noise

audible spectra of the noisy and the clean speech. In fact, fictrum Ag(k, i) less than or equal to zero by proper
main differences between the audible spectrum of noise apdgification of the noisy speech power spectriiy(k, ©).

the pure difference between noisy and clean spectra, are #thsequently, if the noisy speech power spectigyti:, ) is
reduction in the dynamic range and the order of the estimatggiaply modified in order to derive the enhanced speech power

noise spectral components. This, in turn, leads to significafiectrum, denoted by, (k, i), then the modified audible
processing advantages, since modification of the noisy speggfise spectrum, denoted bi,(k, i) must satisfy
spectrum to suppress the audible noise will introduce less

distortion in the speech signal, since only selective frequency Ag(k, i) <0,  0<k<K-1. (10)

components will _be modified. Ideallly, g?ven a good.estir.’naljgS described in Appendix B, the equality above can be di-
Of_ the audible noise sp(_actrum,_ mod|f|_cat|on of th_e noisy _S'gnﬁelctly obtained from the MMSE estimator, i.e., by considering
ywll only a_tffect the audible noise regions and WI|| not d'Stoaninimization of fld(k, i) over a specific frequency band.
in an audible manner the underlying speech signal. Therefogeyhermore, the inequality introduced in (10) was primarily
the audible spectrum of the noise is defined as considered in order to give a further degree of freedom in the
noise removal process. According to this, a negative value of
Ag(k, ) = Ay(k, i) — Ay(k, i), 0<k<K-—1. (8) the fld(k, i) component will mean that: i) either the spee_ch
spectrumX,,(k, i) was underestimated [Branch | of (9)], in
which case a suboptimal solution may be obtained, or ii)
A typical illustration of the audible noise spectrum and ththe speech spectrum was correctly estimated below the AMT
pure difference between noisy and clean spectrum is sho®itk, i) as indicated by the conditions in Branch Il of (9) and,
in Fig. 2, for the short-time spectra of Fig. 1. As can blence, by definition is not audible. Note that Branches llI
easily observed in this figure the “pure difference” noise &nd IV of (9) will not be affected by the introduction of the
an overestimation of the audible noise since componentsﬁ)‘)(k, ) spectrum. From the above, only case i) may affect
the “pure difference” noise appear in spectral areas in whitlhe accuracy of the proposed algorithm although, as will be
there is not audible noise. shown from the results in Section V, this effect is rather small.
A more analytic expression for the audible noise can now Efficient spectral modification of the noisy speech power
be found by substituting (6) and (7) fet, (k, i) and A, (k, ¢), spectrum can be achieved by several methods, as has been
respectively, in (8). Then the audible noise can be expressttwn in the literature (e.g., [10], [16], [25]). Note, however,
as shown in (9) [21], at the bottom of the page, which is that for the class of techniques using linear noise suppression,
four-branched function depending on the relative levels of titlee gain applied to each spectral component is a function
power spectra of noisy and clean speech and the correspondihdhe level of a measurement of the noisy speech and/or
AMT of the clean signal. the background noise. Such gain curves, for example, the

Y, (k, i) — X,(k, 4), I Y,(k, §) > T(k, §) and X, (k, §) > T(k, §) ()
Yok =Tk, B, i Yok ) > Tk, §) and X, (k. é) < T(k, ) (1)
Ak, ) =0 P iy Xk, 0), if Yk, §) < T(k, i) and X, (k, i) > Tk, i) ()’ CSESK=1 O
0, if Yy(k, 1) <T(k, i) and X, (k, i) < T(k, i) (IV)
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As can be observed from (11), the enhanced power spectrum
is controlled by the two parametes$k, i) andv(k, ¢) which
are assumed to be both positive. Parameték, i) is a
threshold below which all frequency components are highly
suppressed. Paramet€l, i) controls the rate of suppression.
This rate, however, depends on the rakip(k, i)/a(k, i),
i.e., if this ratio is larger than one, then the larger the
v(k, i), the smaller the suppression becomes, while if it
is smaller than one, the larger thgk, ¢) the larger the
suppression becomes. Typical gain curves obtained by (11) are
shown in Fig. 3(b) as a function of the instantaneous SNR.
These gain curves imply, in contrast to the gain curves of
Fig. 3(a), that suppression remains almost constant for the
low-level instantaneous SNR values. This fact may be of
significance, since intelligibility degradation [10], [26] after
processing is mainly due to exaggerated suppression of low-
level speech components, as is the case with the spectral
subtraction and the Wiener filter techniques. Note, also, that
the ratio ;"% (k, §)/[a*® (K, i) + Yy * D (k, )] in (11)
is always below or equal to one, assuming batk, ) and
v(k, i) are positive.

Gain (dB)

Gain (dB)

20 15 -10 -5 0 5 10 15 20
Instantaneous SNR (dB)

(b) C. Parameter Estimation for Psychoacoustic Modification

Flg 3. Gain versus the instantaneous SNR for STSA enhancement methodqt |S now necessary to |ntroduce expreSS|onS for Opt|mum
for (a) the i) power spectral subtraction and ii) the Wiener filter method e . -
and (b) for ANS (11). v (k, i) = 1, a(k, i) = D,. i) v(k, i) = 0.5, modification of the noisy speech spectrum by adjusting the
a(k, i) = 10Dyp. i) v(k, i) = 1, a(k, i) = 10Dp. V) v(k, i) = 2, parametersa(k, i) and v(k, i) according to the constraints
ZE’; Z% f11000135bv,) lxr]:é;e)pz, L t‘;]g‘fb;)ck;rggr?g ﬁgi-s‘ef') v(k. 1) =1, gpecified by the psychoacoustic model. By combining (9)

T v i ' and (10), substitutingX,,(k, 4) for Y,(k, i), and taking into

) ) _ _ account that only Branch (1) and (ll) of (9) must be modified,

power spectral subtraction gain and the Wiener filter gajpe optain the set of equations shown in (12), at the bottom
[16] are shown in Fig. 3(a) as a function of the instantaneoyghe page, where, as was mentioned, Branches (llf) and (IV)
SNR. Given that such gain curves imply constraints in th& (g) are not involved in the enhancement process, since they
modification of the noisy speech spectral components, MQjg ot contribute to audible noise components. By substituting
flexible suppression functions will be required for audlbl?ll) for Xp(k §) into (12), we obtain (13), shown at the
noise spectrum suppression. Therefore, in our case, a P§gtom of the page, where, hereafter, the common condition
metric nonlinear function was used, which allows greatql;(k i) > T(k, i) in Branches (1) and (1) of (12) will be

flexibility in gain control. This function is given by
R Yl/(k,i) .
Xp(kv i) = ; L Uf’ (Lk) )
av® D (k1) + Y, (K, 4)

