
Puppetnets: Misusing Web Browsers as a Distributed Attack Infrastructure
(Extended Version∗)

V. T. Lam†, S. Antonatos�†, P. Akritidis�‡, K. G. Anagnostakis†

†Software Systems Security Group (S3G) �Distributed Computing Systems Lab
Systems and Security Department Institute of Computer Scienc
Institute for Infocomm Research Foundation for Research and Technology Hellas

21 Heng Mui Keng Terrace, Singapore 119613 P.O.Box 1385, Heraklion, GR 71110, Greece
{vtlam,kostas}@s3g.i2r.a-star.edu.sg {antonat,akritid}@ics.forth.gr

Abstract

Most of the recent work on Web security focuses on
preventing attacks that directly harm the browser’s host
machine and user. In this paper we attempt to quantify
the threat of browsers being indirectly misused for attack-
ing third parties. Specifically, we look at how the existing
Web infrastructure (e.g., the languages, protocols, and se-
curity policies) can be exploited by malicious Web sites
to remotely instruct browsers to orchestrate actions in-
cluding denial of service attacks, worm propagation and
reconnaissance scans. We show that, depending mostly
on the popularity of a malicious Web site and user brows-
ing patterns, attackers are able to create powerful botnet-
like infrastructures that can cause significant damage. We
explore the effectiveness of countermeasures including
anomaly detection and more fine-grained browser secu-
rity policies.

1 Introduction

In the last few years researchers have observed two
significant changes in malicious activity on the Inter-
net [48, 62, 53]. The first is the shift from amateur proof-
of-concept attacks to professional profit-driven criminal
activity. The second is the increasing sophistication of
the attacks. Although significant efforts are made towards
addressing the underlying vulnerabilities, it is very likely
that attackers will try to adapt to any security response,

∗A shorter version of this paper appears in the Proceedings of the
ACM Conference on Computer and Communications Security (CCS),
October 31st-November 2nd, 2006.

†Work done while visiting I2R in Fall 2005
‡Work done while visiting I2R in Spring 2006

by discovering new ways of exploiting systems to their
advantage [39]. In this arms race, it is important for se-
curity researchers to proactively explore and mitigate new
threats before they materialize.

This paper discusses one such threat, for which we have
coined the term puppetnets. Puppetnets rely on Web sites
that coerce Web browsers to (unknowingly) participate in
malicious activities. Such activities include distributed
de-nial-of-service, worm propagation and reconnaissance
probing, and can be engineered to be carried out in stealth,
without any observable impact on an otherwise innocent-
looking Web site. Puppetnets exploit the high degree of
flexibility granted to the mechanisms comprising the Web
architecture, such as HTML and Javascript. In particular,
these mechanisms impose few restrictions on how remote
hosts are accessed. A malicious Web site can thereby
transform a collection of Web browsers into an impromptu
distributed system that is effectively controlled by the at-
tacker. Puppetnets expose a deeper problem in the design
of the Web. The problem is that the security model is fo-
cused almost exclusively on protecting browsers and their
host environment from malicious Web servers, as well as
servers from malicious browsers. As a result, the model
ignores the potential of attacks against third parties.

Web sites controlling puppetnets could be either legit-
imate sites that have been subverted by attackers, mali-
cious “underground” Web sites that can lure unsuspected
users by providing interesting services (such as free Web
storage, illegal downloads, etc.), or Web sites that openly
invite users to participate in vigilante campaigns. We must
note however that puppetnet attacks are different from
previous vigilante campaigns against spam and phishing
sites that we are aware of. For instance, the Lycos “Make
Love Not Spam” campaign[54] required users to install
a screensaver in order to attack known spam sites. Al-

though similar campaigns can be orchestrated using pup-
petnets, in puppetnets users may not be aware of their par-
ticipation, or may be coerced to do so; the attack can be
launched stealthily from an innocent-looking Web page,
without requiring any extra software to be installed, or
any other kind of user action.

Puppetnets differ from botnets in three fundamental
ways. First, puppetnets are not heavily dependent on the
exploitation of specific implementation flaws, or on so-
cial engineering tactics that trick users into installing ma-
licious software on their computer. They exploit archi-
tectural features that serve purposes such as enabling dy-
namic content, load distribution and cooperation between
content providers. At the same time, they rely on the am-
plification of vulnerabilities that seem insignificant from
the perspective of a single browser, but can cause signifi-
cant damage when abused by a popular Web site. Thus, it
seems harder to eliminate such a threat in similar terms to
common implementation flaws, especially if this would
require sacrificing functionality that is of great value to
Web designers. Additionally, even if we optimistically as-
sume that major security problems such as code injection
and traditional botnets are successfully countered, some
puppetnet attacks will still be possible. Furthermore, the
nature of the problem implies that the attack vector is per-
vasive: puppetnets can instruct any Web browser to en-
gage in malicious activities.

Second, the attacker does not have complete control
over the actions of the participating nodes. Instead, ac-
tions have to be composed using the primitives offered
from within the browser sandbox – hence the analogy to
puppets. Although the flexibility of puppetnets seems lim-
ited when compared to botnets, we will show that they are
surprisingly powerful.

Finally, participation in puppetnets is dynamic, making
them a moving target, since users join and participate un-
knowingly while surfing the net. Thus, it seems easy for
the attackers to maintain a reasonable population, without
the burden of having to look for new victims. At the same
time, it is harder for the defenders to track and filter out
attacks, as puppets are likely to be relatively short-lived.

A fundamental property of puppetnet attacks, in con-
trast to most Web attacks that directly harm the browser’s
host machine, is that they only indirectly misuse browsers
to attack third parties. As such, users are less likely to be
vigilant, less likely to notice the attacks, and have lesser
incentive to address the problem. Similar problems arise
at the server side: if puppetnet code is installed on a Web
site, the site may continue to operate without any adverse
consequences or signs of compromise (in contrast to de-
facement and other similar attacks), making it less likely

Malicious Web server

Web clients

Attack

traffic

Victim

site

Normal HTTP

request/ response

w/ attack instructions

piggybacked

Figure 1: DDoS using puppetnets

that administrators will react in a timely fashion.
In this paper we experimentally assess the threat from

puppetnets. We discuss the building blocks for engineer-
ing denial-of-service attacks, worm propagation and other
puppetnet attacks, and attempt to quantify how puppetnets
would perform. Finally, we examine various options for
guarding against such attacks.

2 Puppetnets: design and analysis

We attempt to map out the attackers’ opportunity space
for misusing Web browsers. In lieu of the necessary for-
mal tools for analyzing potential vulnerabilities, neither
the types of attacks nor their specific realizations are ex-
haustive enough to provide us with a solid worst-case sce-
nario. Nevertheless, we have tried to enhance the attacks
as much as possible, in an attempt to approximately deter-
mine in what ways and to what effect the attacker could
capitalize on the underlying vulnerabilities. In the rest of
this section, we explore in more detail a number of ways
of using puppetnets, and attempt to quantify their effec-
tiveness.

2.1 Distributed Denial of Service

The flexibility of Web architecture provides many ways
for launching DoS attacks using puppetnets. The common
component of the attack in all of its forms is an instruction
that asks the remote browser to access some object from
the victim. There are several ways of embedding such in-
structions in an otherwise legitimate Web page. The sim-
plest way is to add an image reference, as commonly used
in the vast majority of Web pages. Other ways include
opening up pop-up windows, creating new frames that

2

<SCRIPT>
pic= new Image(10,10);

function dosround() {
var now = new Date();
pic.src=’http://target/xx?’+now.getTime();
setTimeout ("dosround()", 20);
return;

}
</SCRIPT>

<DIV id="rootDIV">
<IFRAME name=’parent1’ width="0%"
src="originalpage.html"
onLoad="dosround()">

</IFRAME></DIV>

Figure 2: Sample code for puppetnet DDoS attack

load a remote object, and loading image objects through
Javascript. We are not aware of any browser that imposes
restrictions on the location or type of the target referenced
through these mechanisms.

We assume that the intention of the attacker is to max-
imize the effectiveness of the DDoS attack, at the lowest
possible cost, and as stealthily as possible. An attack may
have different objectives: maximize the amount of ingress
traffic to the victim, the egress traffic from the victim,
connection state, etc. Here we focus on raw bandwidth
attacks in both directions, but emphasize on ingress traf-
fic as it seems harder to defend against: the host has full
control over egress traffic, but usually limited control over
ingress traffic.

To create a large number of requests to the target site,
the attacker can embed a sequence of image references in
the malicious Web page. This can be done using either a
sequence of IMG SRC instructions, or a Javascript loop
that instructs the browser to load objects from the target
server. In the latter case, the attack seems to be much more
efficient in terms of attack gain, e.g., the effort (in terms
of bandwidth) that the attacker has to spend for generating
a given amount of attack traffic. This assumes that the
attacker either targets the same URL in all requests, or
is able to construct valid target URLs through Javascript
without wasting space for every URL. To prevent client-
side caching of requests, the attacker can also attach an
invariant modifier string to the attack URL that is ignored
by the server but considered by the client in the context of
deciding whether the object is already cached 1.

Another constraint is that most browsers impose a limit

1The URL specification [10] states that URLs have the form
http://host:port/path?searchpart. The searchpart is
ignored by Web servers such as Apache if included in a normal file URL.

on the number of simultaneous connections to the same
server. For IE and Firefox the limit is two connections.
However, we can circumvent this limit using aliases of
the same server, such as using the DNS name instead of
the IP address, stripping the “www” part from or adding
a trailing dot to the host name, etc. Most browsers gener-
ally treat these as different servers. Servers with “virtual
hosting” are especially vulnerable to this form of amplifi-
cation.

To make the attack stealthy in terms of not getting no-
ticed by the user, the attacker can employ hidden (e.g.,
zero-size) frames to launch the attack-bearing page in
the background. To maximize effectiveness the requests
should not be rendered within a frame and should not
interfere with normal page loading. To achieve this, the
attacker can employ the same technique used by Web de-
signers for pre-loading images for future display on a Web
page. The process of requesting target URLs can then be
repeated through a loop or in an event-driven fashion. The
loop is likely to be more expensive and may interfere with
normal browser activity as it may not relinquish control
frequently enough for the browser to be used for other pur-
poses. The event-driven approach, using Javascript time-
outs, appears more attractive. 2 An example of the attack
source code is shown in Figure 2.

