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1. INTRODUCTION

The collection of digital information by governments, corporations, and individuals
has created tremendous opportunities for knowledge-based decision making. Driven
by mutual benefits, or by regulations that require certain data to be published, there
is a demand for the exchange and publication of data among various parties. For exam-
ple, licensed hospitals in California are required to submit specific demographic data
on every patient discharged from their facility [Carlisle et al. 2007]. In June 2004, the
Information Technology Advisory Committee released a report entitled Revolutioniz-
ing Health Care Through Information Technology [President Information Technology
Advisory Committee 2004]. One of its key points was to establish a nationwide system
of electronic medical records that encourages sharing of medical knowledge through
computer-assisted clinical decision support. Data publishing is equally ubiquitous in
other domains. For example, Netflix, a popular online movie rental service, recently
published a data set containing movie ratings of 500,000 subscribers, in a drive to
improve the accuracy of movie recommendations based on personal preferences (New
York Times, Oct. 2, 2006); AOL published a release of query logs but quickly removed
it due to the reidentification of a searcher [Barbaro and Zeller 2006].

Detailed person-specific data in its original form often contains sensitive information
about individuals, and publishing such data immediately violates individual privacy.
The current practice primarily relies on policies and guidelines to restrict the types
of publishable data and on agreements on the use and storage of sensitive data. The
limitation of this approach is that it either distorts data excessively or requires a trust
level that is impractically high in many data-sharing scenarios. For example, contracts
and agreements cannot guarantee that sensitive data will not be carelessly misplaced
and end up in the wrong hands.

A task of the utmost importance is to develop methods and tools for publishing data
in a more hostile environment, so that the published data remains practically useful
while individual privacy is preserved. This undertaking is called privacy-preserving
data publishing (PPDP). In the past few years, research communities have responded
to this challenge and proposed many approaches. While the research field is still
rapidly developing, it is a good time to discuss the assumptions and desirable prop-
erties for PPDP, clarify the differences and requirements that distinguish PPDP from
other related problems, and systematically summarize and evaluate different ap-
proaches to PPDP. This survey aims to achieve these goals.

1.1. Privacy-Preserving Data Publishing

A typical scenario for data collection and publishing is described in Figure 1. In the
data collection phase, the data publisher collects data from record owners (e.g., Alice
and Bob). In the data publishing phase, the data publisher releases the collected data
to a data miner or to the public, called the data recipient, who will then conduct data
mining on the published data. In this survey, data mining has a broad sense, not neces-
sarily restricted to pattern mining or model building. For example, a hospital collects
data from patients and publishes the patient records to an external medical center. In
this example, the hospital is the data publisher, patients are record owners, and the
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Fig. 1. Data collection and data publishing.

medical center is the data recipient. The data mining conducted at the medical cen-
ter could be anything from a simple count of the number of men with diabetes to a
sophisticated cluster analysis.

There are two models of data publishers [Gehrke 2006]. In the untrusted model, the
data publisher is not trusted and may attempt to identify sensitive information from
record owners. Various cryptographic solutions [Yang et al. 2005]; anonymous commu-
nications [Chaum 1981; Jakobsson et al. 2002]; and statistical methods [Warner 1965]
were proposed to collect records anonymously from their owners without revealing the
owners’ identity. In the trusted model, the data publisher is trustworthy and record
owners are willing to provide their personal information to the data publisher; how-
ever, the trust is not transitive to the data recipient. In this survey, we assume the
trusted model of data publishers and consider privacy issues in the data publishing
phase.

In practice, every data publishing scenario has its own assumptions and require-
ments of the data publisher, the data recipients, and the data publishing purpose.
The following are several desirable assumptions and properties in practical data
publishing:

The nonexpert data publisher. The data publisher is not required to have the knowl-
edge to perform data mining on behalf of the data recipient. Any data mining activities
have to be performed by the data recipient after receiving the data from the data pub-
lisher. Sometimes, the data publisher does not even know who the recipients are at
the time of publication, or has no interest in data mining. For example, the hospitals
in California publish patient records on the Web [Carlisle et al. 2007]. The hospitals do
not know who the recipients are and how the recipients will use the data. The hospital
publishes patient records because it is required by regulations [Carlisle et al. 2007]
or because it supports general medical research, not because the hospital needs the
result of data mining. Therefore, it is not reasonable to expect the data publisher to do
more than anonymize the data for publication in such a scenario.

In other scenarios, the data publisher is interested in the data mining result, but
lacks the in-house expertise to conduct the analysis, and hence outsources the data
mining activities to some external data miners. In this case, the data mining task
performed by the recipient is known in advance. In the effort to improve the quality
of the data mining result, the data publisher could release a customized data set that
preserves specific types of patterns for such a data mining task. Still, the actual data
mining activities are performed by the data recipient, not by the data publisher.

The data recipient could be an attacker. In PPDP, one assumption is that the data
recipient could also be an attacker. For example, the data recipient, say a drug research
company, is a trustworthy entity; however, it is difficult to guarantee that all staff in
the company is trustworthy as well. This assumption makes the PPDP problems and
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solutions very different from the encryption and cryptographic approaches, in which
only authorized and trustworthy recipients are given the private key for accessing the
cleartext. A major challenge in PPDP is to simultaneously preserve both the privacy
and information usefulness in the anonymous data.

Publish data, not the data mining result. PPDP emphasizes publishing data records
about individuals (i.e., micro data). Clearly, this requirement is more stringent than
publishing data mining results, such as classifiers, association rules, or statistics about
groups of individuals. For example, in the case of the Netflix data release, useful infor-
mation may be some type of associations of movie ratings. However, Netflix decided to
publish data records instead of such associations because the participants, with data
records, have greater flexibility in performing the required analysis and data explo-
ration, such as mining patterns in one partition but not in other partitions; visualizing
the transactions containing a specific pattern; trying different modeling methods and
parameters, and so forth. The assumption for publishing data and not the data min-
ing results, is also closely related to the assumption of a nonexpert data publisher.
For example, Netflix does not know in advance how the interested parties might ana-
lyze the data. In this case, some basic “information nuggets” should be retained in the
published data, but the nuggets cannot replace the data.

Truthfulness at the record level. In some data publishing scenarios, it is important
that each published record corresponds to an existing individual in real life. Consider
the example of patient records. The pharmaceutical researcher (the data recipient)
may need to examine the actual patient records to discover some previously unknown
side effects of the tested drug [Emam 2006]. If a published record does not correspond
to an existing patient in real life, it is difficult to deploy data mining results in the
real world. Randomized and synthetic data do not meet this requirement. Although an
encrypted record corresponds to a real life patient, the encryption hides the semantics
required for acting on the patient represented.
1.2. The Anonymization Approach

In the most basic form of PPDP, the data publisher has a table of the form

D(Explicit Identifier, Quasi Identifier, Sensitive Attributes,
Non-Sensitive Attributes),

where Explicit Identifier is a set of attributes, such as name and social secu-
rity number (SSN), containing information that explicitly identifies record owners;
Quasi Identifier (QID) is a set of attributes that could potentially identify record own-
ers; Sensitive Attributes consists of sensitive person-specific information such as dis-
ease, salary, and disability status; and Non-Sensitive Attributes contains all attributes
that do not fall into the previous three categories [Burnett et al. 2003]. The four sets
of attributes are disjoint. Most works assume that each record in the table represents
a distinct record owner.

Anonymization [Cox 1980; Dalenius 1986] refers to the PPDP approach that seeks
to hide the identity and/or the sensitive data of record owners, assuming that sen-
sitive data must be retained for data analysis. Clearly, explicit identifiers of record
owners must be removed. Even with all explicit identifiers being removed, Sweeney
[2002a] showed a real-life privacy threat to William Weld, former governor of the state
of Massachusetts. In Sweeney’s example, an individual’s name in a public voter list
was linked with his record in a published medical database through the combination
of zip code, date of birth, and sex, as shown in Figure 2. Each of these attributes
does not uniquely identify a record owner, but their combination, called the quasi-
identifier [Dalenius 1986], often singles out a unique or a small number of record
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Fig. 2. Linking to reidentify record owner [Sweeney 2002a].

owners. According to Sweeney [2002a], 87% of the U.S. population had reported char-
acteristics that likely made them unique based on only such quasi-identifiers.

In the above example, the owner of a record is reidentified by linking his quasi-
identifier. To perform such linking attacks, the attacker needs two pieces of prior
knowledge: the victim’s record in the released data and the quasi-identifier of the vic-
tim. Such knowledge can be obtained by observation. For example, the attacker noticed
that his boss was hospitalized, and therefore knew that his boss’s medical record would
appear in the released patient database. Also, it was not difficult for the attacker to ob-
tain his boss’s zip code, date of birth, and sex, which could serve as the quasi-identifier
in linking attacks.

To prevent linking attacks, the data publisher provides an anonymous table,

T (QID′, Sensitive Attributes, Non-Sensitive Attributes),

QID′ is an anonymous version of the original QID obtained by applying anonymization
operations to the attributes in QID in the original table D. Anonymization operations
hide some detailed information so that several records become indistinguishable with
respect to QID′. Consequently, if a person is linked to a record through QID′, that
person is also linked to all other records that have the same value for QID′, making the
linking ambiguous. Alternatively, anonymization operations could generate synthetic
data table T based on the statistical properties of the original table D, or add noise to
the original table D. The anonymization problem is to produce an anonymous T that
satisfies a given privacy requirement determined by the chosen privacy model and to
retain as much data utility as possible. An information metric is used to measure the
utility of an anonymous table. Note that the Non-Sensitive Attributes are published if
they are important to the data mining task.

1.3. The Scope

A closely related research area is privacy-preserving data mining [Aggarwal and Yu
2008c]. The term, privacy-preserving data mining (PPDM), emerged in 2000 [Agrawal
and Srikant 2000]. The initial idea of PPDM was to extend traditional data mining
techniques to work with the data modified to mask sensitive information. The key is-
sues were how to modify the data and how to recover the data mining result from
the modified data. The solutions were often tightly coupled with the data mining algo-
rithms under consideration. In contrast, PPDP may not necessarily be tied to a specific
data mining task, and the data mining task may be unknown at the time of data pub-
lishing. Furthermore, some PPDP solutions emphasize preserving the data truthful-
ness at the record level as discussed earlier, but often PPDM solutions do not preserve
such a property. In recent years, the term “PPDM” has evolved to cover many other
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privacy research problems, even though some of them may not directly relate to data
mining.

Another related area is the study of the noninteractive query model in statistical
disclosure control [Adam and Wortman 1989; Brand 2002], in which the data recipi-
ents can submit one query to the system. This type of noninteractive query model may
not fully address the information needs of data recipients because, in some cases, it
is very difficult for a data recipient to accurately construct a query for a data mining
task in one shot. Consequently, there are a series of studies on the interactive query
model [Blum et al. 2005; Dwork 2008; Dinur and Nissim 2003], in which the data re-
cipients, unfortunately including attackers, can submit a sequence of queries based
on previously received query results. One limitation of any privacy-preserving query
system is that it can only answer a sublinear number of queries in total; otherwise,
an attacker (or a group of corrupted data recipients) will be able to reconstruct all but
1 − o(1) fraction of the original data [Blum et al. 2008], which is a very strong viola-
tion of privacy. When the maximum number of queries is reached, the system must be
closed to avoid privacy leak. In the case of a noninteractive query model, the attacker
can issue an unlimited number of queries and, therefore, a noninteractive query model
cannot achieve the same degree of privacy defined by the interactive model. This sur-
vey focuses mainly on the noninteractive query model, but the interactive query model
will also be briefly discussed in Section 8.1.