Yp(k, 4)

omitted for simplicity.
By solving (13), and since(k, ) is positive, the following

(11) solutions are obtained as shown in (14), shown at the bottom

of the next page. Note, however, that it is not desirable to

where a(k, ¢) and v(k, i) are the time-frequency varyingestimate the parametes$k, i) andv(k, ¢) for every spectral

parameters.

component:, because in this way the estimation will be very

X, (k X,(k, 4) <0, if Yy(k,4) > T(k dX,(k, i) > T(k, i) (I
b )= Xy ) S0, 0,0 2 T ) and (6 D2 T D0
X, (k, i) = T(k, i) <0, if Yk, i) > T(k, i) and X, (k, 7) < T(k, i) (I)
v(k,?) :
e vk, i) Xl ) SO, I Xk ) 2 Tk, ) ()
@Ok, 8 + Y, (R, 3) O<k<K-1  (13)

)
D (k, §) + Yy %D (k, 4)

Y})(kv [’) - T(kv [’) <0,

it X,(k, i) < T(k, i) (ll)
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sensitive to specific spectral values. Apart from this, the CBte the performance of the ANS technique. An underestimate
are sufficient for the definition of the perceptually significantf this parameter may result in insufficient audible noise
frequency regions. For these reasons, it is desirable to ussugpression, although an overestimate, even when it leads to a
fixed value ofa(k, ¢) and v(k, ¢) over a specific frequency suboptimal solution, will still satisfy the condition of audible
range. Therefore, the above process will be applied tonaise removal given by (10). Nevertheless, it is desirable to
specific bandwidth of the signal with upper and lower linkigs  estimate the error sensitivity of the ANS with respect;3¢:).
andky,, which correspond to the lower and upper limits of CB-or this reason, let's assume tlig{:) is an estimate ofi;(¢).

b. In this frequency band, the parametef%, i) andv(k, i) In this case, the normalized error fe(i) will be given by

will be constant and denoted by (¢) and v,(3). Let also ap() — ay(3)

() take an arbitrary positive value within this band. Clearly, Eo=—"—77—".
specific frequencies;: ky < k; < ki, within this band may _ _ a (1) o
correspond to maximum values for bati(%, i) anda(k, ) The normalized error in the approximation of the speech
in (14). If k; is such a frequency that produces a maximum #Pmponents will be, fow, (i) = 1

17)

Branch (1) of (14) and:r produces a maximum for Branch (11), b (k, i) — X (k, §) _E
then these maximum values, denotediagi) andayy, (i) will Ex =0~ P = B (18)
be given in (15), shown at the bottom of the page. Obviously, Xp(k, ©) 14+ M -E,
the single valuey,(z) within CB & will be given by as(2)
where the termY,(k, ¢)/ay(i) = X,(k, 0)/[Yp(k, 1) —
ay (i) = max {ary (1), arrs(4)} Xp(k, i)] at the denominator of (18) can be considered as
_ { arp(é), if ary(i) > ams (i) (16) the instantaneous SNR. Let us now examine the asymptotic
e (9), i an (i) < amp(d)’ behavior of (18). At high SNR's, i.eY,(k, i)/ay(i) > 1,

. . . . nd since, will be significantly smaller thai’,(k, ¢)/a; (%),
This expression describes the optimum psychoacousiic . ;
. - : . It may be concluded thaE'y — 0. This means that at high
solution that satisfies (10) and relies purely on time-varyi ) . N o .
. : NR’s, errors ina,(i) will generate insignificant errors in

model parameters. According to this, enhancement of tfje S . .
atye approximation of the speech signal. At low SNR’s, i.e.,

noisy signal is performed by applying (11) to noisy sign (k. i)/ay(i) < 1, (18) becomes

power spectrum using the value af(i) given by (16) in

conjunction with (15) and an arbitrary positive value fg(:). o -FE. _E as() (19)
XTACE, T T a0
D. Parameter Error Analysis and Sensitivity which means that an overestimation«f() will produce an

The effect of parameter,(4) is only critical to the enhance- underestimation in the speech signal attenuated, by /a, (i),
ment procedure in an MMSE sense but not in a psychoacoustithough an underestimation ef, (i) will be amplified by
sense, since audible noise suppression can be performedaidf)/as(¢). lllustration of the speech errak’x for typical
any positive value of, (i), and, in an MMSE sense, its valuevalues of the errork, versus the instantaneous SNR
can be obtained by minimization of the spectral differendg,(k, ¢)/a;(i) is shown in Fig. 4. Furthermore, it must be
between the clean and the noisy speech spectral componeméed that the speech approximation error cannot be arbitrarily
Such a spectral distance, however, will highly depend on thage due to théz, /(1 - E,) factor in (19). IfE, is very large,
clean speech spectral components that will be later shownthben Ex tends to one. Therefore, it may be concluded that
be undesirable. Therefore, hereafter, the parametgiwill the ANS is very sensitive to underestimationag{s), which
be considered to be constant through the entire enhancenmantway does not satisfy the target of audible noise removal,
procedure. The effect of parametey(i), however, is crucial but is less sensitive to overestimation @f(¢), since even in

vk,
arlk, §) > Y, (k, ){?’((’Z LL)) - 1} MY X, (k. §) > T(k, §) ()
Yp(k vi) et , 0<k<K-1 (14)
ane(k, §) = Y, (k, )[zf(k:i) - 1} . if X,(k, §) < T(k, ) ()
1/ (2
aty (i) =Y, (ky, ) {% - 1} / (), it X, (k, §) > T(k, i) ()
;(k ’ ) Lo (i) ki < k< kpy (15)
atrs (i) = Yy (krr, 1) { zf(ki 2. 1} L i Xk, i) < T(k, §) (Il



502

S
5
|
i o
[%]
Q
&
5]

-40 -30 -20 10 0 10 20 30 40

Instantaneous SNR
Fig. 4. Speech error Ex (%) versus the instantaneous

[Yp(k, i)/ap(i)] for typical overestimates of the erroE,. (a) —100.
(b) —1. (c) —0.5.

the worst case, i.e., an arbitrary overestimatiomgfi), the
speech signal error will be less than or equal to one.

E. Psychoacoustic Speech Enhancement and
Reconstruction Based on Sparse Speech Data
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we obtain

} 1/ve (i)

ary (4) = [Dp + Xp(kr, 9)] {%

Xp(kr, 6) = T(i) (1)
N [ Dy + Xk, )
arry (1) = [Dpp + Xp(kir, 2] [bTT !
Xp(kn, i) <Ty(z) ().