2.1.1 Analysis of DDoS attacks

We explore the effectiveness of puppetnets as a DDoS in-
frastructure. The “firepower” of a DDoS attack will be
equal to the number of users concurrently viewing the ma-
licious page on their Web browser (henceforth referred to
as site viewers) multiplied by the amount of bandwidth
each of these users can generate towards the target server.
Considering that some Web servers are visited by millions
of users every day, the scale of the potential threat be-
comes evident. We consider the size of a puppetnet to be
equal to the site viewers for the set of Web servers con-
trolled by the same attacker. Although it is tempting to
use puppetnet size for a direct comparison to botnets, a
threat analysis based on such a comparison alone may be
misleading. Firstly, a bot is generally more powerful than
a puppet, as it has full control over the host, in contrast to
a puppet that is somewhat constrained within the browser
sandbox. Secondly, a recent study [17] observes a trend
towards smaller botnets, suggesting that such botnets may
be more attractive, as they are easier to manage and keep
undetected, yet powerful enough for the attacker to pur-

2In the case of Firefox the referrer field can be scrubbed by initially
refreshing the hidden frame once using the “http-equiv” directive. This
completely hides the source of the attack. We discuss more about this
issue in Section 3.

3

0.1 1 10 100 1000 10000
Time (minutes − logscale)

C
um

ul
at

iv
e

fr
ac

tio
n

of
 s

es
si

on
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mean=74.62 min

mean=4.49 min

mean=69.99 min

mean=14.88 min

KDDCUP trace
Browser tracking
Google/Webtrends
JStracker

Figure 3: Web site viewing times

1 10 100 1K 10K 100K 1M 10M
Estimated size of puppetnet (logscale)

C
um

ul
at

iv
e

fr
ac

tio
n

of
 W

eb
 s

ite
s

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Alexa Top−500
ABCE dataset
Google/Webtrend
Google/Webalizer

Figure 4: Estimated size of puppetnets

sue his objectives. Finally, an attacker may construct a
hybrid, two-level system, with a small botnet consisting
of a number of Web servers, each controlling a number of
puppets.

To estimate the firepower of puppetnets we could rely
on direct measurements of site viewers for a large frac-
tion of the Web sites in the Internet. Although this would
be ideal in terms of accuracy, to the best of our knowl-
edge there is no published study that provides such data.
Furthermore, carrying out such a large-scale study seems
like a daunting task. We therefore obtain a rough esti-
mate using “second-hand” information from Web site re-
ports and Web statistics organizations. There are several
sources providing data on the number of daily or monthly
visitors:

• Many sites use tools such as Webalizer [8] and Web-
Trends [24] to generate usage statistics in a stan-
dard format. This makes them easy to locate through
search engines and to automatically post-process.
We have obtained WebTrends reports for 249 sites
and Webalizer reports for 738 sites, covering a one-
month period in December 2005. Although these
sites may not be entirely random, as the sampling
may be influenced by the search engine, we found
that most of them are non-commercial sites with lit-
tle content and very few visits.

• Some Web audit companies such as ABC Electronic
provide public databases for a fairly large number of
their customers [3]. These sites include well-known
and relatively popular sites. We obtained 138 sam-
ples from this source.

• Alexa [5] tracks the access patterns of several mil-
lion users through a browser-side toolbar and pro-
vides, among other things, statistics on the top-500
most popular sites. Although Alexa statistics have
been criticized as inaccurate because of the relatively
small sample size [7], this problem applies mostly to

less popular sites and not the top-500. Very few of
these sites are tracked by ABC Electronic.3

We have combined these numbers to get an estimate
on the number of visitors per day for different Web sites.
Relating the number of visitors per day to the number of
site viewers is relatively straightforward. Recall that Lit-
tle’s law [35] states that if λ is the arrival rate of clients
in a queuing system and T the time spent in the system,
then the the number of customers active in the system N
is N = λT .

To obtain the number of site viewers we also need, for
each visit to a Web site, the time spent by users viewing
pages on that site. None of the sources of Web site pop-
ularity statistics mentioned above provide such statistics.
We therefore have to obtain a separate estimate of Web
browsing times, making the assumption that site popular-
ity and browsing times are not correlated in a way that
could significantly distort our rough estimates.

Note that although we base our analysis on estimates
of “typical” Web site viewing patterns, the attacker may
also employ methods for increasing viewing times, such
as incentivizing users (e.g., asking users to keep a pop-up
window open for the download to proceed), slowing down
the download of legitimate pages, and providing more in-
teresting content in the case of a malicious Website.

Web session time measurements based entirely on
server log files may not accurately reflect the time spent
by users viewing pages on a particular Web site. These
measurements compute the session time as the differ-
ence between the last and first request to the Web site by
a particular user, and often include a timeout threshold

3Alexa only provides relative measures of daily visitors as a fraction
of users that have the Alexa toolbar installed, and not absolute numbers
of daily visitors. To obtain the absolute number of daily visitors we
compare the numbers from Alexa to those from ABC Electronic, for
those sites that appear on both datasets. This gives us a (crude) estimate
of the Internet population, which we then use to translate visit counts
from relative to absolute.

4

between requests to distinguish between different users.
The remote server usually cannot tell whether a user is
actively viewing a page or whether he has closed the
browser window or moved to a different site. As we have
informally observed, many users leave several browser
instances open for long periods of time, we were con-
cerned that Web session measurements may not be reli-
able enough by themselves for the purposes of this study.
We thus considered the following three data sources for
our estimates:

• We obtain real browsing times through a small-scale
experiment: we developed browser extensions for
both IE and Firefox that keep track of Web page
viewing times and regularly post anonymized usage
reports back to our server. The experiment involved
roughly 20 users and resulted in a dataset of roughly
9,000 page viewing reports.

• We instrumented all pages on the server of our insti-
tution to include Javascript code that makes a small
request back to the server every 30 seconds. This al-
lows us to infer how long the browser points to one
of the instrumented pages. We obtained data on more
than 3,000 sessions over a period of two months
starting January 2006. These results are likely to be
optimistic, as the instrumented Web site is not par-
ticularly deep or content-heavy.

• We analyzed the KDD Cup 2000 dataset [29] which
contains clickstream and purchase data from a de-
funct commercial Web site. The use of cookies, the
size of the dataset, and the commercial nature of the
measured Website suggest that the data are reason-
ably representative for many Web sites.

• We obtained, through a search engine, WebTrends
reports on Web session times from 249 sites, sim-
ilar to the popularity measurements, which provide
us with mean session time estimates per site.

The distributions of estimated session times, as well
as the means of the distributions, are shown in Figure
3. As suspected, the high-end tail of the distribution for
the more reliable browser-tracking measurements is sub-
stantially larger than that for other measurement methods.
This confirms our informal observation that users tend to
leave browser windows open for long periods of time, and
our concern that logfile-based session time measurements
may underestimate viewing times. The Javascript tracker
numbers also appear to confirm this observation. As in
the case of DDoS, we are interested in the mean num-
ber of active viewers. Our results show that because of
the high-end tails, the mean time that users keep pages on

their browser is around 74 minutes, 6-13 times more than
the session time as predicted using logfiles.4

From the statistics on daily visits and typical page view-
ing times we estimate the size of a puppetnet. The re-
sults for the four groups of Web site popularity measure-
ments are shown in Figure 4. The main observation here
is that puppetnets appear to be comparable in size to bot-
nets. Most top-500 sites appear highly attractive as targets
for setting up puppetnets, with the top-100 sites able to
form puppetnets controlling more than 100,000 browsers
at any time. The sizes of the largest potential puppetnets
(for the top-5 sites) seem comparable to the largest botnets
seen [27], at 1-2M puppets. Although one could argue that
top sites are more likely to be secure, the figures for sites
other than the top-500 are also worrying: More than 20%
of typical commercial sites can be used for puppetnets of
10,000 nodes, while 4-10% of randomly selected sites can
be popular enough for hosting puppetnets of more than
1,000 nodes.

As discussed previously, however, the key question is
not how big a puppetnet is but whether the firepower is
sufficient enough for typical DDoS scenarios. To estimate
the DDoS firepower of puppetnets we first need to deter-
mine how much traffic a browser can typically generate
under the attacker’s command.

We experimentally measure the bandwidth generated
by puppetized browsers, focusing initially only on ingress
bandwidth, since it is harder to control. Early experiments
with servers and browsers in different locations (not pre-
sented here in the interest of space) show that the main
factor affecting DoS strength is the RTT between client
and server. We therefore focus on precisely quantify-
ing DoS strength in a controlled lab setting, with differ-
ent line speeds and network delays emulated using dum-
mynet [43], and an Apache Web server running on the
victim host. We consider two types of attacks: a simple
attack aiming to maximize SYN packets (maxSYN), and
one aiming to maximize the ingress bandwidth consumed
(maxURL). For the maxSYN attack, the sources of ten
Javascript image objects are set to be non-existent URLs
repeatedly every 50 milliseconds. Upon renewal of the
image source, old connections are stalled and new con-
nections are established. For the maxURL attack we load
a page with several thousand requests for non-existent
URLs of 2048 bytes each (as IE can handle URLs of up
to 2048 characters). The link between puppet and server
was set to 10 Mbit/s in all experiments.

In Figure 5, the ingress bandwidth of the server is plot-

4Note that the WebTrends distribution seems to have much lower
variance and a much higher median than the other two sources. This is an
artifact, as for WebTrends we have a distribution of means for different
sites, rather than the distribution of session times.

5

2 4 8 16 32 64 128 256 5121024
RTT (logscale − msec)

16
32
64

128
256

512
1024
2048

5000

B
an

dw
id

th
 (

K
bi

t/s
)

MaxURL (Firefox)
MaxURL (MSIE)
MaxSYN (Firefox)
MaxSYN (MSIE)

Figure 5: Ingress bandwidth consumed by one puppet vs.
RTT between browser and server

Firefox Explorer
maxSYN 2 aliases 83.97 Mbit/s 106.30 Mbit/s
maxSYN 3 aliases 137.26 Mbit/s 173.28 Mbit/s
maxURL 2 aliases 664.74 Mbit/s 502.06 Mbit/s
maxURL 3 aliases 1053.79 Mbit/s 648.33 Mbit/s

Figure 6: Estimated bandwidth of ingress DDoS from 1000
puppets

ted against the RTT between the puppet and the server,
for the case of 3 aliases. The effectiveness of the attack
decreases for high RTTs, as requests spend more time
“in-flight” and the connection limit to the same server is
capped by the browser. For the maxSYN experiment, a
puppet can generate up to 300 Kbit/s to 2 Mbit/s when
close to the server, while for high RTTs around 250 msec
the puppet can generate only around 60 Kbit/s. For the
maxURL attack, these numbers become 3-5 Mbit/s and
200-500 Kbit/s respectively. The results seem to differ for
both browsers: IE is more effective for maxSYN, while
Firefox is more effective for maxURL. We have not been
able to determine the cause of the difference, mostly due
to the lack of source code for IE. The same figures apply
for slower connections, with RTTs remaining the domi-
nant factor determining puppet DoS performance.