In this survey, we review recent work on anonymization approaches to privacy-
preserving data publishing (PPDP) and provide our own insights into this topic. There
are several fundamental differences between the recent work on PPDP and the previ-
ous work proposed by the official statistics community. Recent work on PPDP considers
background attacks, inference of sensitive attributes, generalization, and various
notions of data utility measures, but the work of the official statistics community
doesnot. The term “privacy-preserving data publishing” has been widely adopted by
the computer science community to refer to the recent work discussed in this survey ar-
ticle. In fact, the official statistics community seldom uses the term “privacy-preserving
data publishing” to refer to their work. In this survey, we do not intend to provide a de-
tailed coverage of the official statistics methods because some decent surveys already
exist [Adam and Wortman 1989; Domingo-Ferrer 2001; Moore 1996; Zayatz 2007].

We focus on several key issues in PPDP: attack models and privacy models
(Section 2); anonymization operations (Section 3); information metrics (Section 4);
and anonymization algorithms (Section 5). Most research focuses on a single release
from a single data publisher. We also consider the work for more practical scenarios
(Section 6) that deals with dynamic data, multiple releases, and multiple publishers.
Much real-world data is nonrelational. We study some recently proposed anonymiza-
tion techniques for transaction data, moving objects data, and textual data (Section 7).
Then, we briefly discuss other privacy-preserving techniques that are orthogonal to
PPDP. (Section 8). Finally, we conclude with a summary and discussion of future re-
search directions (Section 9).

2. ATTACK MODELS AND PRIVACY MODELS

What is privacy protection? Dalenius [1977] provided a very stringent definition: ac-
cess to the published data should not enable the attacker to learn anything extra about
any target victim compared to no access to the database, even with the presence of any
attacker’s background knowledge obtained from other sources. Dwork [2006] showed
that such absolute privacy protection is impossible due to the presence of background
knowledge. Suppose the age of an individual is sensitive information. Assume an at-
tacker knows that Alice’s age is 5 years younger than the average age of American
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Table I. Privacy Models
Attack Model

Privacy Model Record Linkage Attribute Linkage Table Linkage Probabilistic Attack
k-Anonymity �
MultiR k-Anonymity �
�-Diversity � �
Confidence Bounding �
(α, k)-Anonymity � �
(X, Y )-Privacy � �
(k, e)-Anonymity �
(ε, m)-Anonymity �
Personalized Privacy �
t-Closeness � �
δ-Presence �
(c, t)-Isolation � �
ε-Differential Privacy � �
(d, γ )-Privacy � �
Distributional Privacy � �

women. If the attacker has access to a statistical database that discloses the average
age of American women, then Alice’s privacy is considered compromised according to
Dalenius’ definition, regardless whether or not Alice’s record is in the database [Dwork
2006].

Most literature on PPDP considers a more relaxed, more practical notion of privacy
protection by assuming the attacker has limited background knowledge. Below, the
term “victim” refers to the record owner targeted by the attacker. We can broadly clas-
sify privacy models into two categories based on their attack principles.

The first category considers that a privacy threat occurs when an attacker is able
to link a record owner to a record in a published data table, to a sensitive attribute
in a published data table, or to the published data table itself. We call these record
linkage, attribute linkage, and table linkage, respectively. In all three types of linkages,
we assume that the attacker knows the QID of the victim. In record and attribute
linkages, we further assume that the attacker knows that the victim’s record is in the
released table, and seeks to identify the victim’s record and/or sensitive information
from the table. In table linkage, the attack seeks to determine the presence or absence
of the victim’s record in the released table. A data table is considered to be privacy-
preserving if it can effectively prevent the attacker from successfully performing these
linkages. Sections 2.1 to 2.3 study this category of privacy models.

The second category aims at achieving the uninformative principle
[Machanavajjhala et al. 2006]: The published table should provide the attacker
with little additional information beyond the background knowledge. If the attacker
has a large variation between the prior and posterior beliefs, we call it the probabilistic
attack. Many privacy models in this family do not explicitly classify attributes in a
data table into QID and Sensitive Attributes, but some of them could also thwart
the sensitive linkages in the first category, so the two categories overlap. Section 2.4
studies this family of privacy models. Table I summarizes the attack models addressed
by the privacy models.

2.1. Record Linkage

In the attack of record linkage, some value qid on QID identifies a small number of
records in the released table T , called a group. If the victim’s QID matches the value
qid, the victim is vulnerable to being linked to the small number of records in the
group. In this case, the attacker faces only a small number of possibilities for the
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Table II. Examples Illustrating Various Attacks

(a) Patient table
Job Sex Age Disease

Engineer Male 35 Hepatitis
Engineer Male 38 Hepatitis
Lawyer Male 38 HIV
Writer Female 30 Flu
Writer Female 30 HIV
Dancer Female 30 HIV
Dancer Female 30 HIV

(b) External table
Name Job Sex Age
Alice Writer Female 30
Bob Engineer Male 35

Cathy Writer Female 30
Doug Lawyer Male 38
Emily Dancer Female 30
Fred Engineer Male 38

Gladys Dancer Female 30
Henry Lawyer Male 39
Irene Dancer Female 32

(c) 3-anonymous patient table
Job Sex Age Disease

Professional Male [35-40) Hepatitis
Professional Male [35-40) Hepatitis
Professional Male [35-40) HIV

Artist Female [30-35) Flu
Artist Female [30-35) HIV
Artist Female [30-35) HIV
Artist Female [30-35) HIV

(d) 4-anonymous external table
Name Job Sex Age
Alice Artist Female [30-35)
Bob Professional Male [35-40)

Cathy Artist Female [30-35)
Doug Professional Male [35-40)
Emily Artist Female [30-35)
Fred Professional Male [35-40)

Gladys Artist Female [30-35)
Henry Professional Male [35-40)
Irene Artist Female [30-35)

victim’s record, and with the help of additional knowledge, there is a chance that the
attacker could uniquely identify the victim’s record from the group.

Example 2.1. Suppose that a hospital wants to publish the patient records in
Table II(a) to a research center. Suppose that the research center has access to the
external table Table II(b) and knows that every person with a record in Table II(b) has
a record in Table II(a). Joining the two tables on the common attributes Job, Sex, and
Age may link the identity of a person to his/her Disease. For example, Doug, a male
lawyer who is 38 years old, is identified as an HIV patient by qid = 〈Lawyer, Male, 38〉
after the join.

k-Anonymity. To prevent record linkage through QID, Samarati and
Sweeney [1998a, 1998b] proposed the notion of k-anonymity: if one record in the
table has some value qid, at least k − 1 other records also have the value qid. In other
words, the minimum group size on QID is at least k. A table satisfying this require-
ment is called k-anonymous. In a k-anonymous table, each record is indistinguishable
from at least k − 1 other records with respect to QID. Consequently, the probability of
linking a victim to a specific record through QID is at most 1/k.

k-anonymity cannot be replaced by the privacy models in attribute linkage
(Section 2.2). Consider a table T that contains no sensitive attributes (such as the
voter list in Figure 2). An attacker could possibly use the QID in T to link to the sen-
sitive information in an external source. A k-anonymous T can still effectively prevent
this type of record linkage without considering the sensitive information. In contrast,
the privacy models in attribute linkage assume the existence of sensitive attributes
in T .

Example 2.2. Table II(c) shows a 3-anonymous table by generalizing QID = {Job,
Sex, Age} from Table II(a) using the taxonomy trees in Figure 3. It has two distinct
groups on QID, namely 〈Professional, Male, [35−40)〉 and 〈Artist, Female, [30−35)〉.
Since each group contains at least 3 records, the table is 3-anonymous. If we link the
records in Table II(b) to the records in Table II(c) through QID, each record is linked
to either no record or at least 3 records in Table II(c).
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Fig. 3. Taxonomy trees for Job, Sex, Age.

The k-anonymity model assumes that QID is known to the data publisher. Most work
considers a single QID containing all attributes that can be potentially used in the
quasi-identifier. The more attributes included in QID, the more protection k-anonymity
would provide. On the other hand, this also implies that more distortion is needed to
achieve k-anonymity because the records in a group have to agree on more attributes.
To address this issue, Fung et al. [2005, 2007] allow the specification of multiple QIDs,
assuming that the data publisher knows the potential QIDs for record linkage. The
following example illustrates the use of this specification.

Example 2.3. The data publisher wants to publish a table T (A, B, C, D, S), where
S is the sensitive attribute, and knows that the data recipient has access to previously
published tables T 1(A, B, X) and T 2(C, D, Y ), where X and Y are attributes not in T .
To prevent linking the records in T to the information on X or Y , the data publisher
can specify k-anonymity on QID1 = {A, B} and QID2 = {C, D} for T . This means that
each record in T is indistinguishable from a group of at least k records with respect to
QID1 and is indistinguishable from a group of at least k records with respect to QID2.
The two groups are not necessarily the same. Clearly, this requirement is implied by
k-anonymity on QID = {A, B, C, D}, but having k-anonymity on both QID1 and QID2
does not imply k-anonymity on QID.

Specifying multiple QIDs is practical only if the data publisher knows how the attacker
might perform the linking. Nevertheless, often the data publisher does not have such
information. A wrong decision may cause higher privacy risks or higher information
loss. Later, we discuss the dilemma and implications of choosing attributes in QID. In
the presence of multiple QIDs, some QIDs may be redundant and can be removed by
the following subset property:

Observation 2.1 (Subset Property). Let QID′ ⊆ QID. If a table T is k-anonymous on
QID, then T is also k-anonymous on QID′. In other words, QID′ is covered by QID, so
QID′ can be removed from the privacy requirement [Fung et al. 2005, 2007; LeFevre
et al. 2005].

The k-anonymity model assumes that each record represents a distinct individual. If
several records in a table represent the same record owner, a group of k records may
represent fewer than k record owners, and the record owner may be underprotected.
The following example illustrates this point.

Example 2.4. A record in the table Inpatient(Pid, Job, Sex, Age, Disease) repre-
sents that a patient identified by Pid has Job, Sex, Age, and Disease. A patient may
have several records, one for each disease. In this case, QID = {Job, Sex, Age} is not a
key and k-anonymity on QID fails to ensure that each group on QID contains at least
k (distinct) patients. For example, if each patient has at least 3 diseases, a group of k
records will involve no more than k/3 patients.

(X, Y )-Anonymity. To address this problem of k-anonymity, Wang and Fung [2006]
proposed the notion of (X, Y )-anonymity, where X and Y are disjoint sets of attributes.
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Definition 2.1. Let x be a value on X. The anonymity of x with respect to Y , de-
noted aY (x), is the number of distinct values on Y that co-occur with x. Let AY (X) =
min{aY (x) | x ∈ X}. A table T satisfies the (X, Y )-anonymity for some specified integer
k if AY (X) ≥ k.

(X, Y )-anonymity specifies that each value on X is linked to at least k distinct values
on Y . The k-anonymity is the special case where X is the QID and Y is a key in T that
uniquely identifies record owners. (X, Y )-anonymity provides a uniform and flexible
way to specify different types of privacy requirements. If each value on X describes
a group of record owners (e.g., X = {Job, Sex, Age}) and Y represents the sensitive
attribute (e.g., Y = {Disease}), this means that each group is associated with a diverse
set of sensitive values, making it difficult to infer a specific sensitive value. The next
example shows the usefulness of (X, Y )-anonymity for modeling k-anonymity in the
case that several records may represent the same record owner.