}1/1’5(1‘)

(23)

Note, however, that(¢), amr,(¢), andk, ki are not neces-

snrsarily the same as those implied in (15). In (28),(¢) and

ar(t) depend only onX,(kr, ) and X, (kr, ) (which, in

turn, depend on the frequencigsand k1), and onT; (i) and

Dy, which are independent of frequency within the same CB.
Therefore, it can be shown (see Appendix C) that frequency
Er will now correspond to the minimum value &f,(k, ¢) for

all Xp(k, ©): Xp(k,9) > Tp(4), if 0 < 1(4) < 1, andkyr to

the maximum value ofX,(k, ¢) for all X,(k, ¢): X,(k, 7)) <
T,(i). Therefore, the number of parameters required for speech
enhancement has been reduced to the minimum and maximum

The previously described parametric speech enhancemeént

approach has the disadvantage of relying on a good esti
of the clean speech spectrum, per data window, which is no
easily estimated, especially at low SNR’s. For this reason, it
will be now shown that a relaxation in the requirement

estimating the complete speech spectrum [i%,(%, )] can

be introduced, which will only rely on a single value of th
X, (k, i) components per CB, referred to, thereafter, as spa
speech estimation. This approach, which optimizes the cl
speech spectrum estimation within subband regions, has th
advantage that such sparse speech components can be mor:
easily detected in noisy signals, so that further enhancem%h
will only rely on these data and not on the exact estimation g
the complete speech spectrum. Furthermore, the enhance
parameters;(¢) are only estimated (and updated) per subbaripd

region allowing flexible modification of the noisy signal.

By definition [23], the AMT T'(k, <) of the speech signal

within each critical frequency band is constant, i.e.,

T(k, i) = Tp(3), ki <k < kpg. (20)

e

e

Spectral componentX,,(kr, 4) and X, (km, ¢), the AMT T3 (%)

maite

aqd the broad noise levép,, per CB.
Application of the nonlinear law given by (11) to the noisy
peech spectrum, for this value @f(¢) [obtained by (16) and

0?23) andu, (i) < 1] per CB, will give an enhanced speech

spectrumX, (k) that satisfies (10), i.e., in such a case, the
raSL(JadibIe noise spectrumy(k, ) will be < 0 for all frequency
%omponents.

r|\Iote, however, that the solution given by (16) and (23) is
no? unique due to the inequality implied by (16). In fact, if
QS has such a value that;(i) > a;(¢), then g (¢) will
£ also a solution that satisfies (10). Howewgj(i) cannot
e arbitrary large, since the enhanced speech spectrum will be

aa ly reduced to zero as can be easily observed in (11). Apart

rom this, it is desirable to obtain such a solution f(:), so

that dependence on the clean speech frequency components is
minimized, i.e., only a few speech components are required
for the evaluation ofy, (7). Two classes of sparse spectral data
were derived in this way: one containing the minima of the
spectrum and the other containing the AMT. Both approaches

Let us now assume, as is approximately true in most practiégfuire the same number af priori known data, i.e., one

cases, that
1) the noised(n)
the speechc(n), so that [25]

Yy(k, 1) = Xp(k, i) + Dy(k) (21)

has zero mean and is uncorrelated with

spectral value per CB.

1) Audible Noise Suppression Using Spectral Minin@@ne
way to obtain the required sparse data is to estinagte)
from the first branch of (23) using the minimum speech power
spectrum component, denoted B, wmin(¢), in the specific
CB instead of the partial minimum componeXy(kr, ¢) (from

where, D, (k) is the mean power spectrum of the noisé,hose components above the AMT). Howeve_r, in such a case,
2) the power spectrum of the noise remains constant witHfnmust be shown that the new parameig(:) is larger than

the same CB, i.e.,

Dy (k) = Dy, ki <k < kpe. (22)

Under these assumptions, by substituting (20)—(22) in (14(1) = [Dpb + Xpb, min(4)] {—X -
and assuming again that the maximum valuesdfia(¢) and -
arrs(¢) correspond to the frequencigés and krr, respectively,

the corresponding, (¢) implied by (16) and (23). Therefore,
if ay,(4) is given by
Dy, } 1/ (3)

Xpb,min(i) = H%H{Xp(k}, L)7 klb S k S khb} (24)
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then it can be shown (Appendix D) that be described by 4-bits numbers. In this case, the ANS can
. ) achieve a bit rate of 2750 b/s instead of the 256 000 b/s for a

ay (1) 2 ars(é) (1) 16 KHz, 16-b resolution speech signal.
ay(2) > ary (2) (1) (25)

and, henceg, () is also a solution that satisfies (10). In such a ll. M ETHODS FOR THEESTIMATION

way, the amount of the clean speech data required for audible OF THE SPARSE DATA FOR ANS

noise suppression has been reduced to one minimum spectral

component per CB. A. A Statistical Estimator for the Minimum

2) Audible Noise Suppression Using the AMT Valu&se Spectral Value per Critical Band

second way to reduce the speech dafaiori required for the In order to model the minima of the speech spectrum, it is

enhancement Is to e§timat§(i) from the_ first.b.ranch of (23) possible to express them as a function of the mean value of
using the AMTT, (%) instead of the partial minimum COMPO-the speech spectrum per critical band, i.e.

nent X, (kr, ¢) (from those components above the AMT). In

this casea;/(:) will be given by Xy, min(8) = f{X,(5)} (28)
1/ (3) -
all (i) = [Dpy + Tb(i)]|: DP{’ } b (26) Where X, (i) is the mean spectral value in bahdand time
15(4) window i, given by

Using this estimate, it can be shown (see Appendix E) that s

— 1 ,
ay (¢) > are(9) (1) Xo(0) = [ — > Xk, D). (29)

k=k
ay (1) > ars () (I1) (27) v
Yo ) L In order to use a statistical model for the estimation of
and, henceg;/(4) is also a solution that satisfies (10). Furthefe | nknown functionf{ }, it is desirable to measure the

more, the number of the clean speech data has been redygeghapility distribution of the minimum spectral component
to one AMT valueT; (i) per CB. o per CB and that of the mean spectral values per CB. Such
The solutions given by (24) and (26) indicate that enhancgeasrements were made during this work using speech
ment of the noisy speech is possible using one value Rbrerial from the ESPRIT PROJECT 6819 (SAM-A) speech
critical band, either the spectral minimum or the AMT of thej5i4 pase. According to these measurements, the probability

_clean speech3 and the broad noise level. This result is of grgakripution of the minimum spectral component follows a
importance, since the problem of speech enhancement has %Qﬂeigh distribution for most of the CB’s, as shown in

now reduced to that of determining only a few components pgfy 5(a). The distribution of the mean spectral value on the
data window, i.e., selective minima of the speech signal or {§$her hand, was found to approach a normal distribution for
AMT values. Given that the number of these data is equal 1g bands, as shown in Fig. 5(b). As can be easily observed
or less than the number of CBB, there are, therefore, upjn this plot, the conditional mean spectral value distributions,
to B = 22 data values for a 16 kHz sampling rate S.pee?gﬁven the minimum value, are shifted versions of the mean
signal (orB = 18 for an 8 kHz sampling rate speech signallyectral value distribution. This suggests that the minimum