Using the measurements of Figure 5, the distribution of
RTTs measured in [49] and the capacity distribution from
[47], we estimate the firepower of a 1000-node puppetnet,
for different aliasing factors, as shown in Table 6. From
these estimates we also see that around 1000 puppets are
sufficient for consuming a full 155 Mbit/s link using SYN
packets alone, and only around 150 puppets are needed for
a maxURL attack on the same link. These estimates sug-
gest that puppetnets can launch powerful DDoS attacks
and should therefore be considered as a serious threat.

Considering the analysis above, we expect the follow-
ing puppetnet scenarios to be more likely. An attacker
owning a popular Web page can readily launch puppet-
net attacks; many of the top-500 sites are highly suspect
offering “warez” and other illegal downloads. Further-
more, we have found that some well-known underground
sites, not listed in the top-500, can create puppetnets of
10,000-70,000 puppets (see [33]). Finally, the authors of
reference [60] report that by scanning the most popular
one million Web pages according to a popular search en-
gine, they found 470 malicious sites, many of which serve
popular content related to celebrities, song lyrics, wallpa-
pers, video game cheats, and wrestling. These malicious
sites were found to be luring unsuspected users with the

purpose of installing malware on their machines by ex-
ploiting client-side vulnerabilities. The compromised ma-
chines are often used to form a botnet, but visits to these
popular sites could be used for staging a puppetnet attack
instead.

Another way to stage a puppetnet attack is by compro-
mising and injecting puppetnet code to a popular Web
site. Although popular sites are more likely to be se-
cure, checking the top-500 sites from Alexa against the
defacement statistics from zone-h[63] reveals that in the
first four months of 2006 alone, 7 pages having the same
domain as popular sites were defaced. For the entire year
2005 this number reaches 18. We must note, however, that
the defaced pages were usually not front pages, and there-
fore their hits are likely to be less than those of the front
pages. We also found many of them running old versions
of Apache and IIS, although we did not go as far as run-
ning penetration tests on them to determine whether they
were patched or not.

2.2 Worm propagation

Puppetnets can be used to spread worms that target vul-
nerable Web sites through URL-encoded exploits. Vul-
nerabilities in Web applications are an attractive target for
puppetnets as these attacks can usually be encoded in a
URL and embedded in a Web page. Web applications
such as blogs, wikis, and bulletin boards are now among
the most common targets of malicious activity captured
by honeynets. The most commonly targeted applications
according to recent statistics [41] are Awstats, XMLRPC,
PHPBB, Mambo, WebCalendar, and PostNuke.

A Web-based worm can enhance its propagation with
puppetnets as follows. When a Web server becomes in-
fected, the worm adds puppetnet code to some or all of
the Web pages on the server. The appearance of the pages
could remain intact, just like in our DDoS attack, and each
unsuspected visitor accessing the infected site would au-
tomatically run the worm propagation code. In an anal-
ogy to real-world diseases, Web servers are hosts of the

6

Infected

Web server

Worm infection

attempts

Victim

sites

Victim

sites

puppets

Worm infection

attempts

(a) client+server

Infected

Web server

Victim

sites

Victim

sites

puppets

Worm infection

attempts

(b) client-only

Figure 7: Two different ways that puppetnets could be used for worm propagation: (a) illustrates an infected server that
uses puppets to propagate the worm, and (b) a server that propagates only through the puppet browsers.

worm while browsers are carriers which participate in
the propagation process although they are not vulnerable
themselves. Besides using browsers to increase the aggre-
gate scanning rate, a worm could spread entirely through
browsers. This could be particularly useful if behavioral
blockers prevent servers from initiating outbound connec-
tions. Furthermore, puppetnets could help worms pene-
trate NAT and firewall boundaries, thereby extending the
reach of the infection to networks that would otherwise
be immune to the attack. For example, the infected Web
server could instruct puppets to try propagating on private
addresses such as 192.168.x.y. The scenarios for worm
propagation are shown in Figure 7.

2.2.1 Analysis of worm propagation

To understand the factors affecting puppetnet worm prop-
agation we first utilize an analytical model, and then pro-
ceed to measure key parameters of puppetnet worms and
use simulation to validate the model and explore the re-
sulting parameter space.
Analytical model: We have developed an epidemiolog-
ical model for worm propagating using puppetnets. The
details of our model are described elsewhere [33]. Briefly,
we have extended classical homogeneous models to ac-
count for how clients and servers contribute to worm prop-
agation in a puppetnet scenario. The key parameters of the
model are the browser scanning rate, the puppetnet size,
and the time spent by puppets on the worm-spreading Web
page.
Scanning performance: If the attacker relies on simple
Web requests, the scanning rate is constrained by the de-
fault browser connection timeout and limits imposed by
the OS and the browser on the maximum number of out-
standing connections. In our proof-of-concept attack, we
have embedded a hidden HTML frame with image ele-
ments into a normal Web page, with each image element

pointing to a random IP address with a request for the
attack URL. Note that the timeout for each round of in-
fection attempts can be much lower than the time needed
to infect all possible targets (based on RTTs). We assume
that the redundancy of the worm will ensure that any po-
tential miss from one source is likely to be within reach
from another source.

Experimentally, we have found that both IE and Fire-
fox on an XP SP2 platform can achieve maximum worm
scanning rates of roughly 60 scans/min, mostly due to
OS connection limiting. On other platforms, such as
Linux, we found that a browser can perform roughly 600
scans/min without noticeable impact on regular activities
of the user. These measurements were consistent across
different hardware platforms and network connections.
Impact on worm propagation: We simulate a puppetnet
worm outbreak and compare results with the prediction
of our analytical model. We consider CodeRed [12] as
an example of a worm targeting Web servers and use its
parameters for our experiments. To simplify the analysis,
we ignore possible human intervention such as patching,
quarantine, and the potential effect of congestion resulting
from worm activity.

We examine three different scenarios: (a) a normal
worm where only compromised servers can scan and in-
fect other servers, (b) a puppetnet-enhanced worm where
both the compromised servers and their browsers propa-
gate the infection, and (c) a puppetnet-only worm where
servers only push the worm solely through puppets to
achieve stealth or bypass defenses.

We have extended a publicly available CodeRed sim-
ulator [64] to simulate puppetnet worms. We adopt the
parameters of CodeRed as used in [64]: a vulnerable
population of 360,000 and a server scanning rate of 358
scans/min. In the simulation, we directly use these pa-
rameters, while in our analytical model, we map these pa-
rameters to analytical model parameters and numerically

7

Time (minutes)
0 100 200 300 400 500 600

F
ra

ct
io

n
of

 in
fe

ct
ed

 h
os

ts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Server only

Client only

Client + Server

Simulation
Analytical model

Figure 8: Worm propagation with pup-
petnet

Client scan rate (scans/min)
0 50 100 150 200 250 300

T
im

e
to

 9
0%

 in
fe

ct
io

n
(m

in
ut

es
)

0

100

200

300

400

500

600

700

800

Client only
Server only
Client+server

Figure 9: Worm infection for different
browser scan rates

Mean number of concurrent clients at web server
0 50 100 150 200

T
im

e
to

 9
0%

 in
fe

ct
io

n
(m

in
ut

es
)

0

100

200

300

400

500

600

700

800

Client only
Server only
Client+server

Figure 10: Worm infection versus pop-
ularity of Web servers

solve the differential equations. Note that our model is
a special case of the Kephart-White Susceptible-Infected-
Susceptible (SIS) model [28] with no virus curing. The
compromise rate is K = β × 〈k〉 where β is the virus
birth rate defined on every directed edge from an infected
node to its neighbors, and 〈k〉 is the average node out-
degree. Assuming the Internet is a fully connected net-
work, 〈k〉CodeRed = 360, 000 and βCodeRed,server =
358/232, we have Ks = 0.03. Our simulation and an-
alytical model also include the delay in accessing a Web
page as users have to click or reload a newly-infected Web
page to start participating in worm propagation.

We obtain our simulation results by taking the mean
over five independent runs. For this experiment, we use
typical parameters measured experimentally: browsers
performing 36 scans/min (i.e., an order of magnitude
slower than servers), and Web servers with about 13 con-
current users, and an average page holding time of 15 min-
utes. To study the effect of these parameters, we vary their
values and estimate worm infection time as shown in Fig-
ures 9 and 10.

Figure 8 illustrates the progress of the infection over
time for the three scenarios. In all cases the propaga-
tion process obeys the standard S-shaped logistic growth
model. The simulated virus propagation matches reason-
ably well with the analytical model. Both agree on a worm
propagation time of 50 minutes for holding times in the or-
der of th = 15min (that is, compared to the case of zero
holding time). A client-only worm can perform as well
as a normal worm, suggesting that puppetnets are quite
effective at propagating worm epidemics.

Figure 9 illustrates the time needed to infect 90% of
the vulnerable population for different browser scanning
rates. When browsers scan at 45 scans/min, the client-
only scenario is roughly equivalent to the server-only sce-
nario. At the maximum scan rate of this experiment
(which is far more than the scan rate for IE, but only a
third of the scan rate for Linux), a puppetnet can infect
90% of the vulnerable population within 19 minutes. This

is in line with Warhol worms and an order of magnitude
faster than CodeRed.

Figure 10 confirms that the popularity of compromised
servers plays an important role in worm performance. The
break-even point between the server-only and client-only
cases is when Web servers have 16 concurrent clients on
average. For large browser scanning rate or highly pop-
ular compromised servers, the client-only scenario con-
verges to the client-server scenario. That means that in-
fection attempts launched from browsers are so powerful
that they dominate the infection process.

Finally, in a separate experiment we found that if the
worm uses a small initial hitlist to specifically target busy
Web servers with more than 150 concurrent visitors, the
infection time is reduced to less than two minutes, similar
to flash worms [50].

2.3 Reconnaissance probes

We discuss how malicious Web sites can orchestrate
distributed reconnaissance probes. Such probes can be
useful for the attacker to locate potential targets before
launching an actual attack. The attacker can thereby op-
erate in stealth, rather than risk triggering detectors that
look for aggressive opportunistic attacks. Furthermore, as
in worm propagation, puppets can be used to scan behind
firewalls, NATs and detection systems. Finally, probes
may also enable attackers to build hitlists that have been
shown to result in extremely fast-spreading worms[50].

As with DDoS, the attacker installs a Web page on the
malicious Web site that contains a hidden HTML frame
that performs all the attack-related activities. The security
model of modern browsers imposes restrictions on how
the attacker can set up probing. For instance, it is not pos-
sible to ask the browser to request an object from a remote
server and then forward the response back to the malicious
Website. This is because of the so-called “same domain”
(or “same origin”) policy [46], which is designed to pre-
vent actions such as stealing passwords and monitoring

8

user activity. For the same reason, browsers refuse access
to the contents of an inline frame, unless the source of the
frame is in the same domain with the parent page.