Example 2.5. Continue from Example 2.4. With (X, Y )-anonymity, we specify
k-anonymity with respect to patients by letting X = {Job, Sex, Age} and Y = {Pid}.
That is, each X group is linked to at least k distinct patient IDs, therefore, k distinct
patients.

MultiRelational k-Anonymity. Most work on k-anonymity focuses on anonymizing
a single data table; however, a real-life database usually contains multiple relational
tables. Nergiz et al. [2007] proposed a privacy model called MultiR k-anonymity to en-
sure k-anonymity on multiple relational tables. Their model assumes that a relational
database contains a person-specific table PT and a set of tables T1, . . . , Tn, where PT
contains a person identifier Pid and some sensitive attributes, and Ti, for 1 ≤ i ≤ n,
contains some foreign keys, some attributes in QID, and sensitive attributes. The gen-
eral privacy notion is to ensure that for each record owner o contained in the join of all
tables PT �� T1 �� · · · �� Tn, there exists at least k − 1 other record owners who share
the same QID with o. It is important to emphasize that the k-anonymization is applied
at the record owner level, not at the record level in traditional k-anonymity. This idea
is similar to (X, Y )-anonymity, where X = QID and Y = {Pid}.

Dilemma in choosing QID. One challenge faced by a data publisher is how to clas-
sify the attributes in a data table into three disjoint sets: QID, Sensitive Attributes,
and Non-Sensitive Attributes. In principle, QID should contain an attribute A if the
attacker could potentially obtain A from other external sources. After the QID is
determined, remaining attributes are grouped into Sensitive Attributes and Non-
Sensitive Attributes based on their sensitivity. There is no definite answer to the ques-
tion of how a data publisher can determine whether or not an attacker can obtain an
attribute A from some external sources, but it is important to understand the implica-
tions of a misclassification: misclassifying an attribute A into Sensitive Attributes or
Non-Sensitive Attributes may compromise another sensitive attribute S because an
attacker may obtain A from other sources and then use A to perform record linkage or
attribute linkage on S. On the other hand, misclassifying a sensitive attribute S into
QID may directly compromise sensitive attribute S of some target victim because an
attacker may use attributes in QID − S to perform attribute linkage on S. Further-
more, incorrectly including S in QID causes unnecessary information loss due to the
curse of dimensionality [Aggarwal 2005].

Motwani and Xu [2007] presented a method to determine the minimal set of quasi-
identifiers for a data table T . The intuition is to identify a minimal set of attributes
from T that has the ability to (almost) distinctly identify a record and the ability
to separate two data records. Nonetheless, the minimal set of QID does not imply
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the most appropriate privacy protection setting because the method does not consider
what attributes the attacker could potentially have. If the attacker can obtain a bit
more information about the target victim beyond the minimal set, then he may able to
conduct a successful linking attack. The choice of QID remains an open issue.

k-anonymity, (X, Y )-anonymity, and MultiR k-anonymity prevent record linkage by
hiding the record of a victim in a large group of records with the same QID. However, if
most records in a group have similar values on a sensitive attribute, the attacker can
still associate the victim to her sensitive value without having to identify her record.
This situation is illustrated in Table II(c), which is 3-anonymous. For a victim matching
qid = 〈Artist, Female, [30−35)〉, the confidence of inferring that the victim has HIV is
75% because 3 out of the 4 records in the group have HIV. Though (X, Y )-anonymity
requires that each X group is linked to at least k distinct Y values, if some Y values
occur more frequently than others, there is a higher confidence of inferring the more
frequent values. This leads us to the next family of privacy models for preventing this
type of attribute linkage.

2.2. Attribute Linkage

In the attack of attribute linkage, the attacker may not precisely identify the record of
the target victim, but could infer his/her sensitive values from the published data T ,
based on the set of sensitive values associated to the group that the victim belongs to.
In case some sensitive values predominate in a group, a successful inference becomes
relatively easy even if k-anonymity is satisfied. Clifton [2000] suggested eliminating
attribute linkages by limiting the released data size. Limiting data size may not be
desirable if data records such as HIV patient data, are valuable and are difficult to
obtain. Several other approaches have been proposed to address this type of threat.
The general idea is to diminish the correlation between QID attributes and sensitive
attributes.

Example 2.6. From Table II(a), an attacker can infer that all female dancers at
age 30 have HIV, i.e., 〈Dancer, Female, 30〉 → HIV with 100% confidence. Applying
this knowledge to Table II(b), the attacker can infer that Emily has HIV with 100%
confidence provided that Emily comes from the same population in Table II(a).

�-Diversity. Machanavajjhala et al. [2006, 2007] proposed the diversity principle,
called �-diversity, to prevent attribute linkage. The �-diversity requires every qid group
to contain at least � “well-represented” sensitive values. A similar idea was previously
discussed in Ohrn and Ohno-Machado [1999]. There are several instantiations of this
principle, which differ in the definition of being well-represented. The simplest un-
derstanding of “well-represented” is to ensure that there are at least � distinct values
for the sensitive attribute in each qid group. This distinct �-diversity privacy model
(also known as p-sensitive k-anonymity [Truta and Bindu 2006]) automatically sat-
isfies k-anonymity, where k = �, because each qid group contains at least � records.
Distinct �-diversity cannot prevent probabilistic inference attacks because some sen-
sitive values are naturally more frequent than others in a group, enabling an attacker
to conclude that a record in the group is very likely to have those values. For example,
Flu is more common than HIV. This motivates the following two stronger notions of
�-diversity.

A table is entropy �-diverse if for every qid group

−
∑

s∈S

P(qid, s)log(P(qid, s)) ≥ log(�) (1)
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where S is a sensitive attribute, and P(qid, s) is the fraction of records in a qid group
having the sensitive value s. The left-hand side, called the entropy of the sensitive
attribute, has the property that more evenly distributed sensitive values in a qid group
produce a larger value. Therefore, a large threshold value � implies less certainty of
inferring a particular sensitive value in a group. Note that the inequality does not
depend on the choice of the log base.

Example 2.7. Consider Table II(c). For the first group 〈Professional, Male, [35 −
40)〉, − 2

3log 2
3 − 1

3log 1
3 = log(1.9), and for the second group 〈Artist, Female, [30−35)〉,

− 3
4log 3

4 − 1
4log 1

4 = log(1.8). So the table satisfies entropy �-diversity if � ≤ 1.8.

One limitation of entropy �-diversity is that it does not provide a probability based risk
measure, which tends to be more intuitive to the human data publisher. For example,
in Table II(c), being entropy 1.8-diverse in Example 2.7 does not convey the risk level
that the attacker has 75% probability of success to infer HIV where 3 out of the 4 record
owners in the qid group have HIV. Also, it is difficult to specify different protection
levels based on varied sensitivity and frequency of sensitive values.

The recursive (c, �)-diversity makes sure that the most frequent value does not ap-
pear too frequently, and that the less frequent values do not appear too rarely. Let
m be the number of sensitive values in a qid group. Let fi denote the frequency of
the ith most frequent sensitive value in a qid group. A qid group is (c, �)-diverse if the
frequency of the most frequent sensitive value is less than the sum of the frequen-
cies of the m − � + 1 least frequent sensitive values multiplying by some publisher-
specified constant c, that is, f1 < c

∑m
i=� fi. The intuition is that even if the attacker

excludes some possible sensitive values of a victim by applying background knowl-
edge, the remaining ones remain hard to infer. A table is considered to have recursive
(c, �)-diversity if all of its groups have (c, �)-diversity.

Machanavajjhala et al. [2006, 2007] also presented two other instantiations, called
positive disclosure-recursive (c, �)-diversity and negative/positive disclosure-recursive
(c, �)-diversity to capture the attacker’s background knowledge. Suppose a victim is
in a qid group that contains three different sensitive values {Flu, Cancer, HIV }, and
suppose the attacker knows that the victim has no symptom of having a flu. Given
this piece of background knowledge, the attacker can eliminate Flu from the set of
candidate-sensitive values of the victim. Martin et al. [2007] proposed a language to
capture this type of background knowledge and to represent the knowledge as k units
of information. Furthermore, the language could capture the type of implication knowl-
edge. For example, given that Alice, Bob, and Cathy have flu, the attacker infers that
Doug is very likely to have flu, too, because all four of them live together. This impli-
cation is considered to be one unit of information. Given an anonymous table T and
k units of background knowledge, Martin et al. [2007] estimated the maximum dis-
closure risk of T , which is the probability of the most likely predicted sensitive value
assignment of any record owner in T .

�-diversity has the limitation of implicitly assuming that each sensitive attribute
takes values uniformly over its domain, that is, the frequencies of the various values
of a confidential attribute are similar. When this is not the case, achieving �-diversity
may cause a large data utility loss. Consider a data table containing data of 1000
patients on some QID attributes and a single sensitive attribute HIV with two possible
values, Yes or No. Assume that there are only 5 patients with HIV = Yes in the table.
To achieve k-anonymity with k = �, at least one patient with HIV is needed in each qid
group; therefore, at most 5 groups can be formed [Domingo-Ferrer and Torra 2008].
Enforcing k-anonymity with k = � may lead to high information loss in this case.
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Confidence bounding. Wang et al. [2005, 2007] considered bounding the confidence of
inferring a sensitive value from a qid group by specifying one or more privacy templates
of the form, 〈QID → s, h〉; s is a sensitive value, QID is a quasi-identifier, and h is a
threshold. Let Conf (QID → s) be max{conf (qid → s)} over all qid groups on QID,
where conf (qid → s) denotes the percentage of records containing s in the qid group.
A table satisfies 〈QID → s, h〉 if Conf (QID → s) ≤ h. In other words, 〈QID → s, h〉
bounds the attacker’s confidence of inferring the sensitive value s in any group on QID
to the maximum h.

For example, with QID = {Job, Sex, Age}, 〈QID → HIV, 10%〉 states that the confi-
dence of inferring HIV from any group on QID is no more than 10%. For the data in
Table II(c), this privacy template is violated because the confidence of inferring HIV is
75% in the group {Artist,Female, [30−35)}.

The confidence measure has two advantages over recursive (c, �)-diversity and en-
tropy �-diversity. First, the confidence measure is more intuitive because the risk is
measured by the probability of inferring a sensitive value. The data publisher relies
on this intuition to specify the acceptable maximum confidence threshold. Second, it
allows the flexibility for the data publisher to specify a different threshold h for each
combination of QID and s according to the perceived sensitivity of inferring s from a
group on QID. The recursive (c, �)-diversity cannot be used to bound the frequency of
sensitive values that are not the most frequent. Confidence bounding provides greater
flexibility than �-diversity in this aspect. However, recursive (c, �)-diversity can still
prevent attribute linkages, even in the presence of background knowledge discussed
earlier. Confidence bounding does not share the same merit.

(X, Y )-Privacy. (X, Y )-anonymity in Section 2.1 states that each group on X has at
least k distinct values on Y (e.g., diseases). However, if some Y values occur more fre-
quently than others, the probability of inferring a particular Y value can be higher
than 1/k. To address this issue, Wang and Fung [2006] proposed a general privacy
model, called (X, Y )-Privacy, which combines both (X, Y )-anonymity and confidence
bounding. The general idea is to require each group x on X to contain at least k records
and conf (x → y) ≤ h for any y ∈ Y , where Y is a set of selected sensitive values and h
is a maximum confidence threshold.