[19, ch. 6]. ] ) component per CB can be modeled as linear combination of
3) The ANS as a Speech Reconstruction Technidymart o mean spectral values per CB which, in turn, can be more
from this, and as will be shown in Section V, the proposeéj(,jsny estimated in noisy conditions.

method can theoretically [i.e., when the speech spectrumgq)io\ing the above statistical measurements, let us now

minima or the AMT are accurately known, using (24) Ofiefine the probability density function (pdf) of the minimum
-(26.)] improve speech intelligibility irrespective of-|n|t|al SNR'power spectrum component per CB as
indicating the correctness of the psychoacoustic model prin-

ciples. Furthermore, the technique can theoretically work for 2X} min X? in
very low SNR's, since the preceding theory did not make any P(Xp, min) = )\b— —? (30)

assumptions for the input SNR. In fact, the proposed method

can work even for input SNR=  —oo, i.e., when the noisy 54 the probability of the mean spectral value given the
signal consists only of the noise component given that ”ﬁ%nimum component as

sparse speech parameters are known. As will be shown in

Section V, intelligible speech will be reconstructed from such 2 X, — Xo |2

. . .. . . _ | b b,mm|
a noisy input. This, in turn, suggests a finding of importancep(Xs|-Xs, min) = exp  — P (31)
i.e., that a lowest limit of psychoacoustically valid bit rate PA, T bX
of the speech can be determined, which will be given by a o
finite set of frequency speech components, e.g., one per @Bere Xy min = E{|X; min|?} and Mx = B{Xy -

sufficient for resynthesis of the speech signal. In this conteX; ..i,|?} are the variances of the minimum and the mean
it was also found that the sparse data for reconstruction qaower spectrum for critical band, respectively. Then, in
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The termsZ, post and Zy rio are defined as

X

A min
Zb,post = ) - 17 Zb,prio = Zb,min (35)

b, X )‘b,Y-

A similar result was obtained by Ephraim in an earlier work
[15] in which estimation of the STSA of the speech was
achieved by an MMSE estimator. Although, in that work, the
estimator was obtained by the mean probability of the spectral
component given the noisy observation, it is believed that
similar principles also apply here, so that finally t#g ;o
term, although here cannot be interpreted asatpeori SNR,

can be estimated using

|Xb, min(i - 1)|2

Zy, prio(t) = (1 = ) P2, post ()] + ¢ 3

b, X
(36)

where

: ] 2 if2>0 B
- ,J P[;:]_{O7 if 2 <0 and¢ = 0.98.
T

Since the variance of the mean spectrum is also generally
(b) unknown, this parameter was adaptively estimated during

Fig. 5. Experimental distributions of speech spectral parameters for a typif0C€SSINg according to the expression

critical band. (a) i) Minimum power spectrum component and ii) correspond- o .

ing Rayleigh pdf. (b) i) Mean power spectral amplitude and conditionals 7. )\b Y(i — 1)+ [Xp(t) — X(i)]2

(i)—(iv), given the minimum spectral component. Ay () = : 1 . (37)
’ 1

an MMSE sense, the estimator for the minimum spectrlaﬂ practice, it was found that this parameter after a few
component will be given by windows reached a constant value. Furthermore, the mean

. o spectral valueX,(i) was obtained after application of the
Xb, min = E{Xp, min| X s} spectral subtraction method.

B /0 Ko, minP(Xo| X, min)P (Ko, min) X, min B. A Clean Speech AMT Estimator in the Presence of Noise

/ (X X min)P(Xp, min) X5, min In this section, it is shown that a satlsfagtory estimate

0 of the clean speech AMT can be also obtained from the
(32) noisy data using an iterative procedure at some expense of

By substituting (30) and (31) for p(Xy mm) and computational efficiency. Specifically, this procedure consists

p(Xo| Xy win), respectively, in (32) the following solution of passing the noisy signal through the nonlinear filter given
i olgtailr){gan(éee Appendix’ F): by (11) several times. As will be shown, each time the signal

passes through such process, a better approximation of the
. 1 1 Zy prio noise-free speech can be obtained and, consequently, a more
Xb, min — ~ /=

\/5 1+ Zb, post

1+ Zp on; accurate AMT estimate can be derived. In some respect, this
Prio . . .
i process of iterative updating of the AMT values resembles a

'Ml_\/i\/(l +Zb,post)< Zy, prio )]—b similar procedure by Lim [4] for updating the noisy speech

14+ 2y prio AR parameters.
33 Let us consider the case when the ANMIF(:) of the clean
speech is known. Then the parametgfi) of the nonlinear
In the above expression, there are several terms to be &action will be given byaj (i) of (26). The enhanced speech

plained. First,M] | is the function power spectrum fow, (i) = 1* will be
z .
1- <I>< ) B . Y, (k, @) ,
Xk, 1) = —~2 22—V, (k, 1), kw <k < kys.
M = V2 sy T g Ey P RSk

Fom (-]

. . 1As will be shown in Section V, the best performance is obtained by this
where®( ) is the error function [27, Eq. 8.250.1]. value of ().
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TABLE |
SIMULATION RESULTS FOR THECLEAN SPEECHAMT ESTIMATOR
lterations 1 2 3 4 5 6 7 8 9
SNR (dB) 3.36 412 418 421 421 420 420 420 4.20
NMR (dB)  17.31 1134 930 859 816 7.83 760 7.43 7.6

Let us now assume that the AMT,(%) is not known but
an approximation denoted By} () is known, which satisfies
the constraint
MT(6) = To(6) + dTo(é) > T(4) (39)

wheredT; (i) has a small value, i.e!7;(¢) is an overestima-
tion of T°(b, 4).

Then, thej iteration of the enhancement procedure will
produce the enhanced power spectrum given by

l Noisy Signal

Short-Time FFT

Power Spectra

v :

IX,(k, i) = j_lXp(k7 J i1 X, (K, 4) Parameters Power Spectra Phase
p\, 1) = ; p\Fy t)s
ay (1) +771Xp(k, 2) Extraction | »| Modification Information
klekSkhbv J:17 2,3, (40)
where?aj/(i) is given by
Modulus
j—1D2
Gty — =1 pb
(i) =Dyt (41) Il
IFFT &
L " . & . . Overlap Add <
and the initial conditions are given BYX,(k, i) = Y,(k, i)

and Opr = pr.
Apparently, since/a)/ (i) > 0, from (40) it can be easily
shown that

A

Pk, d) 2 2Ky (k) 2 2 Xk, 1) 2 o 2T X (R, 6).