Unfortunately, there are workarounds for the attacker to
indirectly infer whether a connection to a remote host is
successful. The basic idea is similar to the timing attack
of [19]. We “sandwich” the probe request between two
requests to the malicious Web site. For example:

We can infer whether the target is responding to a pup-
pet by measuring the time difference between the first and
third request. If the target does not respond, the differ-
ence will be either very small (e.g., because of an ICMP
UNREACHABLE message) or very close to the browser
request timeout. If the target is responsive, then the differ-
ence will vary but is unlikely to coincide with the timeout.

Because browsers can launch multiple connections in
parallel, the attacker needs to serialize the three requests.
This can be done with additional requests to the malicious
Web site in order to consume all but one connection slots.
However, this would require both discovering and also
keeping track of the available connection slots on each
browser, making the technique complex and error-prone.
A more attractive solution is to employ Javascript, as mod-
ern browsers provide hooks for a default action after a
page is loaded (the onLoad handler) and when a request
has failed (the onError handler). Using these controls,
the attacker can easily chain requests to achieve serial-
ization without the complexity of the previous technique.
We therefore view the basic sandwich attack as a backup
strategy in case Javascript is disabled.

We have tested this attack scenario as shown in Fig-
ure 11. In a hidden frame, we load a page containing sev-
eral image elements. The script points the source of each
image to the reconnaissance target. Setting the source of
an image element is an asynchronous operation. That is,
after we set the source of an image element, the browser
issues the request in a separate thread. Therefore, the re-
quests to the various scan targets start at roughly the same
time. After the source of each image is set, we wait for a
timeout to be processed through the onLoad and onError
handlers for every image. We identify the three cases (e.g.,
unreachable, live, or non-responsive) similar to the sand-
wich attack but instead of issuing a request back to the ma-
licious Web site to record the second timestamp we collect
the results through the onLoad/onError handlers.

After the timeout expires, the results can be reported to
the attacker, by means such as embedding timing data and
IP addresses in a URL. The script can then proceed to an-

other round of scanning. Each round takes time roughly
equal to the timeout, which is normally controlled by the
OS. It is possible for the attacker to use a smaller time-
out through the setTimeout() primitive, which speeds up
scanning at the expense of false negatives. We discuss this
trade-off in Section 2.3.1.

There are both OS and browser restrictions on the num-
ber of parallel scans. On XP/SP2, the OS enforces a limit
of no more than ten “outstanding”5 connection requests at
any given time [6]. Some browsers also impose limits on
the number of simultaneous established connections. IE
and Opera on Windows (without SP2), and browsers such
as Konqueror on Linux, impose no limits, while Firefox
does not allow more than 24. The attacker can choose
between using a safe common-denominator value or em-
ploying Javascript to identify the OS and browser before
deciding on the number of parallel scans.

The same process can be used to identify services other
than Web servers. When connecting to such a service, the
browser will issue an HTTP request as usual. If the remote
server responds with an error message and closes the con-
nection, then the resulting behavior is the same as probing
Web servers. This is the case for many services, including
SSH: the SSH daemon will respond with an error message
that is non-HTTP-compliant and cannot be understood by
the browser, the browser will subsequently display an er-
ror page, but the timing information is still relevant for
reconnaissance purposes. This approach, however, does
not work for all services, as some browsers block cer-
tain ports: IE blocks ports FTP, SMTP, POP3, NNTP
and IMAP to prevent spamming through Web pages (we
return to this problem in Section 2.4); Firefox blocks a
larger number of ports[1]; interestingly, Apple’s Safari
does not impose any restrictions. The attacker can rely on
the “User-agent” string to trigger browser-specific code.

It is important to note that puppetnets are limited to de-
termining only the liveness of a remote target. As the
same-domain policy restricts the attack to timing infor-
mation only, the attack script cannot relay back to the at-
tacker information on server software, OS, protocol ver-
sions, etc., which are often desirable. Although this is a
major limitation, distributed liveness scans can be highly
valuable to an attacker. An attacker could use a puppet-
net to evade detectors that are on the lookout for excessive
numbers of failed connections, and then use a smaller set
of sources to obtain more detailed information about each
live target.

5A connection is characterized outstanding when the SYN packet has
been sent but no SYN+ACK has been received.

9

URL 1 URL nURL 2 URL 3

timeout

200ms

17 sec

. . .

URL n+1 URL 2nURL n+2 URL n+3 . . .

timeout

12 sec

4 sec

alive

alive

timeout reachedtimeout reached

timeout reached timeout reached

alive

unreachable

Figure 11: Illustration of reconnaissance
probing method.

1 2 4 8 16 32
Download time (logscale − seconds)

P
er

ce
nt

ag
e

of
 d

om
ai

ns

0

10

20

30

40

50

60

70

80

90

100

Institution 1
Institution 2
Cable
ADSL/384

Figure 12: CDF of time to get main
index from different sites.

0.1 0.5 1 2 4 8 16 25
Timeout (logscale − seconds)

S
er

ve
rs

 fo
un

d
pe

r
pu

pp
et

 p
er

 m
in

ut
e

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7

Institution 1
Institution 2
Cable
ADSL/384

Figure 13: Discovery rate, per pup-
pet.

2.3.1 Analysis of reconnaissance probing

There is a subtle difference between worm scanning and
reconnaissance scanning. In worm scanning, the attacker
can opportunistically launch probes and does not need to
observe the result of each probe. In contrast, reconnais-
sance requires data collection and reporting.

There are two parameters in the reconnaissance attack
that we need to explore experimentally: the timeout for
considering a host non-responsive, and the threshold for
considering a host unreachable. The attacker can tune
the timeout and trade off accuracy for speed of data col-
lection. The unreachable threshold does not affect scan-
ning speed, but if it is too large it may affect accuracy,
as it would be difficult to distinguish between unreach-
able hosts and live hosts. Both parameters depend on the
properties of the network through which the browser is
performing the scans.

In our first experiment we examine how the choice of
timeout affects reconnaissance speed and accuracy and
whether the unreachable threshold may interfere with re-
connaissance accuracy. As most browsers under the at-
tacker’s control are expected to stay on the malicious page
only for a few minutes, the attacker may want to maximize
the scanning rate. If the timeout is set too low, the attacker
will not be able to discover hosts that would not respond
within the timeout.

Note that in the case of XP/SP2, the timeout must be
higher than the default connection timeout of the OS,
which is 25 seconds. The reason is that the scanning
process has to wait until outstanding connections of the
previous round are cleared before issuing new ones. The
analysis below is therefore more relevant to non-XP/SP2
browsers. We succeeded, in part, in circumventing the
XP/SP2 connection limit by having the browser “refresh”
the scan page. This caused connection state to be released,
presumably because of a request to close the socket.
Oddly, this workaround only worked for small numbers
of parallel connections. At this point we do not fully un-

derstand how the connection limiter operates, and whether
the workaround can be perfected.

We measure the time needed to download the main
index file for roughly 50,000 unique Websites, obtained
through random queries to a search engine. We perform
our measurements from four hosts in locations with dif-
ferent network characteristics. The distributions of the
download times are presented in Figure 12. We see that
in all cases, a threshold of 200-300 msec would result
in a loss of around 5% of the live targets, presumably
those within very short RTT distance from the scanning
browser. We consider this loss to be acceptable.

Recall that the goal of the attacker may be speed rather
than efficiency. That is, the attacker may not be inter-
ested in finding all servers, but finding a subset of them
very quickly. We use simulation, driven by our measured
distributions, to determine the discovery rate for a pup-
pet using different timeout values, assuming 200 msec as
the unreachable threshold. The results are summarized in
Figure 13. For the four locations in our study, the peak
discovery rate differs in absolute value, and is maximized
at different points, suggesting that obtaining optimal re-
sults would require effort to calibrate the timeout on each
puppet. However, all sources seem to perform reasonably
well for small timeouts of 1-2 seconds.

In our second experiment we look at a 2-day packet
trace from our institution and try to understand the be-
havior of ICMP unreachable notifications. We identify
roughly 23,000 distinct unreachable events. The RTTs for
these notifications were between 5 msec and 18 seconds.
Nearly 50% responded within 347 msec, which, consid-
ering the response times of Figure 12, would result in less
than 5% false negatives if used as a threshold. The re-
maining 50% of unreachables that exceed the threshold
will be falsely identified as live targets, but as reported in
[9], only 6.36% of TCP connections on port 80 receive
an ICMP unreachable as response. As a result, we expect
around 3% of the scan results to be false positives.

10

2.4 Protocols other than HTTP

One limitation of puppetnets is that they are bound to
the use of the HTTP protocol. This raises the question of
whether any other protocols can be somehow “tunneled”
on top of HTTP. This can be done, in some cases, using
the approach of [56, 13]. Briefly, it is possible to craft
HTML forms that embed messages to servers understand-
ing other protocols. The browser is instructed to issue
an HTTP POST request to the remote server. Although
the request contains the standard HTTP POST preamble,
the actual post data can be fully specified by the HTML
form. Thus, if the server fails gracefully when processing
the HTTP part of the request (e.g., ignoring them, perhaps
with an error message, but without terminating the ses-
sion), all subsequent messages will be properly processed.
Two additional constraints for the attack to work is that the
protocol in question must be text-based (since the crafted
request can only contain text) and asynchronous (since all
messages have to be delivered in one pass).

In this scenario, SMTP tunneling is achieved by wrap-
ping the SMTP dialogue in a HTTP POST request that
is automatically triggered through a hidden frame on the
malicious Web page. For IRC servers that do not re-
quire early handshaking with the user (e.g., the identd re-
sponse), a browser can be instructed to login, join IRC
channels and even send customized messages to the chan-
nel or private messages to pre-selected list of users sitting
in that channel. This feature enables the attacker to use
puppetnet for certain attacks such as triggering botnets,
flooding and social engineering. The method is pretty
similar to SMTP. An example of how a Web server could
instruct puppets to send spam is provided in [33].

Although this vulnerability has been discussed previ-
ously, its potential impact in light of a puppetnet-like at-
tack infrastructure has not been considered, and vendors
may not be aware of the implications of the underlying
vulnerability. We have found that although IE refuses out-
going requests to a small set of ports (including standard
ports for SMTP, NNTP, etc.) and Firefox blocks a more
extensive list of ports, Apple’s Safari browser as well as
IE5.2 on Mac OSX do not impose any similar port restric-
tions6. Thus, although the extent of the threat may not
be as significant as DDoS and worm propagation, popu-
lar Web sites with a large Apple/Safari user base can be
easily turned into powerful spam conduits.