(α, k)-Anonymity. Wong et al. [2006] proposed a similar integrated privacy model,
called (α, k)-anonymity, requiring every qid in a Table T to be shared by at least k
records and conf (qid → s) ≤ α for any sensitive value s, where k and α are data
publisher-specified thresholds. Nonetheless, both (X, Y )-Privacy and (α, k)-anonymity
may result in high distortion if the sensitive values are skewed.

(k, e)-Anonymity. Most work on k-anonymity and its extensions assumes categorical
sensitive attributes. Zhang et al. [2007] proposed the notion of (k, e)-anonymity to ad-
dress numerical sensitive attributes such as salary. The general idea is to partition
the records into groups so that each group contains at least k different sensitive values
with a range of at least e. However, (k, e)-anonymity ignores the distribution of sensi-
tive values within the range λ. If some sensitive values occur frequently within a sub-
range of λ, then the attacker could still confidently infer the subrange in a group. This
type of attribute linkage attack is called the proximity attack [Li et al. 2008]. Consider
a qid group of 10 data records with 7 different sensitive values, where 9 records have
sensitive values in [30-35], and 1 record has value 80. The group is (7, 50)-anonymous
because 80 − 30 = 50. Still, the attacker can infer that a victim inside the group has a
sensitive value falling into [30-35] with 90% confidence. Li et al. [2008] proposed an al-
ternative privacy model, called (ε, m)-anonymity. Given any numerical sensitive value
s in T , this privacy model bounds the probability of inferring [s − ε, s + ε] to be at most
1/m.
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t-Closeness. In a spirit similar to the uninformative principle discussed earlier, Li
et al. [2007] observed that when the overall distribution of a sensitive attribute is
skewed, �-diversity does not prevent attribute linkage attacks. Consider a patient table
where 95% of records have Flu and 5% of records have HIV. Suppose that a qid group
has 50% of Flu and 50% of HIV and, therefore, satisfies 2-diversity. However, this
group presents a serious privacy threat because any record owner in the group could
be inferred as having HIV with 50% confidence, compared to 5% in the overall table.

To prevent skewness attack, Li et al. [2007] proposed a privacy model, called t-
Closeness, which requires the distribution of a sensitive attribute in any group on
QID to be close to the distribution of the attribute in the overall table. t-closeness uses
the Earth Mover Distance (EMD) function to measure the closeness between two dis-
tributions of sensitive values, and requires the closeness to be within t. t-closeness has
several limitations and weaknesses. First, it lacks the flexibility of specifying different
protection levels for different sensitive values. Second, the EMD function is not suit-
able for preventing attribute linkage on numerical sensitive attributes [Li et al. 2008].
Third, enforcing t-closeness would greatly degrade the data utility because it requires
the distribution of sensitive values to be the same in all qid groups. This would sig-
nificantly damage the correlation between QID and sensitive attributes. One way to
decrease the damage is to relax the requirement by adjusting the thresholds with the
increased risk of skewness attack [Domingo-Ferrer and Torra 2008], or to employ the
probabilistic privacy models in Section 2.4.

Personalized Privacy. Xiao and Tao [2006b] proposed the notion of personalized pri-
vacy to allow each record owner to specify her own privacy level. This model assumes
that each sensitive attribute has a taxonomy tree and that each record owner specifies
a guarding node in this tree. The record owner’s privacy is violated if an attacker is
able to infer any domain sensitive value within the subtree of her guarding node with
a probability, called breach probability, greater than a certain threshold. For example,
suppose HIV and SARS are child nodes of Infectious Disease in the taxonomy tree. A
HIV patient Alice can set the guarding node to Infectious Disease, meaning that she
allows people to infer that she has some infectious diseases, but not any specific type
of infectious disease. Another HIV patient, Bob, does not mind disclosing his medical
information, so he does not set any guarding node for this sensitive attribute.

Although both confidence bounding and personalized privacy take an approach to
bound the confidence or probability of inferring a sensitive value from a qid group,
they have differences. In the confidence bounding approach, the data publisher im-
poses a universal privacy requirement on the entire data set, so the minimum level
of privacy protection is the same for every record owner. In the personalized privacy
approach, a guarding node is specified for each record by its owner. The advantage is
that each record owner may specify a guarding node according to her own tolerance
on sensitivity. Experiments show that this personalized privacy requirement could re-
sult in lower information loss than the universal privacy requirement [Xiao and Tao
2006b]. In practice, however, it is unclear how individual record owners would set
their guarding node. Often, a reasonable guarding node depends on the distribution of
sensitive values in the whole table or in a group. For example, knowing that her dis-
ease is very common, a record owner may set a more special (lower privacy protected)
guarding node for her record. Nonetheless, the record owners usually have no access
to the distribution of sensitive values in their qid group or in the whole table before
the data is published. Without such information, the tendency is to play safe by setting
a more general (higher privacy protected) guarding node, which may negatively affect
the utility of data.

FF-Anonymity. All previous work assumes that the data table can be divided into
quasi-identifying (QID) attributes and sensitive attributes. Yet, this assumption does
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not hold when an attribute contains both sensitive values and quasi-identifying values.
Wang et al. [2009] identify a class of freeform attacks of the form X → s, where s and the
values in X can be any value of any attribute in the table T . X → s is a privacy breach
if any record in T matching X can infer a sensitive value s with a high probability.
Their proposed privacy model, FF-anonymity, bounds the probability of all potential
privacy breaches in the form X → s to be below a given threshold.

2.3. Table Linkage

Both record linkage and attribute linkage assume that the attacker already knows the
victim’s record is in the released table T . However, in some cases, the presence (or the
absence) of the victim’s record in T already reveals the victims’s sensitive information.
Suppose a hospital releases a data table with a particular type of disease. Identifying
the presence of the victim’s record in the table is already damaging. A table linkage
occurs if an attacker can confidently infer the presence or the absence of the victim’s
record in the released table. The following example illustrates the privacy threat of a
table linkage.

Example 2.8. Suppose the data publisher has released a 3-anonymous patient ta-
ble T (Table II(c)). To launch a table linkage on a target victim, for instance, Alice,
on T , the attacker is presumed to also have access to an external public table E
(Table II(d)) where T ⊆ E. The probability that Alice is present in T is 4

5 = 0.8
because there are 4 records in T (Table II(c)) and 5 records in E (Table II(d)) con-
taining 〈Artist, Female, [30 − 35)〉. Similarly, the probability that Bob is present in T
is 3

4 = 0.75.

δ-Presence. To prevent table linkage, Nergiz et al. [2007] proposed to bound the prob-
ability of inferring the presence of any potential victim’s record within a specified range
δ = (δmin, δmax). Formally, given an external public table E and a private table T , where
T ⊆ E, a generalized table T ′ satisfies (δmin, δmax)-presence if δmin ≤ P(t ∈ T |T ′) ≤ δmax
for all t ∈ E. δ-presence can indirectly prevent record and attribute linkages because if
the attacker has at most δ% of confidence that the target victim’s record is present in
the released table, then the probability of a successful linkage to her record and sen-
sitive attribute is at most δ%. Though δ-presence is a relatively “safe” privacy model,
it assumes that the data publisher has access to the same external table E as the
attacker does. This may not be a practical assumption.

2.4. Probabilistic Attack

There is another family of privacy models that does not focus on exactly what records,
attributes, and tables the attacker can link to a target victim, but focuses on how
the attacker would change his/her probabilistic belief on the sensitive information of
a victim after accessing the published data. In general, this group of privacy mod-
els aims at achieving the uninformative principle [Machanavajjhala et al. 2006],
whose goal is to ensure that the difference between the prior and posterior beliefs is
small.

(c, t)-Isolation. Chawla et al. [2005] suggested that having access to the published
anonymous data table should not enhance an attacker’s power of isolating any record
owner. Consequently, they proposed a privacy model to prevent (c, t)-isolation in a sta-
tistical database. Suppose p is a data point of a target victim v in a data table, and q is
the attacker’s inferred data point of v by using the published data and the background
information. Let δp be the distance between p and q. We say that point q (c, t)-isolates
point p if B(q, cδp) contains fewer than t points in the table, where B(q, cδp) is a ball of
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radius cδp centered at point q. Preventing (c, t)-isolation can be viewed as preventing
record linkages. Their model considers distances among data records and, therefore, is
more suitable for numerical attributes in statistical databases.

ε-Differential privacy. Dwork [2006] proposed an insightful privacy notion: the risk
to the record owner’s privacy should not substantially increase as a result of partic-
ipating in a statistical database. Instead of comparing the prior probability and the
posterior probability before and after accessing the published data, Dwork proposed
to compare the risk with and without the record owner’s data in the published data.
Consequently, Dwork [2006] proposed a privacy model called ε-differential privacy to
ensure that the removal or addition of a single database record does not significantly
affect the outcome of any analysis. It follows that no risk is incurred by joining differ-
ent databases. Based on the same intuition, if a record owner does not provide his/her
actual information to the data publisher, it will not make much difference in the result
of the anonymization algorithm.

The following is a more formal definition of ε-differential privacy [Dwork 2006]: A
randomized function F ensures ε-differential privacy if for all data sets T1 and T2 dif-
fering on at most one record, |lnP(F(T1)=S)

P(F(T2)=S) | ≤ ε for all S ∈ Range(F), where Range(F) is
the set of possible outputs of the randomized function F. Although ε-differential pri-
vacy does not prevent record and attribute linkages studied in earlier sections, it as-
sures record owners that they may submit their personal information to the database
securely in the knowledge that nothing, or almost nothing, can be discovered from the
database with their information that could not have been discovered without their
information. Dwork [2006] formally proved that ε-differential privacy can provide a
guarantee against attackers with arbitrary background knowledge. This strong guar-
antee is achieved by comparison with and without the record owner’s data in the
published data. Dwork [2007] proved that if the number of queries is sublinear in
n, the noise to achieve differential privacy is bounded by o(

√
n), where n is the num-

ber of records in the database. Dwork [2008] further showed that the notion of dif-
ferential privacy is applicable to both interactive and noninteractive query models,
discussed in Sections 1.1 and 8.1; refer to Dwork [2008] for a survey on differential
privacy.

(d, γ )-Privacy. Rastogi et al. [2007] presented a probabilistic privacy definition (d, γ )-
privacy. Let P(r) and P(r|T ) be the prior probability and the posterior probability of
the presence of a victim’s record in the data table T before and after examining the
published table T . (d, γ )-privacy bounds the difference of the prior and posterior prob-
abilities and provides a provable guarantee on privacy and information utility, while
most previous work lacks such a formal guarantee. Rastogi et al. [2007] showed that a
reasonable trade-off between privacy and utility can be achieved only when the prior
belief is small. Nonetheless, (d, γ )-privacy is designed to protect only against attacks
that are d-independent: an attack is d-independent if the prior belief P(r) satisfies the
conditions P(r) = 1 or P(r) ≤ d for all records r, where P(r) = 1 means that the at-
tacker already knows that r is in T and no protection on r is needed. Machanavajjhala
et al. [2008] pointed out that this d-independence assumption may not hold in some
real-life applications. Differential privacy in comparison does not have to assume that
records are independent or that an attacker has a prior belief bounded by a probability
distribution.