(42)

Furthermore, from (39) it is easy to show tHaf(p(k, 1) >
X,(k, i). Note also that parametéu; (i) will be decreasing

Enhanced
Signal

l

Fig. 6. General block diagram for the ANS technique.

IV. |MPLEMENTATION

A. Algorithm Description

with the number of iterations, because it is proportional to The proposed technique was simulated on a general purpose
the amount of background noise measured during nonspe€efmputer. The speech material was digitized using 16 kHz

activity intervals. This ensures that the above process wampling rate and 16-b resolution, and was stored into files.

practically converge to a finite state whérf/ (i) reaches zero, Noise, also stored in files, was added to the speech signal to
which means that no more suppression is needed. Theref@@duce noisy signals at specific SNR’s. After processing, the

the amount of suppression is larger for small valueg ahd speech material was also stored into files for further evaluation

smaller for large values of. Since, however, the dynamics ofusing objective and subjective measures. The general block
the iterative process are very complicated due to the nonlinéé@gram of the proposed ANS method is shown in Fig. 6. The

suppression law, simulation was performed to validate tiéeps of the algorithm are summarized below.

proposed iterative procedure, and results are presented in ternk)
of the SNR and NMR measures (described in Section V) in
Table I.

To initialize this iterative process, the first approximation of 2)
the AMT 17} (i) of the speech signal can be easily obtained
by the power spectral subtraction technique, which was ex-3)
perimentally found to satisfy the condition implied by (39),
although it was also found that even the noisy signal can be
used, in which case more iterations must be performed.

Short-time windows of the noisy speech are transformed
into the frequency domain using the short-time fast
Fourier transform (STFFT), as implied by (2).

The power spectrum of the noisy speech is obtained
using (4), and the phase information is extracted.

The power spectrum of the noisy speech is processed
using the nonlinear law given by (11) in conjunction
with the previously estimated parameter$i) andw,(¢)

per CB.
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l Noisy Signal

Short-Time FFT

'

Y

Power Spectra

'

Noise Power Spectral
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Vovs

To main ANS block

Fig. 7. Parameter extraction block diagram for the ANS technique.

The modulus of the modified power spectrum is transformed  ponent in conjunction with (24). This method will be
back into the time domain using the short-time inverse fast referred to as theninimamethod and will be denoted
Fourier transform (FFT) and the original (noisy signal) phase by “M."
information. The enhanced speech is reconstructed using th8) The third method tested was based on the clean speech

overlap-add method.

B. Parameter Estimation

AMT estimator in conjunction with (26). This method
will be called thethreshold and will be denoted by
“T.” In utilizing this method, it was found that up
to three iterations were necessary for sufficient noise

The parameter extraction procedure is shown in Fig. 7. suppression. This is also validated by the results in
This diagram describes three different approaches, one for Table I, where it is shown that after the third iteration
validation of the technique and two based on the proposed there are only negligible changes in the objective SNR
sparse data estimators.

1) The first approach tested was to use the AMT of the

noise-free signal in conjunction with (26). Although thi

and NMR measures.

SC. The Noise Data

method has no meaning in terms of enhancement, itin order to simulate the proposed technique in a real
was used in order to show the validity of the proposeehvironment, the type of noise used in the tests should be
method. Apart from this, it is worth it to evaluate theof practical importance. For these tests, the noise data were
performance of the ANS technique in performing a da@rawn from the NOISEX-92 CD-ROM’s [28]. From the noise
compression task, i.e., when the algorithm is fed wittata in these CD-ROM'’s, and for the tests described in the
the noise signal (SNR= —x0) and only B parameters following sections, the noise denoted as “6-Speech Noise”
of a speech signal per data window are known. Thigas chosen. This noise is stationary and has a mean slope
method will hereafter be called treebugmethod and of 8 dB/octave, while its main energy is concentrated toward
will be denoted by D.”

2) The second method tested was based on the statistfcatjuencies of the speech signal and is therefore, more immune
model for the estimation of the minimum spectral comto the application of enhancement.

the lower frequencies or, in other words, toward significant
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V. TESTS AND RESULTS 8

A. ANS Performance Limit Evaluation

The performance limit of the ANS technique was evaluated
by means of objective measures. This evaluation was mainly
performed in order: 1) to show the negligible influence of
(%), 2) to compare the performance of the technique with the
theoretical STSA limit, and 3) to compare the ANS technique 2
[(15) and (16)] to the sparse data approach (debug method).
The STSA theoretical limit was obtained by reconstructing \ ‘
the speech signal using the clean signal spectral amplitude 0 ' : : : ‘ J ' !
components combined with the phase of the noisy signal, STSA 01 05 1 2 4 10
and indicates the maximum theoretical SNR improvement .
for STSA-based enhancement methods. The ANS limit was V(1)
obtained from (11), (15), and (16) by using all the spectral @
components of the noisy and noise-free speech. The debug
method was obtained from (11) and (26). Experiments were
performed using approximately 400 s of speech signal from
20 speakers drawn from the ESPRIT PROJECT 6819 (SAM- 3 -------
A) speech data base. Results are presented in Fig. 8 (for_. O STSA Limit —6—ANS limit —A—"Debug"
the SNR and the NMR measures, described in detail in the 8
next paragraph). As can be observed in this figure, the ANS"EC
technique is less sensitive to the influence of the parameterZ
(%), although best results were obtained fgfi) = 2 for 1 N
the ANS limit and fory, (i) = 1 for the debug method. Note !
also that, in terms of the SNR, the ANS technique can achieve o
an SNR improvement of up to 9.7 dB (for input SNR-5 0
dB), which is about 2 dB lower than the theoretical STSA
enhancement limit (11.6 dB). In terms of the NMR, the ANS .
technique can achieve slightly better performance compared to V()
the theoretical STSA enhancement limit. This important result, (®)
it is believed, is mainly due to the fact that the target of thigg. 8. Enhancement performance for different valuesvgfi), obtained

; ; ; ; ; ; the ANS method [enhancement limit by (16), the debug condition (26)],
ANS technique is suppression of the audible noise, which C?rbd the theoretical limit for STSA methods. The noisy signal SNR was

be more appropriately measured using the NMR than the SNR and the corresponding NMR 16.5 dB. (a) SNR performance. (b) NMR
criterion. Furthermore, results for the debug method have veigrformance.

small differences compared to the ANS limit, which shows th%%i found by researchers to have a high degree of correlation

the ANS is less sensitive to the assumptions made by (21) W subjective tests [30]. For the NMR method, the following

(22). Therefo‘re, for the subsequent experiments, the valueec)J(pression was used:
parameten () will be equal to one.