6We have informed Apple about this vulnerability.

2.5 Exploiting cookie-authenticated services

A large number of Web-based services rely on cookies
for maintaining authentication state. A typical example is
Web-based mail services that offer a “remember me” op-
tion to allow return visits without re-authentication. Such
services could be manipulated by a malicious site that co-
erces visitors to post forms created by the attacker with
the visitors’ credentials. There are three constraints for
this attack. First, the inline frame needs to be able to post
cookies; this works on Firefox, but not IE. Second, the
attacker needs to have knowledge about the structure and
content of the form to be posted, as well as the target URL;
this depends on the site design. Finally, the attacker needs
to be able to instruct browsers to automatically post such
forms; this is possible in all browsers we tested.

We have identified sites that are vulnerable to this
attack.7 As proof-of-concept, we have successfully
launched an attack to one of our own accounts on such a
site. Although this seems like a wider problem (e.g., it al-
lows the attacker to forward the victim’s email to his site,
etc.), in the context of puppetnets, the attacker could be on
the lookout for visitors that happen to be pre-authenticated
to one of the vulnerable Web sites, and could use them for
purposes such as sending spam or performing mailbomb-
type DoS attacks.

Given the restriction to Firefox and the need to iden-
tify visitors that are pre-authenticated to particular sites, it
seems that this attack would only have significant impact
on highly popular sites, or moderately popular sites with
unusually high session times, or sites that happen to have
an unusually large fraction of Firefox visitors. Consid-
ering these constraints, the attack may seem weak com-
pared to the ubiquitous applicability of DoS, scanning,
and worm propagation. Nevertheless, none of these three
scenarios can be safely dismissed as unlikely.

2.6 Distributed malicious computations

So far we have described scenarios of puppetnets in-
volved in network-centric attacks. However, besides
network-centric attacks, it is easy to imagine browsers un-
willingly participating in malicious computations. This
is a form of Web-based computing which, to the best of
our knowledge, has not been considered as a platform for
malicious activity. Projects such as RC5 cracking [21],
use the Web as a platform for distributed computation but
this is done with the users’ consent. Most large-scale dis-
tributed computing projects rely on stand-alone clients,
similar to SETI@home [30].

7These sites include a very popular Web-based mail service, the
name of which we would prefer to disclose only upon request.

11

It is easy to instruct a browser to perform local compu-
tations and send the results back to the attacker. Computa-
tion can be done through Javascript, Active-X or Java ap-
plets. By default, Active-X does not appear attractive as it
requires user confirmation. Javascript offers more stealth
as it is lightweight and can be made invisible. Sneaking
Java applets into hidden frames on malicious Web sites
seems easy, and although the resources needed for instan-
tiating the Java VM might be noticeable (and an “Applet
loaded” message may be displayed on the status bar), it is
unlikely to be considered suspect by a normal user.

To illustrate the extent of the problem we measured the
performance of Javascript and Java applets for MD5 com-
putations. On a low-end desktop, the Javascript imple-
mentation can perform around 380 checksums/sec, while
the Java applet within the browser can compute roughly
434K checksums/sec – three orders of magnitude faster
than Javascript. Standalone Java can achieve up to 640K
checks/sec. In comparison, an optimized C implementa-
tion computes around 3.3M checks/sec. Hence, a 1,000-
node puppetnet can crack an MD5 hash as fast as a 128-
node cluster.

3 Defenses

In this section we examine potential defenses against
puppetnets. The goal is to determine whether it is feasible
to address the threat by tackling the source of the problem,
rather than relying on techniques that attempt to mitigate
the resulting attacks, such as DDoS, which may be hard
to implement right at a global scale.

We discuss various defense strategies and the tradeoffs
they offer. We concentrate on defenses against DDoS,
scanning and worm propagation. Detecting malicious
computations seems hard, and well beyond the scope of
this paper. Cookie-authenticated services seem trivial to
protect by adding non-cookie session state that is com-
municated to the browser when the user wishes to re-
authenticate.

Disabling Javascript The usual culprit, when it comes
to Web security problems, is Javascript, and it is often
suggested that many problems would go away if users
disable Javascript and/or Web sites refrain from using
it. However, the trade-off between quality content and
security seems unfavorable: the majority of Web sites
employ Javascript, there is growing demand for feature-
rich content, especially in conjunction with technologies
such as Ajax[20], and most browsers are shipped with
Javascript enabled. It is interesting to note, however, that

a recently-published Firefox extension that selectively en-
ables Javascript only for “trusted” sites [36] has been
downloaded 7 million times roughly one month after its
release on April 9th, 2006.

In the case of puppetnets, disabling Javascript could
indeed alter the threat landscape, but it would only re-
duce rather than eliminate the threat. The development of
our attacks suggests that even without Javascript, it would
still be feasible to launch DDoS, perform reconnaissance
probes and propagate worms, although the effectiveness
of the attacks would be at least one order of magnitude
less than with Javascript enabled. Considering these ob-
servations, disabling Javascript does not seem like an at-
tractive proposition towards completely eliminating the
puppetnet threat.

Careful implementation of existing defenses We ob-
serve that in most cases the attacks we developed were
quite sensitive to minor tweaks. That is, although sim-
ple versions of the attack were quite easy to construct,
maximizing their effectiveness required a lot more ef-
fort. Particularly the connection rate limiter implemented
in XP/SP2 had a profound effect on the performance of
worm propagation and reconnaissance. Unfortunately, we
were able to demonstrate that the rate limiter can be par-
tially bypassed. In particular, by reloading the core attack
frame we were able to clear the TCP connection cache,
presumably because a frame reload results in the under-
lying socket being closed and the TCP connection state
entry being removed.

In this particular case it appears easy to address the
problem by means of separating the actual connection
state table from the state of the connection rate limiter.
The rate limiter could either mirror the regular connection
state table but choose to retain entries for closed sock-
ets up to a timeout, or keep track of aggregate connec-
tion state statistics. This could reduce the effectiveness of
worm propagation of up to an order of magnitude.

Another case that suggests that existing defenses are
not always properly implemented is the Spam distribu-
tion attack described in Section 2.4. Although both IE
and Firefox have mitigated this problem, at least in part,
through blocking certain ports, Apple’s Safari and the
OSX version of IE5.2 did not properly address this known
vulnerability.

However, careful implementation of existing defenses
is insufficient for addressing the whole range of threats
posed by puppetnets.

Filtering using attack signatures We consider whether
it is practical to develop IDS/IPS signatures for puppetnet

12

attacks. In some cases it seems fairly easy to construct
such a signature. For example, in the case of puppetnet-
delivered spam it is easy to scan traffic for messages to the
SMTP port that contain evidence of both a HTTP POST
request and legitimate SMTP commands. This should
cover most other protocols tunneled through POST re-
quests.

Can we develop signatures for puppetnet DoS attacks?
We could consider signatures of malicious Web pages that
contain unusually high numbers of requests to third-party
sites. However, our example attack suggests that there are
many possible variations to the attack, making it hard to
obtain a complete set of signatures. Additionally, because
the attacks are implemented in HTML and Javascript, it
appears unlikely that simple string matching or even reg-
ular expressions would be sufficient for expressing the at-
tack signatures. Instead, more expensive analyzers, such
as HTML parsers, would be needed.

Furthermore, obfuscation of HTML and Javascript
seems to be both feasible and effective [52, 44], allow-
ing the attacker to compose obfuscated malicious Web
page on-the-fly. For example, one could use the docu-
ment.write() method to write the malicious page into an
array in completely random order before execution. This
makes the attack difficult to detect using static analysis
alone, a problem that is also found in shellcode polymor-
phism [14, 31, 42]. Although we must leave room for the
possibility that such a unusual use of document.write() or
similar approaches may be amenable to detection, such
analysis seems complex and is likely to be expensive and
error-prone.

Client-side behavioral controls Another possible de-
fense strategy is to further restrict browser policies for
accessing remote sites. It seems relatively easy to have
a client-side solution deployed with a browser update, as
browser developers seem to be concerned about security,
and the large majority of users rely on one among 2-3
browsers.

One way to restrict DoS, scanning and worm propaga-
tion is to establish bounds on how a Web page can instruct
the browser to access “foreign” objects, e.g., objects that
do not belong to the same domain. These resource bounds
should be persistent, to prevent attackers from resetting
the counters using page reloads. For similar reasons, the
bounds should be tied to the requesting server, and not to a
page or frame instance, to prevent attackers from evading
the restriction through multiple frames, chained requests,
etc.

We consider whether it makes sense to impose con-
trols on foreign requests from a Web page. We attempt

to quantify whether such a policy would break existing
Web sites, and what impact it would have on DDoS and
other attacks. We first look at whether we can limit the
total number of different objects (e.g., images, embedded
elements and frames) that the attacker can load from for-
eign servers, considering all servers to be foreign except
for the one offering the page. This restriction should be
enforced across multiple automatic refreshes or frame up-
dates, to prevent the attacker from resetting the counters
upon reaching the limit. (Counters would only be reset
only when a user clicks on a link.) Of course, this is likely
to “break” sites such as those that use automatic refresh to
update banner ads. Given that ads are loaded periodically,
e.g., one refresh every few minutes, it seems reasonable
to further refine the basic policy with a timeout (or leaky
bucket mechanism) that occasionally resets or tops-up the
counters.

To evaluate the effectiveness of this policy, we have
obtained data on over 70,000 Web pages by crawling
through a search engine. For each Web page we obtain
the number of non-local embedded object references. We
then compute for each upper bound N of non-local refer-
ences, the fraction of sites that would be corrupted should
such a policy be implemented, against the effective DoS
bandwidth of a 1000-node puppetnet under the same pol-
icy. A variation of the above policy involves a cap on
the maximum number of non-local references to the same
non-local server.

The results are shown in Figure 14. We observe that this
form of restriction is somewhat effective when compared
to the DDoS firepower of Figure 6, providing a 3-fold re-
duction in DDoS strength when trying to minimize dis-
ruption to Web sites. The strength of the attack, however,
remains significant, at 50 Mbit/s for 1000 puppets. Ob-
taining a 10x reduction in DDoS strength would disrupt
around 0.1% of all Web sites, with DDoS reduced to 10
Mbit/s. Obtaining a further 10x reduction seems imprac-
tical, as the necessary request cap would negatively af-
fect more than 10% of Web pages. The variation limiting
the max. number of requests to the same non-local server
also does not offer any notable improvement. Given the
need to defend against not only 1000-node but even larger
puppetnets, we conclude that although the improvement
offered is significant, this defense is not good enough to
address the DDoS threat.