Distributional privacy. Motivated by the learning theory, Blum et al. [2008] pre-
sented a privacy model called distributional privacy for a noninteractive query model.
The key idea is that when a data table is drawn from a distribution, the table should
reveal only information about the underlying distribution, and nothing else. Distri-
butional privacy is a strictly stronger privacy notion than differential privacy, and
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can answer all queries over a discretized domain in a concept class of polynomial
VC-dimension.1 Yet, the algorithm has high computational cost. Blum et al. [2008] pre-
sented an efficient algorithm specifically for simple interval queries with limited con-
straints. The problems of developing efficient algorithms for more complicated queries
remain open.

3. ANONYMIZATION OPERATIONS

Typically, the original table does not satisfy a specified privacy requirement and the ta-
ble must be modified before being published. The modification is done by applying a se-
quence of anonymization operations to the table. An anonymization operation comes in
several flavors: generalization, suppression, anatomization, permutation, and pertur-
bation. Generalization and suppression replace values of specific description, typically
the QID attributes, with less specific description. Anatomization and permutation de-
associate the correlation between QID and sensitive attributes by grouping and shuf-
fling sensitive values in a qid group. Perturbation distorts the data by adding noise,
aggregating values, swapping values, or generating synthetic data based on some sta-
tistical properties of the original data. Below, we discuss these anonymization opera-
tions in detail.

3.1. Generalization and Suppression

Each generalization or suppression operation hides some details in QID. For a cate-
gorical attribute, a specific value can be replaced with a general value according to a
given taxonomy. In Figure 3, the parent node Professional is more general than the
child nodes Engineer and Lawyer. The root node, ANY Job, represents the most gen-
eral value in Job. For a numerical attribute, exact values can be replaced with an
interval that covers exact values. If a taxonomy of intervals is given, the situation is
similar to categorical attributes. More often, however, no predetermined taxonomy is
given for a numerical attribute. Different classes of anonymization operations have
different implications on privacy protection, data utility, and search space. But they
all result in a less precise but consistent representation of the original data.

A generalization replaces some values with a parent value in the taxonomy of an
attribute. The reverse operation of generalization is called specialization. A suppres-
sion replaces some values with a special value, indicating that the replaced values
are not disclosed. The reverse operation of suppression is called disclosure. Below, we
summarize five generalization schemes.

Full-domain generalization scheme [LeFevre et al. 2005; Samarati 2001; Sweeney
2002b]. In this scheme, all values in an attribute are generalized to the same level of
the taxonomy tree. For example, in Figure 3, if Lawyer and Engineer are generalized to
Professional, then it also requires generalizing Dancer and Writer to Artist. The search
space for this scheme is much smaller than the search space for other schemes below,
but the data distortion is the largest because of the same granularity level requirement
on all paths of a taxonomy tree.

Subtree generalization scheme [Bayardo and Agrawal 2005; Fung et al. 2005, 2007;
Iyengar 2002; LeFevre et al. 2005]. In this scheme, at a nonleaf node, either all child
values or none are generalized. For example, in Figure 3, if Engineer is generalized to
Professional, this scheme also requires the other child node, Lawyer, to be generalized
to Professional, but Dancer and Writer, which are child nodes of Artist, can remain
ungeneralized. Intuitively, a generalized attribute has values that form a “cut” through

1Vapnik-Chervonenkis dimension is a measure of the capacity of a statistical classification algorithm.
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its taxonomy tree. A cut of a tree is a subset of values in the tree that contains exactly
one value on each root-to-leaf path.

Sibling generalization scheme [LeFevre et al. 2005]. This scheme is similar to the
subtree generalization, except that some siblings may remain ungeneralized. A par-
ent value is then interpreted as representing all missing child values. For example, in
Figure 3, if Engineer is generalized to Professional, and Lawyer remains ungeneral-
ized, Professional is interpreted as all jobs covered by Professional except for Lawyer.
This scheme produces less distortion than subtree generalization schemes because it
only needs to generalize the child nodes that violate the specified threshold.

Cell generalization scheme [LeFevre et al. 2005; Wong et al. 2006; Xu et al. 2006].
In all of the above schemes, if a value is generalized, all its instances are generalized.
Such schemes are called global recoding. In cell generalization, also known as local re-
coding, some instances of a value may remain ungeneralized while other instances are
generalized. For example, in Table II(a) the Engineer in the first record is generalized
to Professional, while the Engineer in the second record can remain ungeneralized.
Compared with global recoding schemes, this scheme is more flexible; and therefore
it produces a smaller data distortion. Nonetheless, it is important to note that the
utility of data is adversely affected by this flexibility, which causes a data exploration
problem: most standard data mining methods treat Engineer and Professional as two
independent values, but, in fact, they are not. For example, building a decision tree
from such a generalized table may result in two branches, Professional → class2 and
Engineer → class1. It is unclear which branch should be used to classify a new engi-
neer. Though very important, this aspect of data utility has been ignored by all work
that employed the local recoding scheme. Data produced by global recoding does not
suffer from this data exploration problem.

Multidimensional generalization [LeFevre et al. 2006a, 2006b]. Let Di be the do-
main of an attribute Ai. A single-dimensional generalization, such as full-domain
generalization and subtree generalization, is defined by a function fi : DAi → D′
for each attribute Ai in QID. In contrast, a multidimensional generalization is de-
fined by a single function f : DA1 × · · · × DAn → D′, which is used to generalize
qid = 〈v1, . . . , vn〉 to qid′ = 〈u1, . . . , un〉 where for every vi, either vi = ui or vi is a
child node of ui in the taxonomy of Ai. This scheme flexibly allows two qid groups,
even having the same value v, to be independently generalized into different parent
groups. For example 〈Engineer, Male〉 can be generalized to 〈Engineer, ANY Sex〉 while
〈Engineer, Female〉 can be generalized to 〈Professional, Female〉. The generalized table
contains both Engineer and Professional. This scheme produces less distortion than
the full-domain and subtree generalization schemes because it needs to generalize only
the qid groups that violate the specified threshold. Note that in this multidimensional
scheme, all records in a qid are generalized to the same qid′, but cell generalization
does not have such constraint. Although both schemes suffer from the data exploration
problem, Nergiz and Clifton [2007] further evaluated a family of clustering-based al-
gorithms that even attempted to improve data utility by ignoring the restrictions of
the given taxonomies.

There are also different suppression schemes. Record suppression [Bayardo and
Agrawal 2005; Iyengar 2002; LeFevre et al. 2005; Samarati 2001] refers to suppress-
ing an entire record. Value suppression [Wang et al. 2005, 2007] refers to suppressing
every instance of a given value in a table. Cell suppression (or local suppression) [Cox
1980; Meyerson and Williams 2004] refers to suppressing some instances of a given
value in a table.

In summary, the choice of anonymization operations has an implication on the
search space of anonymous tables and data distortion. The full-domain generalization
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has the smallest search space but the largest distortion, and the local recoding scheme
has the largest search space but the least distortion. For a categorical attribute with
a taxonomy tree H, the number of possible cuts in subtree generalization, denoted
C(H), is equal to C(H1) × · · · × C(Hu) + 1 where H1, . . . , Hu are the subtrees rooted at
the children of the root of H, and 1 is for the trivial cut at the root of H. The number of
potential modified tables is equal to the product of such numbers for all the attributes
in QID. The corresponding number is much larger if a local recoding scheme is adopted
because any subset of values can be generalized while the rest remains ungeneralized
for each attribute in QID.

A table is minimally anonymous if it satisfies the given privacy requirement and its
sequence of anonymization operations cannot be reduced without violating the require-
ment. A table is optimally anonymous if it satisfies the given privacy requirement and
contains most information according to the chosen information metric among all satis-
fying tables. See Section 4 for different types of information metrics. Various works
have shown that finding the optimal anonymization is NP-hard: Samarati [2001]
showed that the optimal k-anonymity by full-domain generalization is very costly;
Meyerson and Williams [2004] and Aggarwal et al. [2005] proved that the optimal k-
anonymity by cell suppression, value suppression, and cell generalization is NP-hard;
Wong et al. [2006] proved that the optimal (α, k)-anonymity by cell generalization is
NP-hard. In most cases, finding a minimally anonymous table is a reasonable solu-
tion, and can be done efficiently.

3.2. Anatomization and Permutation

Anatomization [Xiao and Tao 2006a]. Unlike generalization and suppression, anato-
mization does not modify the quasi-identifier or the sensitive attribute, but deasso-
ciates the relationship between the two. Precisely, the method releases the data on
QID and the data on the sensitive attribute in two separate tables: a quasi-identifier
table (QIT) contains the QID attributes, a sensitive table (ST) contains the sensitive
attributes, and both QIT and ST have one common attribute, GroupID. All records in
the same group will have the same value on GroupID in both tables, and therefore
are linked to the sensitive values in the group in the exact same way. If a group has �
distinct sensitive values and each distinct value occurs exactly once in the group, then
the probability of linking a record to a sensitive value by GroupID is 1/�. The attribute
linkage attack can be distorted by increasing �.

Example 3.1. Suppose that the data publisher wants to release the patient data
in Table III(a), where Disease is a sensitive attribute and QID = {Age, Sex}. First,
partition (or generalize) the original records into qid groups so that, in each group, at
most 1/� of the records contain the same Disease value. This intermediate Table II(b)
contains two qid groups: 〈[30−35), Male〉 and 〈[35−40), Female〉. Next, create QIT
(Table III(c)) to contain all records from the original Table III(a), but replace the sensi-
tive values by the GroupIDs, and create ST (Table III(d)) to contain the count of each
Disease for each qid group. QIT and ST satisfy the privacy requirement with � ≤ 2
because each qid group in QIT infers any associated Disease in ST with probability at
most 1/� = 1/2 = 50%.

The major advantage of anatomy is that the data in both QIT and ST is unmodified.
Xiao and Tao [2006a] showed that the anatomized tables can more accurately answer
aggregate queries involving domain values of the QID and sensitive attributes than
the generalization approach. The intuition is that, in a generalized table, domain val-
ues are lost, and without additional knowledge, the uniform distribution assumption
is the best that can be used to answer a query about domain values. In contrast, all
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Table III. Anatomy
(a) Original patient data

Disease
Age Sex (sensitive)
30 Male Hepatitis
30 Male Hepatitis
30 Male HIV
32 Male Hepatitis
32 Male HIV
32 Male HIV
36 Female Flu
38 Female Flu
38 Female Heart
38 Female Heart

(b) Intermediate QID-grouped table
Disease

Age Sex (sensitive)
[30−35) Male Hepatitis
[30−35) Male Hepatitis
[30−35) Male HIV
[30−35) Male Hepatitis
[30−35) Male HIV
[30−35) Male HIV
[35−40) Female Flu
[35−40) Female Flu
[35−40) Female Heart
[35−40) Female Heart

(c) Quasi-identifier table (QIT)
for release

Age Sex GroupID
30 Male 1
30 Male 1
30 Male 1
32 Male 1
32 Male 1
32 Male 1
36 Female 2
38 Female 2
38 Female 2
38 Female 2

(d) Sensitive table (ST) for release
Disease

GroupID (sensitive) Count
1 Hepatitis 3
1 HIV 3
2 Flu 2
2 Heart 2

domain values are retained in the anatomized tables, which give the exact distribution
of domain values. For instance, suppose that the data recipient wants to count the
number of patients of age 38 having heart disease. The correct count from the original
Table III(a) is 2. The expected count from the anatomized Table III(c) and Table III(d)
is 3 × 2

4 = 1.5, since 2 out of the 4 records in GroupID = 2 in Table III(d) have heart
disease. This count is more accurate than the expected count 2× 1

5 = 0.4, from the gen-
eralized Table III(b), where the 1

5 comes from the fact that the 2 patients with heart
disease have an equal chance to be of age {35, 36, 37, 38, 39}.