SNR (dB)
B

= — — A m — — m e — o — —

»
—'
7
p
124
(=]
8]
N
F-Y
o

kin

B. Objective and Subjective Evaluation M-1 B-1 Dk, 9
10 1 1 =k
1) Objective Evaluation TestsObjective evaluation of the NMR = M Z log10 B C, T6) IdB]
proposed method was performed using the classical SNR =0 b=0
method and the NMR method. The SNR was measured using (44)
[29]: where}M is the total number of windows3 is the number of
N-1 CB'’s, Cy is the number of frequency components for GB
Z 2%(n) and|D(k, i)|* is the power spectrum of the noise at frequency
SNR= 10 log; ~— n=0 [dB] (43) bin & a_nd time wmdovv_L, estlmated b)_/ the d|ffer_ence between
'~ the noisy and clean signals in the time domain.
Z [p(n) — z(n)]? Note that (44) is in accordance with the time-domain
n=0 segmental SNR [29].

where z(n) is the noise-free speech signal, anth) is the 2) Subjective Evaluation Test$:or the subjective evalua-
signal under test, i.e., the noisy or enhanced speech. The Niiigh, two tests were performed. The first test, at word level, was
method is an objective method based on subjective quantitite diagnostic rhyme test (DRT) [31], whereas the second test,
and indicates the occurrences of audible noise componeatsentence level, was the semantically unpredictable sentences
(i.e., noise components above the signal’'s AMT). This methd8US) test [32]. From those, the DRT was performed on Greek
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and English-language speech data, while the SUS test was
performed only on Greek-language speech data. Note that
both the DRT and a restricted form of the SUS test have
been used for the evaluation of many speech enhancement
techniques [10], [13], [25], [26]. A limited two-speaker (one
male and one female) DRT test in English was performed
using six listeners and 96 word-pairs. The speakers were
native English speakers, while all listeners were either native
English speakers or had extensive knowledge of the English
language. This test was mainly performed in order to be able %104
to compare its results with the corresponding Greek-language
DRT test. For the Greek-language DRT, the word-pair material
was created from two-syllable words drawn out of two Greek
lexicons and by converting all material to phonetic form.
A total of 192 word-pairs (384 words) were finally used. 0 1 2
This material was spoken by four speakers (two male and

two female) having normal Greek accents. A total of 20

subjects participated in the test. For the SUS, test sentences

based on five syntactical structures were created using a %104
corpus of over 10 million words. Finally, a total of 80
sentences were used for the training and the evaluation session.
All sentences were spoken by four speakers (two male and
two female) and a total of 20 subjects participated in the
test. 0 1 >

Amplitude
N} o

>
! |

o
—
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w

Time (sec)
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Amplitude
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C. Results (©

Typical time-domain plots for the ANS technique are shown
in Fig. 9, which illustrates the significant noise suppression 2
effect of the method.

Obijective results were obtained for the complete test data
base created for the described intelligibility tests and are
presented in Fig. 10. These results are plotted for the Greek- -2
language speech data DRT (G-DRT), the English-language
speech data DRT (E-DRT), and the SUS test (SUS), for Time (sec)
various initial SNR conditions (i.e+o0, =5, 0, 5 dB). At (d)
each initial SNR condition, the following processing categories
are included: D" for the “debug” approach, N for the 2
noisy signal, 7” for the “threshold” approach, and!”
for the “minima” approach. From these results, the following
observations can be made.

x10*

Amplitude
o

o

1 2

w

x10

Amplitude
o

1) There are no significant differences with respect to the '20 ) 2 3
type of speech material used for the objective tests (i.e., '
DRT or SUS). Time (sec)

2) As expected, the best results were obtained for the debug Q)

condition, indicating also the validity of the proposed
psychoacoustic and sparse data model. This is also
obvious from the SNR= —oc dB results.

3) In all cases, improvements were measured by the use
of the two types of sparse-data estimators, with the
threshold approach having a small advantage over the
minima approach for most conditions, and particularly
for the NMR tests.

4) For most cases, the proposed estimation methods ®
achieved results close to the debu@““method, with Fig. 9. Time domain plots for a typical sentence. (a) Noisy speech (SNR

. . . = 0 dB). (b) Noise-free speech. (c) ANS limit (16). (d) ANS by “debug”
typ|cal SNR improvement of 10 dB and typlcal NMRparameters. (e) ANS by “minima” parameters. (f) ANS by “threshold”

improvement of 20 dB. parameters.

Amplitude
<o

0 1 2

(V%)

Time (sec)
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Fig. 10. Objective ANS method performance for the English language speech data DRT (E-DRT), the Greek language speech data DRT (G-DRT), and the
SUS test. Initial SNR condition is also indicated for each curve. The horizontal axis denotes the processing category, where “N” stands forigimalnoisy s
“D" for the “debug” method, “T” for the “threshold” approach, and “M” for the “minima” approach (see text). (a) SNR performance. (b) NMR performance.

Intelligibility score (%)

Fig. 11.
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Intelligibility scores for the English language speech data DRT (E-DRT), the Greek language speech data DRT (G-DRT), and the SUS test.

Initial SNR condition is also indicated for each curve. The horizontal axis denotes the processing category, Whetantls for the noisy signal,
and ‘O” for the noise-free signal.

These objective improvements were also confirmed tonmise-free speech signal, denoted l§y.™ From these results,
large extent by the subjective tests, as is shown by the resultstwf following observations can be made.
Fig. 11 and Table Il, where the standard error (SE) among thel) The debug method, for initial SNR —co dB, achieved

individual listeners scores is also included. For all the above
results, an additional category is also included, that of the

scores of 72.22% (for E-DRT), 85% (for G-DRT), and
73.36% (for SUS), indicating again the validity of the
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TABLE I
INTELLIGIBILITY SCORES AND LISTENER STANDARD ERROR (SE) FOR THE ENGLISH LANGUAGE SPEECH DATA DRT (E-DRT), THE GREEK LANGUAGE
SpeecH DATA DRT (G-DRT), AND THE GREEK LANGUAGE SPEECH DATA SUS TEST PERINITIAL SNR VALUE AND PROCESSINGCATEGORY