The above policy only targets DDoS. To defend against
worms and reconnaissance probes, we look at the feasi-
bility of imposing limits on the number of distinct remote
servers to which embedded object references are made.
The cumulative histogram is shown in Figure 15. We
see that most Web sites access very few foreign domains:

13

0.001 0.01 0.1 1 10 100
Percentage of sites affected

100

1000

10000

100000
A

tta
ck

 b
an

dw
id

th
 (

K
bi

t/s
)

Limit on total number
of non−local objects
Limit on max. number of objects
from same non−local server

Figure 14: Effectiveness of remote re-
quest limits

Number of foreign domains
0 5 10 15 20

C
um

ul
. f

ra
ct

io
n

of
 p

ag
es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 15: Cumul. histogram of foreign
domains referenced by Web sites

Distribution Firepower
KDDCUP 47.03 Kbit/sec
Google/Webtrends 14.39 Kbit/sec
JSTracker 3.05 Kbit/sec
Web tracking 2.87 Kbit/sec

Figure 16: Impact of ACT defense on
1000-puppet DDoS attack

around 99% of Web sites access 11 or less foreign do-
mains; around 99.94% of Web sites access less than 20
foreign domains. Not visible on the graph is a handful
of Web sites, typically “container” pages, that access up
to 33 different domains. Based on this profile, it seems
reasonable to implement a restriction of around 10 for-
eign domains, keeping in mind that the limit should be set
as low as possible, given that a large fraction of puppets
have a very short lifetime in the system. Note that sites
that are out of profile could easily avoid violating the pro-
posed policy, by proxying requests to the remote servers.
We repeated the worm simulation of Section 2.2.1 to de-
termine the impact of such a limit on worm propagation.
As expected, this policy almost completely eliminates the
speed-up for the client-server worm compared to server-
only, as puppets can perform only a small fraction of the
scans they could perform without this policy. Similar ef-
fects apply to scanning as well.

Unfortunately, the above heuristic can be circumvented
if the attacker has access to a DNS server. The attacker
could map all foreign target hosts to identifiers that ap-
pear to be in the same domain but are translated by the
attacker’s DNS server to IP addresses in the foreign do-
main. Attacks aiming at consuming egress bandwidth
from servers that rely on the “Host:” tag in the HTTP
request would be less effective, but all other attacks are
not affected.

Server-side controls and puppetnet tracing Consider-
ing the DoS problem and the difficulty in coming up with
universally acceptable thresholds for browser-side con-
nection limiting, one could argue that it is the Web de-
velopers who should specify how their sites are accessed
by third parties.

One way for doing that is for servers to use the “Ref-
erer” tag of HTTP requests to determine whether a partic-
ular request is legitimate and compliant, similar to [58].
The server could consult the appropriate access policy and

decide whether to honor a request. This approach would
protect servers against wasting their egress bandwidth, but
does not allow the server to exercise any control over in-
coming traffic.

Another use of referrer information can be to trace the
source of the puppetnet attack, and take action to shut-
down the control Web site. That is, puppetnets have a
single point of failure. However, this process is relatively
slow as it involves human coordination. Thus, attackers
may already have succeeded in disrupting service. More-
over, even when the controlling site has been taken down,
existing puppets will continue to perform an attack – the
attack will only subside once all puppet browsers have
been pointed elsewhere, which is likely to be in the order
of 10-60 minutes, based on the viewing time estimates of
Section 2.1.1.

However, as shown in [33], we have been able to cir-
cumvent the default behavior of browsers that set refer-
rer information, making puppetnet attacks more difficult
to filter and trace. It is unclear at this point if minor
modifications could address the loss of referrer-based de-
fenses. Thus, referrer-based filtering does not currently
offer much protection and may not be sufficient, even in
the longer-term, for adequately protecting against puppet-
net attacks.

Server-directed client-side controls To protect against
unauthorized incoming traffic from puppets, we exam-
ine the following approach. If we assume that the at-
tacker cannot tamper with the browser software, a server
can communicate site access policies to a browser dur-
ing the first request. In our implementation, we embed
Access Control Tokens (ACTs) in the server response
through an extension header (“X-ACT:”) that is either a
blanket “permit/deny” or a Javascript function, similar to
proxy autoconfiguration[38]. This script is executed on
the browser side for each request to the server to deter-
mine whether a request is legitimate or not. The use of

14

Javascript offers flexibility for site developers to design
their own policies, without having to standardize specific
behaviors or a new policy language.

Perhaps the simplest policy would be to ask browsers
to completely stop issuing requests if the server is under
attack. More fine-grained policies might restrict the total
number or rate of requests in each session, or may impose
custom restrictions based on target URL, referrer infor-
mation, navigation path, etc. One could envision a tool
for site owners to extract behavioral profiles from existing
logs, and then turn these profiles into ACT policies. For
a given policy, the owners can also compute the exposure
in terms of potential puppetnet DDoS firepower, using the
same methodology used in this paper. The specifics of
profiling and exposure estimation are beyond the scope of
this paper.

ACTs require at least one request-response pair for the
defense to kick in, given that the browser may not have
communicated with the server in the past. After the first
request, any further unauthorized requests can be blocked
on the browser side. Thus, ACTs can reduce the DoS at-
tack strength to one request per puppet, which makes them
quite attractive. On the other hand, this approach requires
modifications to both servers and clients.

To illustrate the effectiveness of this approach, we esti-
mate, using simulation, the firepower of a 1000-puppet
DDoS attack where all users support ACTs on their
browsers. The puppet viewing time on the malicious site
is taken from the distributions shown in Figure 3. The vic-
tim site follows the most conservative policy: if a request
comes from a non-trusted referrer then user is not allowed
to make any further requests. The results are summarized
in Table 16. As the attack is restricted to one request per
user, the firepower is limited to only a few Kbit/sec.

In theory, it is possible to prevent the first unauthorized
request to the target if policies are communicated to the
browser out-of-band. One could directly embed ACTs in
URL references, through means such as overloading the
URL. Given that an ACT needs to be processed by the
browser, it must fully specify the policy “by value”. To
prevent the attacker from tampering with the ACT, it must
be cryptographically signed by the server. Besides being
cumbersome, this also requires the browser to have a pub-
lic key to verify the ACTs, which makes this proposal less
attractive.

Patrolling the Web for puppetnets Another direction
is to crawl the Internet for malicious Web sites employ-
ing puppetnet attacks, similar to how honeymonkeys are
used to discover other attacks [60]. To determine whether
a Web site contains an attack, the honeymonkey system

would have to be furnished with additional signatures and
detection heuristics that are roughly equivalent to the tech-
niques we described previously. Furthermore, it might be
useful to launch multiple instances of the instrumented
browser in order to capture the aggregate behavior of the
puppetnet. Naturally, this approach inherits some of the
deeper constraints of the patrol approach, such as provid-
ing a window of opportunity for the attacker between de-
ployment of the attack and the next scan by the honey-
monkey. Nevertheless, it might be worth considering as
a short-term measure until other, more proactive defenses
are widely deployed.

4 Related Work

Web security has attracted a lot of attention in recent
years, considering the popularity of the Web and the ob-
served increase in malicious activity. Rubin et al. [45] and
Claessens et al. [16] provide comprehensive surveys of
problems and potential solutions in Web security, but do
not discuss any third-party attacks like puppetnets. Sim-
ilarly, most of the work on making the Web more secure
focuses on protecting the browser and its user against at-
tacks by malicious Web sites (c.f., [32, 25, 18, 15, 26]).

The most well-known form of HTML tag misuse is
known as cross-site scripting (or XSS) and is discussed
in a CERT advisory in 2000 [11]. The advisory focuses
primarily on the threat of attackers injecting scripts into
sites such as message boards, and the implications that
such scripts could have on users browsing those sites, in-
cluding potential privacy loss. Although XSS and pup-
petnet attacks both exploit weaknesses of the Web secu-
rity architecture, there are two fundamental differences.
First, puppetnet attacks require the attacker to have more
control over a Web server, in order to maximize exposure
of users to the attack code. Injecting puppetnet code on
message boards in a XSS fashion is also an option, but
is less likely to be effective. The second important dif-
ference is that puppetnets exploit browsers for attacking
third parties, rather than attacking the browser executing
the malicious script.

During the course of our investigation we became
aware of a report [57] describing a DDoS attack that ap-
pears to be very similar to the one described in this paper.
The report, published in early December 2005, states that
a well-known hacker site was attacked using a so-called
“xflash” attack which involves a “secret banner” encoded
on Web sites with large numbers of visitors redirecting
users to the target. According to the same report, the at-
tack generated 16,000 SYN packets per second towards
the target. As we have not been able to obtain a sample of

15

the attack code, we cannot directly compare it to the one
described here. However, from the limited available tech-
nical information, it seems likely that attackers are already
considering puppetnet-style techniques as part of their ar-
senal.

Another example of a puppetnet-like attack observed
in the wild is “referer spamming” [23], where a malicious
Web site floods some other site’s logs to make its way
into top referer lists. The purpose of the attack is to trick
search engines that rank sites based on link counts, since
the victims will include the malicious sites in their top
referer lists.

The work that is most closely related to ours is a short
paper by Alcorn[4] discussing “XSS viruses”, developed
independently and concurrently[2] to our investigation.
The author of this work imagines attacks similar to ours,
focusing on puppetnet-style worm propagation and also
mentions the possibility of DDoS and spam distribution.
The main difference is that our work offers a more in-
depth analysis of each attack as well as concrete exper-
imental assessment of the severity of the threat. For
instance, a proof-of-concept implementation of an XSS
virus that is similar to our puppetnet worm is provided
albeit without analyzing its propagation characteristics.
Similarly, DDoS and spam are mentioned as potential at-
tacks but without any further investigation. The author
discusses referer-based filtering as a potential defense,
which, as we have shown, can be currently circumvented
and is also unlikely to be sufficient in the long term. One
major difference in the attack model is that we consider
popular malicious or subverted Web sites as the primary
vector for controlling puppetnets, while [4] focuses on
first infecting Web servers in order to launch other types
of attacks. Similar ideas are also discussed in [37]. While
the work of [4] and [37] are both interesting and impor-
tant, we believe that raising awareness and convincing the
relevant parties to mobilize resources towards addressing
a threat requires not just a sketch or proof-of-concept ar-
tifact of a potential attack, but extensive analysis and ex-
perimental evidence. In this direction, we hope that our
work provides valuable input.

The technique we used for sending spam was first de-
scribed by Jochen [56], although we independently de-
veloped the same technique as part of our investigation
on puppetnets. Our work goes one step further by ex-
ploring how such techniques can be misused by attack-
ers that control a large number of browsers. A scanning
approach that is somewhat similar to how puppets could
propagate worms is imagined by Weaver et al. in [61],
but only in the context of a malicious Web page directing
a client to create a large number of requests to nonexis-

tent servers with the purpose of abusing scan blockers.
The misuse of Javascript for attacks such as scanning be-
hind firewalls was independently invented by Grossman
and Niedzialkowski[22] while our study was in review[2].