Yet, with the data published in two tables, it is unclear how standard data min-
ing tools such as classification, clustering, and association mining tools can be ap-
plied to the published data, and new tools and algorithms need to be designed. Also,
anatomy is not suitable for continuous data publishing, which will be discussed further
in Section 6.3. The generalization approach does not suffer from the same problem be-
cause all attributes are released in the same table.

Permutation. Sharing the same spirit of anatomization, Zhang et al. [2007] proposed
an approach called permutation. The idea is to deassociate the relationship between
a quasi-identifier and a numerical sensitive attribute by partitioning a set of data
records into groups and shuffling their sensitive values within each group.

3.3. Perturbation

Perturbation has a long history in statistical disclosure control [Adam and Wortman
1989] due to its simplicity, efficiency, and ability to preserve statistical information.
The general idea is to replace the original data values with some synthetic data val-
ues, so that the statistical information computed from the perturbed data does not dif-
fer significantly from the statistical information computed from the original data. The
perturbed data records do not correspond to real-world record owners, so the attacker
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cannot perform the sensitive linkages or recover sensitive information from the pub-
lished data.

Compared to the other anonymization operations discussed earlier, one limitation of
the perturbation approach is that the published records are “synthetic” in that they
do not correspond to the real-world entities represented by the original data; there-
fore, individual records in the perturbed data are basically meaningless to the human
recipients. Only the statistical properties explicitly selected by the data publisher are
preserved. In such a case, the data publisher may consider releasing the statistical in-
formation or the data mining results rather than the perturbed data [Domingo-Ferrer
2008]. In contrast, generalization and suppression make the data less precise than, but
semantically consistent with, the raw data, and hence preserve the truthfulness of the
data. For example, after analyzing the statistical properties of a collection of perturbed
patient records, a drug company wants to focus on a small number of patients for fur-
ther analysis. This stage requires the truthful record information instead of perturbed
record information. Below, we discuss several commonly used perturbation methods,
including additive noise, data swapping, and synthetic data generation.

Additive noise. Additive noise is a widely used privacy protection method in sta-
tistical disclosure control [Adam and Wortman 1989; Brand 2002]. It is often used for
hiding sensitive numerical data (e.g., salary). The general idea is to replace the original
sensitive value s with s +, r where r is a random value drawn from some distribution.
Privacy was measured by how closely the original values of a modified attribute can be
estimated [Agrawal and Aggarwal 2001]. Fuller [1993] and Kim and Winkler [1995]
showed that some simple statistical information, like means and correlations, can be
preserved by adding random noise. Experiments in Agrawal and Srikant [2000], Du
and Zhan [2003], and Evfimievski et al. [2002] further suggested that some data min-
ing information can be preserved in the randomized data. However, Kargupta et al.
[2003] pointed out that some reasonably close sensitive values can be recovered from
the randomized data when the correlation among attributes is high but the noise is
not. Huang et al. [2005] presented an improved randomization method to limit this
type of privacy breach. Some representative statistical disclosure control methods that
employ additive noise are discussed in Sections 2.4 and 5.5.

Data swapping. The general idea of data swapping is to anonymize a data ta-
ble by exchanging values of sensitive attributes among individual records, while the
swaps maintain the low-order frequency counts or marginals for statistical analysis.
It can be used to protect numerical attributes [Reiss et al. 1982] and categorical at-
tributes [Reiss 1984]. An alternative swapping method is rank swapping: First rank
the values of an attribute A in ascending order. Then for each value v ∈ A, swap v
with another value u ∈ A, where u is randomly chosen within a restricted range p% of
v. Rank swapping can better preserve statistical information than the ordinary data
swapping [Domingo-Ferrer and Torra 2002].

Synthetic data generation. Many statistical disclosure control methods use synthetic
data generation to preserve record owners’ privacy and retain useful statistical in-
formation [Rubin]. The general idea is to build a statistical model from the data and
then to sample points from the model. These sampled points form the synthetic data
for data publication instead of the original data. An alternative synthetic data gener-
ation approach is condensation [Aggarwal and Yu 2008a, 2008b]. The idea is to first
condense the records into multiple groups. For each group, extract some statistical
information, such as sum and covariance, that suffices to preserve the mean and cor-
relations across the different attributes. Then, based on the statistical information, for
publication generate points for each group following the statistical characteristics of
the group.
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4. INFORMATION METRICS

Privacy preservation is one side of anonymization. The other side is retaining informa-
tion so that the published data remains practically useful. There are broad categories
of information metrics for measuring data usefulness. A data metric measures the
data quality in the entire anonymous table with respect to the data quality in the orig-
inal table. A search metric guides each step of an anonymization (search) algorithm
to identify an anonymous table with maximum information or minimum distortion.
Often, this is achieved by ranking a set of possible anonymization operations and then
greedily performing the “best” one at each step in the search. Since the anonymous
table produced by a search metric is eventually evaluated by a data metric, the two
types of metrics usually share the same principle for measuring data quality.

Alternatively, an information metric can be categorized by its information purposes,
including general purpose, special purpose, or trade-off purpose. Below, we discuss some
commonly used data and search metrics according to their purposes.

4.1. General Purpose Metrics

In many cases, the data publisher does not know how the published data will be an-
alyzed by the recipient. This is very different from privacy-preserving data mining
(PPDM), which assumes that the data mining task is known. In PPDP, for exam-
ple, the data may be published on the Web and a recipient may analyze the data
according to her own purpose. An information metric good for one recipient may
not be good for another recipient. In such scenarios, a reasonable information met-
ric is to measure “similarity” between the original data and the anonymous data,
which underpins the principle of minimal distortion [Samarati 2001; Sweeney 1998,
2002b]. In the minimal distortion metric or MD, a penalty is charged to each in-
stance of a value that is generalized or suppressed. For example, generalizing 10
instances of Engineer to Professional causes 10 units of distortion, and further gen-
eralizing these instances to ANY Job causes another 10 units of distortion. This
metric is a single attribute measure, and was previously used in Samarati [2001],
Sweeney [2002a, 2002b], and Wang and Fung [2006] as a data metric and search
metric.

ILoss is a data metric proposed in Xiao and Tao [2006b] to capture the information
loss of generalizing a specific value to a general value vg: ILoss(vg) = |vg|−1

|DA| where |vg|
is the number of domain values that are descendants of vg, and |DA| is the number
of domain values in the attribute A of vg. This data metric requires all original data
values to be at the leaves in the taxonomy. ILoss(vg) = 0 if vg is an original data
value in the table. In words, ILoss(vg) measures the fraction of domain values general-
ized by vg. For example, generalizing one instance of Dancer to Artist in Figure 3 has
ILoss(Artist) = 2−1

4 = 0.25. The loss of a generalized record r is given by

ILoss(r) =
∑

vg∈r

(wi × ILoss(vg)), (2)

where wi is a positive constant specifying the penalty weight of attribute Ai of vg. The
overall loss of a generalized table T is given by

ILoss(T ) =
∑

r∈T

ILoss(r). (3)
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Both MD and ILoss charge a penalty for generalizing a value in a record inde-
pendently of other records. For example, generalizing 99 instances of Engineer and
1 instance of Lawyer to Professional will have the same penalty as generalizing 50
instances of Engineer and 50 instances of Lawyer. In both cases, 100 instances are
made indistinguishable. The difference is that, before the generalization, 99 instances
were already indistinguishable in the first case, whereas only 50 instances are in-
distinguishable in the second case. Therefore, the second case makes more origi-
nally distinguishable records become indistinguishable. The discernibility metric, or
DM [Skowron and Rauszer 1992], addresses this notion of loss by charging a penalty
to each record for being indistinguishable from other records with respect to QID.
If a record belongs to a group of size s, the penalty for the record will be s. This
data metric, used in Bayardo and Agrawal [2005], LeFevre et al. [2006a], Machanava-
jjhala et al. [2006, 2007], Vinterbo [2004], and Xu et al. [2006], works exactly against
the k-anonymization that seeks to make records indistinguishable with respect to
QID.

A simple search metric, called distinctive attribute, or DA, was employed in Sweeney
[1998] to guide the search for a minimally anonymous table in a full-domain general-
ization scheme. The heuristic selects the attribute having the most number of distinc-
tive values in the data for generalization. Note that this type of simple heuristic only
serves the purpose of guiding the search, but does not quantify the utility of an anony-
mous table.

4.2. Special Purpose Metrics

If the purpose of the data is known at the time of publication, the purpose can be
taken into account during anonymization to better retain information. For example, if
the data is published for modeling the classification of a target attribute in the table,
then it is important not to generalize the values whose distinctions are essential for
discriminating the class labels in the target attribute. An often-asked question is if
the purpose of data is known, why not extract and publish a data mining result for
that purpose (such as a classifier) instead of the data [Nergiz and Clifton 2007]? The
answer is that publishing a data mining result is a commitment at the algorithmic
level, which is neither practical for the nonexpert data publisher nor desirable for
the data recipient. In practice, there are many ways to mine the data even for a given
purpose, and typically it is unknown which one is the best until the data is received and
different ways are tried. A real-life example is the release of the Netflix data (New York
Times, Oct. 2, 2006) discussed in Section 1. Netflix wanted to provide the participants
the greatest flexibility in performing their desired analysis, instead of limiting them
to a specific type of analysis.

For concreteness, let us consider the classification problem where the goal is to clas-
sify future cases into some predetermined classes, drawn from the same underlying
population as the training cases in the published data. The training cases contain both
the useful classification information that can improve the classification model, and the
useless noise that can degrade the classification model. Specifically, the useful clas-
sification information is the information that can differentiate the target classes, and
holds not only for training cases, but also for future cases. In contrast, the useless noise
holds only for training cases. Clearly, only the useful classification information that
helps classification should be retained. For example, a patient’s birth year is likely to
be part of information for classifying lung cancer if the disease occurs more frequently
among elderly people, but the exact birth date is likely to be noise. In this case, gen-
eralizing birth date to birth year helps classification because it eliminates the noise.
This example shows that simply minimizing the distortion to the data, as adopted by
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all general purpose metrics and optimal k-anonymization, is not addressing the right
problem.

To address the classification goal, the distortion should be measured by the clas-
sification error on future cases. Since future data is not available in most scenarios,
most developed methods [Fung et al. 2005, 2007; Iyengar 2002] measure accuracy on
the training data. Research results in Fung et al. [2005, 2007] suggest that the useful
classification knowledge is captured by different combinations of attributes. General-
ization and suppression may destroy some of these useful “classification structures,”
but other useful structures may emerge to help. In some cases, generalization and sup-
pression may even improve the classification accuracy because some noise has been
removed.

Iyengar [2002] presented the first work on PPDP for classification. He proposed the
classification metric, or CM, to measure the classification error on the training data.
The idea is to charge a penalty for each record suppressed or generalized to a group in
which the record’s class is not the majority class. The intuition is that a record having
a non-majority class in a group will be classified as the majority class, which is an error
because it disagrees with the record’s original class.