E-DRT G-DRT SuUs
SNR  Category Total S.E. Total S.E. Total S.E.
-0 D 72.22 9.3 85 10.5 76.36 11.8
N 33.33 16.7 54.17 9.6 55.28 11.3
D 72.22 18.5 76.67 10.7 89.74 56
5 T 61.11 222 67.92 8.2 60 8
M 66.67 22.2 75 133 46.4 10.2
N 72.22 18.5 76.4 10 83.99 6.4
D 72.22 18.5 85.83 57 96.79 4.2
o] T 77.78 14.8 80 11.3 86.25 5.1
M 77.78 222 85 9 88.73 6.1
N 74 0 83.33 10 93.33 2.8
D 76 18.5 85 9 97.42 33
5 T 77.78 22.2 93 8.7 97.03 3.0
M 77.78 14.8 82 9.8 98.15 1.1
0 [e] 100 o] 96.67 53 97.73 3.2

proposed ANS model and also that the method can
also be used for speech reconstruction (e.g., for data
compression applications), using noise excitation and
the proposed nonlinear enhancement filter fed by sparse
data parameters derived from noise-free speech. This
result indicates that the intelligible, psychoacoustically

(for G-DRT) and 27.78% (for E-DRT). At this condition,
the SUS test was less successful, with a small
4.72% improvement for the threshold method and an
intelligibility degradation for the minima method. At
higher SNR’s, some intelligibility improvements were
also measured, except for the case of SNR5 dB,

where intelligibility degradation was measured for G-
DRT. Nevertheless, it is believed that these results
have smaller significance due to the already fair signal
presentation combined with the possibility of statistical
errors, due to the relatively small scale of the tests.

significant bit rate of speech can be very low, but it
is also believed that the above scores can be further
improved by the use of additional voicing (pitch) infor-
mation and by minimization of the spectral difference
between reconstructed and source speech, adjusting the
parametet, (i) per data window and critical band.

The debug method achieved also intelligibility improve- VI. CONCLUSIONS

ment for all other SNR conditions, althou.g.h.these M- A novel speech enhancement technique was developed,
provements were smaller for the better initial SNR'S;5 764, and tested. The technique relies on the definition of
Specifically, at SNR= -5 dB, the debug method e neychoacoustic quantity of audible noise, derived from the
improvements were 22% (for G-DRT), 38.89% (for Egjgnars STSA. This quantity describes the amount of noise
DRT), and 34.46% (for SUS). The smaller improvementseceived as degradation by the auditory mechanism (inner
at SNR= 0 and 5 dB were somewhat expected, giveBar) and it is shown that its suppression can lead to objectively
the satisfactory initial (noisy speech) intelligibility. and subjectively enhanced speech.

The proposed estimators achieved intelligibility im- The main advantages of the proposed approach over previ-
provements for most conditions and tests. Thesfisly developed enhancement methods, are derived from the
improvements were larger for lower initial SNR’sselective and limited number of spectral regions specified for
(mainly for the previously explained reasons), anfrocessing. At one hand, this minimizes the processing arti-
were lower than those achieved by the debug methdgcts and at the other hand, as was shown, this approach leads
indicating that there is further scope for improvingo reduced requirements for tkepriori known or estimated

the parameter estimation process of the ANS methaglean speech data. The required audible noise suppression was
Specifically, at SNR= —5 dB, the DRT intelligibility achieved by the introduction of a flexible frequency-domain
improvement was better for the minima method witimonlinear filter, whose time-varying parameters were derived
33.34% (for E-DRT) and 20.83% (for G-DRT), thefrom such sparse data estimates. These estimates were shown
threshold method achieved improvements of 13.75% be as many as the number of CB’s (per data window), and
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were found to be either the spectral minima, or alternativeliqund in [23]. First, the total power of the spectrum of the

the masking threshold value. For each approach, a suitabignal per CB is found as follows:

estimation procedure was also derived, allowing parameter

extraction from noisy data. )
The most significant result that has emerged from the above Qu(1) = Z

analytic and experimental procedure is that only a limited and he=kup

small number of psychoacoustically derived spectral data (Rﬁﬁere,klb and ky, are the lower and upper limits of CR
data window) is required to reconstruct intelligible speeclb is the total number of CB's, and,(k, i) is the power
) P b)

irrespective of the initial SNR condition. It is then up to ectrum of the speech signal. The total power spectrum per

. . S
the development of suitable estimators that can extract th is then convolved with the basilar membrane spreading
sparse-data from the noisy signal. A secondary finding nction Sp( ), which provides information on masking of
this work was the definition of the lower, psychoacousticallgignals by signals in the bark domain, as follows:

derived intelligible speech reconstruction bit rate, which can be

knp
X,k i), 0<b<B-1 (A1)

achieved when the ANS technique is driven by noise excitation B

and clean-speech sparse data. Cy(i) = Z Sp(b — m + 25)Q (1), 0<b<B-1.
The objective and subjective tests described support the m=1

above statements. Specifically, a general agreement was found (A.2)

between objective and subjective tests, and in all cases sig-

nificant improvements were achieved by the ANS techniquéhe noiselike or tonelike nature of the signal is determined
given correct sparse data (debug method). These were lafggithe statistical characteristics of the power spectrum and is
for low initial SNR’s (e.g., =5 dB), where intelligibility mathematically given by the spectral flatness measure (SFM):
improvements approaching 40% were measured, although )

these were smaller for better initial SNR conditions. Smaller gy~ (0 SFMgg = 10 log;, SFM (A.3)

but significant improvements were also measured when the A(g)’

noisy speech signal alone was used for the extraction of the

enhancement parameters, with intelligibility improvement (yfrhe_re G(i) and A(i) are the respective geometric and_ arith-
up to 33% for the DRT and initial SNR: —5 dB metic means of the signal’s power spectrum. From this mea-

gure, the tonality of the signal is found using

In terms of computational complexity, the ANS techniqu
requires calculation of two FFT’s, estimation of the AMT (or
alternatively, estimation of the spectral minimum per CB), and ton(¢) = min {
some simple arithmetic operations. This computational load

was found to be approximately 1.5 times the real duratiQpnere SFM,.,. = —60 is defined as the SFM value of a sine
of the speech data when implemented on a PC-486 typgye. Therefore, tof¥) = 1 for SFM = SFM,... (sine wave
computer. Therefore, implementation of the ANS method M@put), whereas tofs) = 0 for SFM = 0 (white noise input).

be possible in real-time on a general purpose DSP board. an offset is then estimated by which the threshold has to

Nevertheless, the significantly lower performance of thg, requced in order to take into account the signal tonality
ANS method for estimated parameters (compared to the debug

condition) indicates that there is further scope for developme@b(i) = ton(4)(14.5 + b) + (1 — b)5.5, 0<b<B-1.
in the parameter estimation procedure. Furthermore, it is (A.5)
believed that the ANS technique would be improved if a '
suitable model existed for estimation of the clean signaIth
masking threshold from the noisy properties and the noisy
speech signal, given that the current technique relies on , log. - Co (Y— O (3)/10

rather heuristic AMT estimator. Furthermore, the speech re—aTb(Z) = 10/ =D, 0sbsB-1. (A6)

construction technique that has emerged from the ANS methlgd N , .
. ) o : inally, normalization and comparison to the absolute auditory
can be further improved by further investigations into th