The reconnaissance technique relies on the same prin-
ciple used for timing attacks against browser privacy [19].
Similar to our probing, this attack relies on timing ac-
cesses to a particular Web site. In our case, we use timing
information to infer whether the target site exists or is un-
reachable. In the case of the Web privacy attack, the infor-
mation is used to determine if the user recently accessed
a page, in which case it can be served instantly from the
browser cache.

Puppetnets are malicious distributed systems, much
like reflectors and botnets. Reflectors have been analyzed
extensively by Paxson [40]. Reflectors are regular servers
that, if targeted by appropriately crafted packets, can be
misused for DDoS attacks against third parties. The value
of reflectors lies both in allowing the attacker to bounce at-
tack packets through a large number of different sources,
hereby making it harder for the defender to develop the
necessary packet filters, as well as acting as amplifiers,
given that a single packet to a reflector can trigger the
transmission of multiple packets from the reflector to the
victim.

There are several studies discussing botnets. Cooke et
al. [17] have analyzed IRC-based botnets by inspecting
live traffic for botnet commands as well as behavioral pat-
terns. The authors also propose a system for detecting
botnets with advanced command and control systems us-
ing correlation of alerts. Other studies of botnets include
[55, 34]. From our analysis it becomes evident that bot-
nets are much more powerful than puppetnets and there-
fore a much larger threat. However, they are currently
attracting a lot of attention, and may thus become increas-
ingly hard to setup and manage, as end-point and network-
level security measures continue to focus on botnets.

5 Concluding remarks

We have explored a new class of Web-based attacks
that involve malicious Web sites manipulating their vis-
itors towards attacking third parties. We have shown how
attackers can set up powerful malicious distributed sys-
tems, called Puppetnets, that can be used for distributed
DoS, reconnaissance probes, worm propagation and other
attacks. We have attempted to quantify the effectiveness
of these attacks, demonstrating that the threat of puppet-
nets is significant. We have also discussed several direc-
tions for developing defenses against puppetnet attacks.
None of the strategies were completely satisfying, as most

16

of them offered only partial solutions. Nevertheless, if
implemented, they are likely to significantly reduce the
effectiveness of puppetnets.

Acknowledgments

We thank S. Sidiroglou, S. Ioannidis, M. Polychron-
akis, E. Athanasopoulos, E. Markatos, M. Greenwald, the
members of the Systems and Security Department at I2R
and the anonymous reviewers for very insightful com-
ments and suggestions on earlier versions of this work.
We also thank Blue Martini Software for the KDD Cup
2000 data.

References

[1] Mozilla Port Blocking. http://www.mozilla.org/
projects/netlib/PortBanning.html, December 2004.

[2] PuppetNet Project Web Site. http://s3g.i2r.a-
star.edu.sg/proj/puppetnets, September 2005.

[3] ABC Electronic. ABCE Database. http://www.abce.org.
uk/cgi-bin/gen5?runprog=abce/abce&noc=y, 2006.

[4] Wade Alcorn. The cross-site scripting virus. http:
//www.bindshell.net/papers/xssv/xssv.html.
Published: 27th September, 2005. Last Edited: 16th October
2005.

[5] Alexa Internet Inc. Global top 500. http://www.alexa.
com/site/ds/top_500, 2006.

[6] Starr Andersen and Vincent Abella. Changes to Functionality
in Microsoft Windows XP Service Pack 2, Part 2: Net-
work Protection Technologies. Microsoft TechNet, http:
//www.microsoft.com/technet/prodtechnol/
winxppro/maintain/sp2netwk%.mspx, November 2004.

[7] Anonymous. About the Alexa Toolbar and traffic monitoring ser-
vice: How accurate is Alexa? http://www.mediacollege.
com/internet/utilities/alexa/, 2004.

[8] Bradford L. Barrett. Home of the webalizer. http://www.
mrunix.net/webalizer, August 2005.

[9] Vincent Berk, George Bakos, and Robert Morris. Designing a
framework for active worm detection on global networks. In Pro-
ceedings of the IEEE International Workshop on Information As-
surance, March 2003.

[10] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource
Locators (URL). RFC 1738, December 1994.

[11] CERT. Advisory CA-2000-02: Malicious HTML Tags Em-
bedded in Client Web Requests. http://www.cert.org/
advisories/CA-2000-02.html, February 2000.

[12] CERT. Advisory CA-2001-19: ‘Code Red’ Worm Exploiting
Buffer Overflow in IIS Indexing Service DLL. http://www.
cert.org/advisories/CA-2001-19.html, July 2001.

[13] CERT. Vulnerability Note VU#476267: Standard HTML
form implementation contains vulnerability allowing malicious
user to access SMTP, NNTP, POP3, and other services via
crafted HTML page. http://www.kb.cert.org/vuls/
id/476267, August 2001.

[14] Ramkumar Chinchani and Eric Van Den Berg. A fast static anal-
ysis approach to detect exploit code inside network flows. In Pro-
ceedings of the International Symposium on Recent Advances in
Intrusion Detection (RAID), September 2005.

[15] N. Chou, R. Ledesma, Y. Teraguchi, and J.C. Mitchell. Client-side
defense against web-based identity theft. In Proceedings of the
11th Annual Network and Distributed System Security Symposium
(NDSS ’04), February 2004.

[16] Joris Claessens, Bart Preneel, and Joos Vandewalle. A tangled
world wide web of security issues. First Monday, 7(3), March
2002.

[17] Evan Cooke, Farnam Jahanian, and Danny McPherson. The Zom-
bie Roundup: Understanding, Detecting, and Disrupting Botnets.
In Proceedings of the 1st USENIX Workshop on Steps to Reducing
Unwanted Traffic on the Internet (SRUTI 2005), July 2005.

[18] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach.
Web Spoofing: An Internet Con Game. In Proceedings of the 20th
National Information Systems Security Conference, pages 95–103,
October 1997.

[19] Edward W. Felten and Michael A. Schneider. Timing attacks on
Web privacy. In Proceedings of the 7th ACM Conference on Com-
puter and Communications Security (CCS’00), pages 25–32, New
York, NY, USA, 2000. ACM Press.

[20] Jesse James Garrett. Ajax: A New Approach to Web Applications.
http://www.adaptivepath.com/publications/
essays/archi-ves/000385.php, February 2005.

[21] Pavel Gladychev, Ahmed Patel, and Donal O’Mahony. Cracking
RC5 with Java applets. Concurrency: Practice and Experience,
10(11-13):1165–1171, 1998.

[22] J. Grossman and T.C. Niedzialkowski. Hacking intranet websites
from the outside - javascript malware just got a lot more dangerous.
Blackhat USA, August 2006.

[23] Mike Healan. Referer spam. http://www.spywareinfo.
com/articles/referer_spam/, September 2003.

[24] WebTrends Inc. Webtrends web analytics and web statistics.
http://www.webtrends.com, 2006.

[25] Sotiris Ioannidis and Steven M. Bellovin. Building a Secure
Browser. In Proceedings of the Annual USENIX Technical Con-
ference, Freenix Track, June 2001.

[26] Collin Jackson, Andrew Bortz, Dan Boneh, and John C. Mitchell.
Protecting browser state from Web privacy attacks. In Proceedings
of the WWW Conference, 2006.

[27] Gregg Keizer. Dutch botnet bigger than expected. http:
//informationweek.com/story/showArticle.
jhtml?articleID=172303265, October 2005.

[28] Jeffrey O Kephart and Steve R White. Directed-graph epidemio-
logical models of computer viruses. In Proceedings of the 1991
IEEE Computer Society Symposium on Research in Security and
Privacy, May 1991.

[29] Ron Kohavi, Carla Brodley, Brian Frasca, Llew Mason, and Zi-
jian Zheng. KDD-Cup 2000 organizers’ report: Peeling the onion.
SIGKDD Explorations, 2(2):86–98, 2000.

[30] Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb, and
Matt Lebofsky. SETI@home – Massively Distributed Computing
for SETI. Computing in Science & Enginering, 3(1):78–83, 2001.

[31] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robert-
son, and Giovanni Vigna. Polymorphic worm detection using
structural information of executables. In Proceedings of the In-
ternational Symposium on Recent Advances in Intrusion Detection
(RAID), September 2005.

17

[32] Christopher Kruegel and Giovanni Vigna. Anomaly detection of
Web-based attacks. In Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS’03), pages 251–
261, New York, NY, USA, 2003. ACM Press.

[33] V. T. Lam, S. Antonatos, P. Akritidis, and K. G. Anagnostakis.
Puppetnets: Misusing web browsers as a distributed attack in-
frastructure (extended version). Technical Report, http://s3g.i2r.a-
star.edu.sg/proj/puppetnets, August 2006.

[34] Jun Li, Toby Ehrenkranz, Geoff Kuenning, and Peter Reiher. Sim-
ulation and analysis on the resiliency and efficiency of malnets. In
Proceedings of the 19th Workshop on Principles of Advanced and
Distributed Simulation (PADS’05), pages 262–269, Washington,
DC, USA, 2005. IEEE Computer Society.

[35] J. D. C. Little. A Proof of the Queueing Formula L = λW .
Operations Research, (9):383–387, 1961.

[36] Giorgio Maone. Firefox add-ons: Noscript. https://addons.
mozilla.org/firefox/722/, May 2006.

[37] Dan Moniz and HD Moore. Six degrees of xssploitation. Blackhat
USA, August 2006.

[38] Mozilla.org. End User Guide: Automatic Proxy Configu-
ration (PAC). http://www.mozilla.org/catalog/
end-user/customizing/enduserPAC.html, August
2004.

[39] Carey Nachenberg. Computer virus-antivirus coevolution. Com-
mun. ACM, 40(1):46–51, 1997.

[40] Vern Paxson. An analysis of using reflectors for distributed
denial-of-service attacks. ACM Computer Communication Review,
31(3):38–47, 2001.

[41] Philippine Honeynet Project. Philippine Internet Secu-
rity Monitor - First Quarter of 2006. http://www.
philippinehoneynet.org/docs/PISM20061Q.pdf

.

[42] Michalis Polychronakis, Kostas G. Anagnostakis, and Evange-
los P. Markatos. Network-level polymorphic shellcode detection
using emulation. In Proceedings of the GI/IEEE SIG SIDAR Con-
ference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), July 2006.

[43] Luigi Rizzo. Dummynet: a simple approach to the evaluation
of network protocols. ACM Computer Communication Review,
27(1):31–41, 1997.