CM is a data metric, and hence penalizes modification to the training data. This does
not quite address the classification goal, which is actually better off by generalizing
useless noise into useful classification information. For classification, a more relevant
approach is searching for a “good” anonymization according to some heuristics. In other
words, instead of optimizing a data metric, this approach employs a search metric to
rank anonymization operations at each step in the search. An anonymization opera-
tion is ranked high if it retains useful classification information. The search metric
could be adapted by different anonymization algorithms. For example, a greedy algo-
rithm or a hill-climbing optimization algorithm can be used to identify a minimal se-
quence of anonymization operations for a given search metric. We discuss anonymiza-
tion algorithms in Section 5.

Neither a data metric nor a search metric guarantees a good classification for fu-
ture cases. It is essential to experimentally evaluate the impact of anonymization by
building a classifier from the anonymous data and seeing how it performs on testing
cases. Few works [Fung et al. 2005, 2007; Iyengar 2002; LeFevre et al. 2006b; Wang
et al. 2004] have actually conducted such experiments, although many, such as Ba-
yardo and Agrawal [2005], adopted CM in an attempt to address the classification
problem.

4.3. Trade-off Metrics

The special purpose information metrics aim at preserving data usefulness for a given
data mining task. The catch is that the anonymization operation that gains maximum
information may also lose so much privacy that no other anonymization operation can
be performed. The idea of trade-off metrics is to consider both the privacy and infor-
mation requirements at every anonymization operation and to determine an optimal
trade-off between the two requirements.

Fung et al. [2005, 2007] proposed a search metric based on the principle of informa-
tion/privacy trade-off. Suppose that the anonymous table is searched by iteratively
specializing a general value into child values. Each specialization operation splits
each group containing the general value into a number of groups, one for each child
value. Each specialization operation s gains some information, denoted IG(s), and loses
some privacy, PL(s). This search metric prefers the specialization s that maximizes the
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information gained per each loss of privacy:

IGPL(s) = IG(s)
PL(s) + 1

. (4)

The choice of IG(s) and PL(s) depends on the information metric and privacy model.
For example, in classification analysis, IG(s) could be the information gain [Quinlan
1993] defined as the decrease of the class entropy [Shannon 1948] after specializing
a general group into several specialized groups. Alternatively, IG(s) could be the de-
crease of distortion measured by MD, described in Section 4.1, after performing s. For
k-anonymity, Fung et al. [2005, 2007] measured the privacy loss PL(s) by the average
decrease of anonymity over all QIDj that contain the attribute of s, that is,

PL(s) = avg{A(QIDj) − As(QIDj)},
where A(QIDj) and As(QIDj) denote the anonymity of QIDj before and after the spe-
cialization. One variant is to maximize the gain of information by setting PL(s) to zero.
The catch is that the specialization that gains maximum information may also lose so
much privacy that no other specializations can be performed. Note that the principle
of information/privacy trade-off can also be used to select a generalization g, in which
case it will minimize

ILPG(g) = IL(g)
PG(g) + 1

, (5)

where IL(g) denotes the information loss and PG(g) denotes the privacy gain by per-
forming g.

5. ANONYMIZATION ALGORITHMS

In this section, we examine some representative anonymization algorithms. Refer to
Table IV for a characterization based on the privacy model (Section 2), anonymization
operation (Section 3), and information metric (Section 4). Our presentation of algo-
rithms is organized according to linkage models; we then discuss the potential privacy
threats, even though a data table has been optimally anonymized.

5.1. Algorithms for the Record Linkage Model

We broadly classify record linkage anonymization algorithms into three families: the
first two, optimal anonymization and minimal anonymization, use generalization and
suppression methods; the third family uses perturbation methods.

5.1.1. Optimal Anonymization Algorithms. The first family finds an optimal k-
anonymization, for a given data metric by limiting to full-domain generalization and
record suppression. Since the search space for the full-domain generalization scheme
is much smaller than other schemes, finding an optimal solution is feasible for small
data sets. This type of exhaustive search, however, is not scalable to large data sets,
especially if a more flexible anonymization scheme is employed.

MinGen. Sweeney’s [2002b] MinGen algorithm exhaustively examines all potential
full-domain generalizations to identify the optimal generalization measured in MD.
Sweeney acknowledged that this exhaustive search is impractical even for the modest-
sized data sets, motivating the second family of k-anonymization algorithms for later
discussion. Samarati [2001] proposed a binary search algorithm that first identifies
all minimal generalizations, and then finds the optimal generalization measured in
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Table IV. Characterization of Anonymization Algorithms
Algorithm Operation Metric Optimality
Record Linkage
Binary Search [Samarati 2001] FG,RS MD optimal
MinGen [Sweeney 2002b] FG,RS MD optimal
Incognito [LeFevre et al. 2005] FG,RS MD optimal
K-Optimize [Bayardo and Agrawal 2005] SG,RS DM,CM optimal
μ-argus [Hundepool and Willenborg 1996] SG,CS MD minimal
Datafly [Sweeney 1998] FG,RS DA minimal
Genetic Algorithm [Iyengar 2002] SG,RS CM minimal
Bottom-Up Generalization [Wang et al. 2004] SG ILPG minimal
Top-Down Specialization (TDS) [Fung et al. 2005, 2007] SG,VS IGPL minimal
TDS for Cluster Analysis [Fung et al. 2009] SG,VS IGPL minimal
Mondrian Multidimensional [LeFevre et al. 2006a] MG DM minimal
Bottom-Up & Top-Down Greedy [Xu et al. 2006] CG DM minimal
TDS2P [Wang et al. 2005; Mohammed et al. 2009] SG IGPL minimal
Condensation [Aggarwal and Yu 2008a, 2008b] CD heuristics minimal
r-Gather Clustering [Aggarwal et al. 2006] CL heuristics minimal

Attribute Linkage
Top-Down Disclosure [Wang et al. 2005, 2007] VS IGPL minimal
Progressive Local Recoding [Wong et al. 2006] CG MD minimal
�-Diversity Incognito [Machanavajjhala et al. 2007] FG,RS MD,DM optimal
InfoGain Mondrian [LeFevre et al. 2006b] MG IG minimal
Anatomy [Xiao and Tao 2006a] AM heuristics minimal
(k, e)-Anonymity Permutation [Zhang et al. 2007] PM min. error optimal
Greedy Personalized [Xiao and Tao 2006b] SG,CG ILoss minimal
t-Closeness Incognito [Li et al. 2007] FG,RS DM optimal

Table Linkage
SPALM [Nergiz et al. 2007] FG DM optimal
MPALM [Nergiz et al. 2007] MG heuristics minimal

Probabilistic Attack
Cross-Training Round Sanitization [Chawla et al. 2005] AN statistical N/A
ε-Differential Privacy Additive Noise [Dwork 2006] AN statistical N/A
αβ Algorithm [Rastogi et al. 2007] AN,SP statistical N/A

FG = Full-domain Generalization, SG = Subtree Generalization, CG = Cell Generalization,
MG = Multidimensional Generalization, RS = Record Suppression, VS =Value Suppression,
CS = Cell Suppression, AM = Anatomization, PM = Permutation, AN = Additive Noise, SP
= Sampling, CD = Condensation, CL=Clustering

MD. Enumerating all minimal generalizations is an expensive operation, and hence
not scalable for large data sets.

Incognito. LeFevre et al. [2005] presented a suite of optimal bottom-up generaliza-
tion algorithms, called Incognito, to generate all possible k-anonymous full-domain
generalizations. These algorithms exploit the rollup property for computing the size of
qid groups.

Observation 5.1 (Rollup Property). If qid is a generalization of {qid1, . . . , qidc},
then |qid| = ∑c

i=1 |qidi|.
The rollup property states that the parent group size |qid| can be directly computed
from the sum of all child group sizes |qidi|, implying that the group size |qid| of all
possible generalizations can be incrementally computed in a bottom-up manner. This
property not only allows efficient computation of group sizes, but also provides a
terminating condition for further generalizations, leading to the generalization
property:
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Observation 5.2 (Generalization Property). Let T ′ be a table not more specific than
table T on all attributes in QID. If T is k-anonymous on QID, then T ′ is also k-
anonymous on QID.

The generalization property provides the basis for effectively pruning the search space
of generalized tables. This property is essential for efficiently determining an optimal
k-anonymization [LeFevre et al. 2005; Samarati 2001]. Consider a qid in a table T . If
qid′ is a generalization of qid and |qid| ≥ k, then |qid′| ≥ k. Thus, if T is k-anonymous,
there is no need to generalize T further because any further generalizations of T must
also be k-anonymous but with higher distortion, and therefore not optimal according to,
for example, the minimal distortion metric MD. Although Incognito significantly out-
performs the binary search in efficiency [Samarati 2001], the complexity of all three al-
gorithms, namely MinGen, binary search, and Incognito, increases exponentially with
the size of QID.

K-Optimize. Another algorithm called K-Optimize [Bayardo and Agrawal 2005] ef-
fectively prunes nonoptimal anonymous tables by modeling the search space using a
set enumeration tree. Each node represents a k-anonymous solution. The algorithm
assumes a totally ordered set of attribute values and examines the tree in a top-down
manner, starting from the most general table, and prunes a node in the tree when none
of its descendants could be a global optimal solution based on discernibility metric DM
and classification metric CM. Unlike the above algorithms, K-Optimize employs the
subtree generalization and record suppression schemes. It is the only efficient optimal
algorithm that uses the flexible subtree generalization.

5.1.2. Minimal Anonymization Algorithms. The second family of algorithms produces a
minimal k-anonymous table by employing a greedy search guided by a search metric.
Being heuristic in nature, these algorithms find a minimally anonymous solution, but
are more scalable than the previous family.

μ-argus. The μ-argus algorithm [Hundepool and Willenborg 1996] computes the fre-
quency of all 3-value combinations of domain values, then greedily applies subtree
generalizations and cell suppressions to achieve k-anonymity. Since the method limits
the size of attribute combination, the resulting data may not be k-anonymous when
more than 3 attributes are considered.

Datafly. Sweeney’s [1998] Datafly system was the first k-anonymization algorithm
scalable to handle real-life large data sets. It achieves k-anonymization by generating
an array of qid group sizes and greedily generalizing those combinations with less than
k occurrences based on a heuristic search metric DA that selects the attribute with
the largest number of distinct values. Datafly employs full-domain generalization and
record suppression schemes.

Genetic. Iyengar [2002] was among the first to aim at preserving classification in-
formation in k-anonymous data by employing a genetic algorithm with an incom-
plete stochastic search based on classification metric CM and a subtree generalization
scheme. The idea is to encode each state of generalization as a “chromosome” and en-
code data distortion by a fitness function. The search process is a genetic evolution
that converges to the fittest chromosome. Iyengar’s experiments suggested that, by
considering the classification purpose, the classifier built from the anonymous data
produces lower classification error than the classifier built from the anonymous data
using a general purpose metric. However, experiments also showed that this genetic
algorithm is inefficient for large data sets.