: ! . R X reshold is performed.
form of nonlinear filter and also in the excitation input &gna&I P

properties. Finally, another possible area of improvement APPENDIX B
WOUId be for appllcanons when t’he statistics of the SpeeChConsider minimization of the MSE of the audible noise
(i.e., after analysis of the speaker’s data) and/or the noise are

known in advance and used for optimal adjustment of thsgectrumAd(k, 1) over some constant parametg), I.e.,
> Ak, z‘)} (B.1)

ANS estimators. {
The algorithm for the estimation of the AMT; (%) is briefly vyhere, it is assumed that the enhanced speech power spectrum
described here, although a more detailed description can_¥g(k, ) depends o}, (k, ¢) anda(i). From (B.1), it follows

(A.4)

SFMap
SFMHlaX ’

e auditory masking threshold can now be calculated using

APPENDIX A
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that the MMSE solution is given by components fall above or below the AMZT;(¢). Therefore,
5 provided that
—— Y A%k, i) =0. (B.2)
8@(1) zk: Xpb,min(i) S Xp(k'Ia L) (Dl)
By substituting [X,,(k, i) — X,(k, ©)] for A4(k, i), where and also thad < 1(i) < 1, then

X,(k, i) is equal to eitherX. ( ¢) [Branch | of (9)] or

T(k, i) [Branch Il of (9)], (B.2) becomes Dy, :|1/w,(i)

D +X mini |: .
[ P Pb ()] Xpb,min(z)

0 5 . 12
5al® %:[Xp(k, i) = Xp(k, )] = 0 R 1/m (i) 02
= pb pAN, Xp(k'L L) .
or
OX (k. i i.e., Branch (1) of (25) is satisfied. Assume now that there exist
Z (X, (K, 1) — X, (k, i)] M =0. (B.3) frequency component&,(k, ) within CB b below the AMT
; da(d) T(0), ie.,
Given that' in generaBXp(k, t)/da(i) cannot be zero, one X, (kr, 1) < Ty (i) (D.3)
solution will require that
. so that Branch (l) of (23) has to be taken into account.

Xp(k, 0) = Xp(k, 0) = 0, for0sksM Consider now the expressia(i) — arry (%), which by using

or (D.3) can be also written as

Aa(h, 1) = 0, forO<h=M (B.4) A" =Dy + Xpp min(i)]|: Drt —

’ Xpb, min(z)

where M is an arbitrary spectral region. Doy + X, (i, i 1/v(3)
Consequently, (B.4) is also an MMSE solution for the — [Dpb + Xp (b, )] {%Lg’) - 1}

audible noise removal problem.

}1/1’5(1‘)

D b l/l/b(i)
> [Dpy + Xpp, min(4)] [TP(L)}
APPENDIX C D i ’11/11;21@)
Branch (I) of (23) can be also written as — [Dpy + T3 (1)) |:Tb€;):| (D.4)

1 1/vp (2 vy (4
ary(i) = + [l )X Hnlt )(kl i) From (D.1) it is clear thatX,; min(¢) < T3(i) and conse-
+ D;Z”"(”)X; Y@ (e, ) (C.1) quently (as shown in Appendix Q) = a}(i) — arr,(i) > 0.
Therefore, the second branch of (25) is satisfied.
from where it is clear that i < 24,(¢) < 1, thenl—1/14(¢) <
0, so thatar,(¢) is inversely proportional taX,(k, i) and, APPENDIX E
hence the maximunu, (i) corresponds to the minimum

X, (kr, i) for those speech components above the AMT. If, It will be shown thata; (i) given by (26) satisfies the
however, (i) > 1, then X, (kr. ) is not necessarily the conditions implied by (27). At first, it is easy to notice that

minimum spectral component in CB since Branch (1) of (23) is satisfied by the mmmu’@(ﬁh i),
From Branch (Il) of (23) it is clear thatrr,(¢) is propor- for.tr]l.osde k\)/alur(]a S cﬁi\ﬂl\(/lp'lgl; L) abovehtheBAMTﬁb(zl), |tf|32a7lsq
tional to X, (kr, ¢), and, thereforeX,,(k, ¢) corresponds to satistied by the b(d), so that Branch (1) of (27) is

the maximum spectral component in GBfor those compo- sat|sf|eq.
Consider now that there are frequency components below
nents below the AMT. . . . . .
the AMT so that (D.3) is valid. The quantity}(¢) — arr,(2),
which can be written as
APPENDIX D

It will be shown thata; (i) given by (24) is greater than or 4 — Dy +Tb(")][ Dy }1/1/;,(2)
equal toar, (i) andarr,(é) given by (23). P T (3)

. At firgt, it is easy to notice .th.at since Branch (I) of (23) takes b ¥ [ Dy + X (e, 0) /v (i)
its maximum value by the minimudy,,(, <), for those values = [Dpp + Xp(kr, 9] A N 1
of X, (k, i) above the AMTI;(¢), as was shown in Appendix

C, it takes a larger value by the minimutd,; mi,() for > [Dpy + Xpp, min(i )]{

Dy, } 1/v (3)
all components within the CB, irrespective of whether these

Xpb, min(i)
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pr + Xp(k'Hv L) L/w ()

T (3)

~ 7

— [Dpp + Xp(kr, )]

(E1D) 18

Since, howeverX,; min (1) < Xp(km, ), it is concluded that
A" = a}/ (i) — amry(¢) > 0 and, therefore, the second branch
of (27) is satisfied.

El

[10]

APPENDIX F
[11]

By substituting (30) and (31) into (32) and using [27, Eq.
3.462.1], we obtain

[12]
X
Dos| —v2A = [13
Xb,min =V 2)\1) iX (Fl)
D_, _‘/2)\& [14]
)‘b,Y
whereD,( ) are parabolic cylinder functions [27, Eq. 9.240],[15]

and, A, is given by

1_ 1,1
)‘b )‘b, min )\b, X '

(F.2) 1o

17
By using [27, Egs. 9.247.1, 9.254.1, and 9.254.2], (F.1) cén]
be written as

(18]
Xb,min
Z [19]
- q>< )
_ N V2 .| eo
N\ (F) - (3)
~ exp — 1=
2 2 V2 [21]
(F.3)
wherez = —v2X0,(Xu/A, ). 22]
Then, by using (34) and (35), (F.3) can be written as
[23]
o 1 < 1 ) < Zb,prio )
Xb min — ~ =
’ \/5 1+ Zb, post 1+ Zb, prio [24]
M| =V24 /(1 + Z, post) b prio Xy [25]
post 14 Zb, prio '
(F.4) [26]
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