[44] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell.
Stronger password authentication using browser extensions. In
Proceedings of the 14th Usenix Security Symposium, 2005.

[45] A. D. Rubin and D. E. Geer Jr. A Survey of Web Security. IEEE
Computer, 31(9):34–41, 1998.

[46] Jesse Ruderman. The Same Origin Policy. http://www.
mozilla.org/projects/security/components/
same-origin.html, August 2001.

[47] S. Saroiu, P.K. Gummadi, and S.D. Gribble. A measurement study
of peer-to-peer file sharing systems. In Proceedings of Multimedia
Computing and Networking (MMCN), 2002.

[48] Bruce Schneier. Attack trends 2004 and 2005. ACM Queue, 3(5),
June 2005.

[49] F. Smith, J. Aikat, J. Kapur, and K. Jeffay. Variability in TCP
round-trip times. In Proceedings of the 3rd ACM SIGCOMM Con-
ference on Internet measurement, 2003.

[50] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top speed
of flash worms. In Proc. ACM WORM, October 2004.

[51] S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet
in Your Spare Time. In Proceedings of the 11th USENIX Security
Symposium, pages 149–167, August 2002.

[52] Stunnix. Stunnix javascript obfuscator - obfuscate javascript
source code. http://www.stunnix.com/prod/jo/
overview.shtml, 2006.

[53] Symantec. Internet Threat Report: Trends for January 05-June
05. Volume VIII. Available from www.symantec.com, September
2005.

[54] TechWeb.com. Lycos strikes back at spammers with dos screen-
saver. http://www.techweb.com/wire/security/
54201269, 2004.

[55] The Honeynet Project. Know your enemy: Tracking
botnets. http://www.honeynet.org/papers/bots/,
March 2005.

[56] Jochen Topf. HTML Form Protocol Attack. http://www.
remote.org/jochen/sec/hfpa/, August 2001.

[57] VNExpress Electronic Newspaper. Website of largest Viet-
namese hacker group attacked by DDoS. http://vnexpress.
net/Vietnam/Vi-tinh/2005/12/3B9E4A6D/, Decem-
ber 2005.

[58] David Wang. HOWTO: ISAPI Filter which rejects requests
from SF NOTIFY PREPROC HEADERS based on HTTP Ref-
erer. http://blogs.msdn.com/david.wang, July 2005.

[59] Y. Wang and C. Wang. Modeling timing parameters for virus prop-
agation on the internet. In Proceeding of the 1st Workshop Of
Rapid Malcode (WORM’03), Oct 2003.

[60] Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad
Verbowski, Shuo Chen, and Sam Kin. Automated Web Patrol with
Strider HoneyMonkeys: Finding Web Sites That Exploit Browser
Vulnerabilities. In Proceedings of the 13th Annual Network and
Distributed System Security Symposium (NDSS ’06), February
2006.

18

[61] N. Weaver, S. Staniford, and V. Paxson. Very Fast Containment
of Scanning Worms. In Proceedings of the 13th USENIX Security
Symposium, pages 29–44, August 2004.

[62] Amrit T. Williams and Jay Heiser. Protect your PCs and
Servers From the Bothet Threat. Gartner Research, ID Number:
G00124737, December 2004.

[63] zone-h. Digital attacks archive. http://www.zone-h.org/
en/defacements/, 2006.

[64] C. C. Zou, W. Gong, and D. Towsley. Code Red Worm Propaga-
tion Modeling and Analysis. In Proceedings of the 9th ACM Con-
ference on Computer and Communications Security (CCS), pages
138–147, November 2002.

Appendix A: Spam puppet code

<FORM METHOD="POST" NAME="myform"
onSubmit="return nextjob()"
enctype="multipart/form-data"
ACTION="http://mailserver:25/foo">

<TEXTAREA name="thetext" rows="0" cols="0">

MAIL FROM: <spammer@marketing.com>
RCPT TO: <victim@target.com>
DATA
Subject: viagra

ok lah
.
QUIT

</TEXTAREA>
</FORM>
<body onLoad="document.myform.submit()">

Appendix B: Selected popular sites that are
suspect to hosting puppetnets

Site name daily visitors puppetnet size
Underground:
Torrentspy 500,000 25,910
isoHunt 300,000 15,546
torrentreactor 342,648 17,755
Popular sites offering
free web space:
yousendit 270,000 14,000
megaupload 1,500,000 77,729
uploading.com 180,000 9,327

Appendix C: Referer hiding in Puppetnet
DDoS

Browsers typically include the Referer field in all requests
except for those involving the “META-HTTP-EQUIV” direc-
tive. The goal is to strictly preserve referrer reporting in most
third-party links (e.g., for tracking use and misuse), while also
providing a privacy option for cases such as webmail-based sys-
tems where referers should not be disclosed. This seems to be a
“de-facto” standard that is widely used (gmail.com is one exam-
ple).

We have found that it is easy to remove referer information
from outgoing DDoS requests using a combination of Javascript
and ”META-HTTP-EQUIV” request redirection. An example
script is given below for Internet Explorer and Firefox. Safari
can be circumvented even more easily using embedded image
requests, and without creating a new DOM document for every
request.

<html>
<head>

19

<title>Referer hiding DoS Attack for Firefox & IE</title>
<script language="JavaScript"><!--
function myUpdate() {

var date=new Date();
var red=’<META http-equiv="refresh" content="0; URL=http://www.target.com/foo?’+date+’">’;
parent.textframe.document.open();
parent.textframe.document.write(red+" "+date);
parent.textframe.document.close();
setTimeout(’myUpdate()’,150);

}
</head>

<frameset rows="75%,*" onLoad="myUpdate()">
<frame src="" name="textframe">
<frame src="" name="otherframe">
</frameset>
</html>

Appendix D: Epidemiological model for In-
ternet worm propagation with puppetnet

To investigate the propagation dynamics of a puppetnet
worm, we adopt the classical Random Constant Spread (RCS)
model, as used in other studies [51]. We use a notation system
similar to [51]:

• N : vulnerable population

• a: fraction of vulnerable machines which have been com-
promised

• a0: initial fraction of compromised machines

• t: time

• th: mean holding time/latency of users

• C: number of concurrent clients per server

• Ks: server’s initial compromise rate

• Kc: client’s initial compromise rate

• Kp: puppetnet’s initial compromise rate

• K: overall initial compromise rate

• ψ(t): distribution process of holding time on a web users.

At time t, the number of new machines being compromised
within dt is comprised of:

• Due to server: Na(t)Ks(1 − a(t))dt.

• Due to puppetnet: each server has C clients and every
client compromises at the rate of Kc(1 − a). However,
due to user’s latency ψ(t) of web clients, only puppetnets
by servers that have become active at time t are capable of
propagating worm.

Nda(t) = Na(t)Ks(1−a(t))dt+N
[∫ t

0

a(τ)ψ(t− τ)dτ
]
CKc(1−a(t))dt

a(t) and ψ(t) express full notation of a and ψ as functions of
time t. Note that a(t) = 0 and ψ(t) = 0 for t < 0.

Figure 17: Triangular latency process of clients

Figure 18: Impulse arrival of clients : universal holding
time th

da

dt
= Ksa(1− a) +

[∫ t

0

a(τ)ψ(t− τ)dτ
]
CKc(1− a) (1)

Equation 1 is generally non-linear without closed form solu-
tion and therefore could only be solved numerically.

We consider two cases of ψ(t) as shown in Figure 17 and
Figure 18. Figure 17 is a reasonably realistic model for user’s
latency process at a typical web server. Clients slowly trickle
in at linear arrival rate before and after mean holding time th,
until all users are either new users that joined after the server
was infected or old users that refreshed themselves. There is no
closed form formula solution for Equation 1 in this case.

Note that the area bounded by ψ(t) and x-axis is unity:∫ ∞
0
ψ(τ)dτ = 0

Figure 18 is a further simplification: holding time is a uni-
versal constant th. That means all puppetnets by servers that
are infected at time (t − th) become active at time t. With this
assumption, ψ(t) is an impulse function at t = th. Despite
its simplicity, a symbolic approximate solution could be found,
which permits an intuition on the role of different parameters on
worm outbreak.

20

[
∫ t
0
a(τ)ψ(t − τ)dτ] = a(t − th) ≈ a(t) − th

da(t)
dt

(first
order approximation when t is sufficiently large).

Substituting to Equation 1, we get:

a1+Kpth

1 − a
= eK(t−T)

where Kp = CKc and K = Ks + Kp

• If th is negligible, final solution form:

a =
eK(t−T)

1 + eK(t−T)

T is a constant that specifies the time of the initial worm
outbreak. Propagation pattern is exactly the same as nor-
mal worm without puppetnet [51], except that worm propa-
gation rate is enhanced by puppetnet: K =Ks +Kp. More
importantly, this contribution is significant if Kp >> Ks.

• If th > 0, only numerical solution can be obtained. Com-
pared to above case of zero holding time, worm outbreak
is delayed by:

Δt =
Kp

K
thln

a

a0

In all cases, worm propagation with puppetnet obeys the lo-
gistic form: its graph has the same sigmoid shape as the tradi-
tional random scanning worm. Contribution to the propagation
process by clients and servers mainly depends on the constants
Ks (sever-side) and Kc (client-side)

Finally, we examine puppetnet-like viral propagation process
for general computer virus and worm. We incorporate puppetnet
factor into two general epidemiological models: Susceptible-
Infected-Susceptible (SIS) and Susceptible-Infected-Removed
(SIR) [59].

Denote δ as node cure rate (or virus death rate), i.e. the rate
at which a node will be cured if it is infected. Note that our
modified-RCS model is a special case of SIS model with δ = 0

SIS modified equation for puppetnet worm:

da

dt
= Ksa(1−a)+

[∫ t

0

a(τ)e−δ(t−τ)ψ(t−τ)dτ
]
CKc(1−a)−δa

(2)
Steady state solution:

a(∞)SIS = 1 − δ

Ks + CKc

∫ ∞
0

ψ(τ)

eδτ dτ

SIR modified equation for puppetnet worm:

da

dt
= Ksa(1−a−δ

∫ t

0

a(τ)dτ)+
[∫ t

0

a(τ)e−δ(t−τ)ψ(t−τ)dτ
]
CKc(1−a−δ

∫ t

0

a(τ)dτ)−δa
(3)

Steady state solution:

a(∞)SIR =

[
Ks + CKc

∫ ∞
0

ψ(τ)

eδτ dτ
]
− δ[

Ks + CKc

∫ ∞
0

ψ(τ)

eδτ dτ
](

1 + δ.∞
) = 0

Therefore with puppetnet enhancement, final epidemic state for
SIR model is also zero.

21