Bottom-Up Generalization. To address the efficiency issue in k-anonymization, a
bottom-up generalization algorithm was proposed in Wang et al. [2004] for finding
a minimal k-anonymization for classification. The algorithm starts from the original
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data that violates k-anonymity and greedily selects a generalization operation at each
step according to a search metric similar to ILPG in Eq. (5). Each operation increases
the group size according to the rollup property in Observation 5.1. The generalization
process is terminated as soon as all groups have the minimum size k. To select a gen-
eralization operation, it first considers those that will increase the minimum group
size, called critical generalizations, with the intuition that a loss of information should
trade for some gain on privacy. When there are no critical generalizations, it consid-
ers other generalizations. Wang et al. [2004] showed that this heuristic significantly
reduces the search space.

Top-Down Specialization. Instead of bottom-up, the top-down specialization (TDS)
method [Fung et al. 2005, 2007] generalizes a table by specializing it from the most
general state in which all values are generalized to the most general values of their
taxonomy trees. At each step, TDS selects the specialization according to the search
metric IGPL in Eq. (4). The specialization process terminates if no specialization can
be performed without violating k-anonymity. The data on termination is a minimal k-
anonymization according to the generalization property in Observation 5.2. TDS han-
dles both categorical and numerical attributes in a uniform way, except that the taxon-
omy tree for a numerical attribute is grown on-the-fly as specializations are searched
at each step.

Fung et al. [2008, 2009] further extended the k-anonymization algorithm to preserve
the information for cluster analysis. The major challenge in anonymizing data for clus-
ter analysis is the lack of class labels that could be used to guide the anonymization
process. Fung et al.’s solution is to first partition the original data into clusters on the
original data; convert the problem into the counterpart problem for classification anal-
ysis, where class labels encode the cluster information in the data; and then apply TDS
to preserve k-anonymity and the encoded cluster information.

In contrast to the bottom-up approach [LeFevre et al. 2005; Samarati 2001; Wang
et al. 2004], the top-down approach has several advantages. First, the user can stop the
specialization process at any time and have a k-anonymous table. In fact, every step in
the specialization process produces a k-anonymous solution. Second, TDS handles mul-
tiple QIDs, which is essential for avoiding the excessive distortion suffered by a single
high-dimensional QID. Third, the top-down approach is more efficient by going from
the most generalized table to a more specific table. Once a group cannot be special-
ized further, all data records in the group can be discarded. In contrast, the bottom-up
approach has to keep all data records until the end of computation. However, data
publishers employing TDS may encounter the dilemma of choosing (multiple) QID,
discussed in Section 2.1.

Mondrian Multidimensional. LeFevre et al. [2006a] presented a greedy top-down
specialization algorithm for finding a minimal k-anonymization in the case of the mul-
tidimensional generalization scheme. This algorithm is very similar to TDS. Both al-
gorithms perform a specialization on a value v one at a time. The major difference is
that TDS specializes in all qid groups containing v. In other words, a specialization
is performed only if each specialized qid group contains at least k records. In con-
trast, Mondrian performs a specialization on one qid group if each of its specialized
qid groups contains at least k records. Due to such a relaxed constraint, the result-
ing anonymous data in multidimensional generalization usually has a better quality
than in single generalization. The trade-off is that multidimensional generalization is
less scalable than other schemes due to the increased search space. Xu et al. [2006]
showed that employing cell generalization could further improve the data quality.
Although the multidimensional and cell generalization schemes cause less informa-
tion loss, they suffer from the data exploration problem discussed in Section 3.
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5.1.3. Perturbation Algorithms. This family of anonymization methods employs pertur-
bation to deassociate the linkages between a target victim and a record while preserv-
ing some statistical information.

Condensation. Aggarwal and Yu [2008a, 2008b] presented a condensation method to
thwart record linkages. The method first assigns records into multiple nonoverlapping
groups in which each group has a size of at least k records. For each group, extract
some statistical information, such as sum and covariance, that suffices to preserve
the mean and correlations across the different attributes. Then, for publishing, based
on the statistical information, generate points for each group following the statistical
characteristics of the group. This method does not require the use of taxonomy trees
and can be effectively used in situations with dynamic data updates as in the case of
data streams. As each new data record is received, it is added to the nearest group,
as determined by the distance to each group centroid. As soon as the number of data
records in the group equals 2k, the corresponding group needs to be split into two
groups of k records each. The statistical information of the new group is then incre-
mentally computed from the original group.

r-Gather Clustering. In a similar spirit, Aggarwal et al. [2006] proposed a pertur-
bation method called r-gather clustering. This method partitions records into several
clusters such that each cluster contains at least r data points (i.e., records). Instead
of generalizing individual records, this approach releases the cluster centers, together
with their size, radius, and a set of associated sensitive values. To eliminate the impact
of outliers, they relaxed this requirement to (r, ε)-gather clustering so that at most ε
fraction of data records in the data set can be treated as outliers for removal from the
released data.

Cross-Training Round Sanitization. Recall from Section 2.1 that point q (c, t)-isolates
point p if B(q, cδp) contains fewer than t points in the table, where B(q, cδp) is a
ball of radius cδp centered at point q. Chawla et al. [2005] proposed two sanitiza-
tion (anonymization) techniques, recursive histogram sanitization and density-based
perturbation, to prevent (c, t)-isolation.

Recursive histogram sanitization recursively divides original data into a set of
subcubes according to local data density until all subcubes have no more than 2t
data points. The method outputs the boundaries of the subcubes and the number of
points in each subcube. However, this method cannot handle high-dimensional spheres
and balls. Chawla et al. [2005] proposed an extension to handle high-dimensionality.
Density-based perturbation, a variant of the one proposed by Agrawal and Srikant
[2000], in which the magnitude of the added noise is relatively fixed, takes into con-
sideration the local data density near the point that needs to be perturbed. Points in
dense areas are perturbed much less than points in sparse areas. Although the privacy
of the perturbed points is protected, the privacy of the points in the t-neighborhood
of the perturbed points could be compromised because the sanitization radius it-
self could leak information about these points. To prevent such privacy leakage from
t-neighborhood points, Chawla et al. [2005] further suggested a cross-training round
sanitization method by combining recursive histogram sanitization and density-based
perturbation. In cross-training round sanitization, a dataset is randomly divided into
two subsets, A and B. B is sanitized using only recursive histogram sanitization,
while A is perturbed by adding Gaussian noise generated according to the histogram
of B.

5.2. Algorithms for the Attribute Linkage Model

The following algorithms anonymize the data to prevent attribute linkages. They use
the privacy models discussed in Section 2.2. Though their privacy models are different
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from those of record linkage, many algorithms for attribute linkage are simple exten-
sions from algorithms for record linkage.

The following algorithms adopt �-diversity as the privacy model. Recall that �-
diversity requires every qid group to contain at least � “well-represented” sensitive
values.

�-Diversity Incognito. Machanavajjhala et al. [2006, 2007] modified the bottom-up
Incognito [LeFevre et al. 2005] to identify an optimal �-diverse table. The �-Diversity
Incognito operates based on the generalization property, similar to Observation 5.2,
that �-diversity is nondecreasing with respect to generalization. In other words, gener-
alizations help to achieve �-diversity, just as generalizations help achieve k-anonymity.
Therefore, k-anonymization algorithms that employ full-domain and subtree general-
ization can also be extended into �-diversity algorithms.

InfoGain Mondrian. LeFevre et al. [2006b] proposed a suite of greedy algorithms
to identify a minimally anonymous table satisfying k-anonymity and/or entropy �-
diversity with the consideration of a specific data analysis task such as classification
modeling multiple target attributes and query answering with minimal imprecision.
Their top-down algorithms are similar to TDS [Fung et al. 2005], but LeFevre et al.
[2006b] employed multidimensional generalization.

Top-Down Disclosure. Recall that a privacy template has the form 〈QID → s, h〉, and
states that the confidence of inferring the sensitive value s from any group on QID is
no more than h. Wang et al. [2005, 2007] proposed an efficient algorithm to minimally
suppress a table to satisfy a set of privacy templates. Their algorithm, called Top-Down
Disclosure (TDD), iteratively discloses domain values starting from the table in which
all domain values are suppressed. In each iteration, it discloses the suppressed domain
value that maximizes the search metric IGPL in Eq. (4), and terminates the iterative
process when a further disclosure leads to a violation of some privacy templates. This
approach is based on the following key observation.

Observation 5.3 (Disclosure Property). Consider a privacy template 〈QID → s, h〉.
If a table violates the privacy template, so does any table obtained by disclosing a
suppressed value [Wang et al. 2007].

This property ensures that the algorithm finds a minimally suppressed table. This
property, and therefore the algorithm, is extendable to full-domain, subtree, and sib-
ling generalization schemes, with the disclosure operation being replaced by the spe-
cialization operation. The basic observation is that the confidence in at least one of the
specialized groups will be as large as the confidence in the general group. Based on a
similar idea, Wong et al. [2006] employed the cell generalization scheme and proposed
some greedy top-down and bottom-up methods to identify a minimally anonymous so-
lution that satisfies (α, k)-anonymity.

(k, e)-Anonymity Permutation. To achieve (k, e)-anonymity, Zhang et al. [2007] pro-
posed an optimal permutation method to assign data records into groups together,
so that the sum of error E is minimized, where E, for example, could be measured
by the range of sensitive values in each group. The optimal algorithm has time and
space complexity in O(n2), where n is the number of data records. (k, e)-anonymity is
also closely related to a range coding technique, which is used in both process con-
trol [Rosen et al. 1992] and official statistics [Hegland et al. 1999]. In process control,
range coding (also known as coarse coding) permits generalization by allowing the
whole numerical area to be mapped to a set of groups defined by a set of boundaries,
which is similar to the idea of grouping data records by ranges and keeping bound-
aries of each group for fast computation in (k, e)-anonymity. Hegland et al. [1999] also
suggested handling large data sets as population census data, by dividing them into
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generalized groups (blocks) and applying a computational model to each group. Any
aggregate computation can hence be performed based on manipulation of individual
groups. Similarly, (k, e)-anonymity exploits the group boundaries to efficiently answer
aggregate queries.

Personalized Privacy. Refer to the requirement of personalized privacy discussed in
Section 2.2. Xiao and Tao [2006b] proposed a greedy algorithm to achieve every record
owner’s privacy requirement in terms of a guarding node, as follows: initially, all QID
attributes are generalized to the most general values, and the sensitive attributes
remain ungeneralized. At each iteration, the algorithm performs a top-down special-
ization on a QID attribute and, for each qid group, performs cell generalization on the
sensitive attribute to achieve the personalized privacy requirement; the breach proba-
bility of inferring any domain-sensitive values within the subtree of guarding nodes is
below a certain threshold. Since the breach probability is nonincreasing with respect
to generalization on the sensitive attribute and the sensitive values could possibly be
generalized to the most general values, the generalized table found at every iteration
is publishable without violating the privacy requirement, although a table with lower
information loss ILoss, measured by Eq. (3), is preferable. When no better solution
with lower ILoss is found, the greedy algorithm terminates and outputs a minimal
anonymization. Since this approach generalizes the sensitive attribute, ILoss is mea-
sured on both QID and sensitive attributes.

5.3. Algorithms for the Table Linkage Model

The following algorithms aim at preventing table linkages, that is, preventing attack-
ers from determining the presence or the absence of a target victim’s record in a re-
leased table.

Presence Algorithms SPALM and MPALM: Recall that a generalized table T ′ satis-
fies (δmin, δ max)-presence (or simply δ-presence) with respect to an external table E if
δmin ≤ P(t ∈ T |T ′) ≤ δmax for all t ∈ E. To achieve δ-presence, Nergiz et al. [2007]
presented two anonymization algorithms, SPALM and MPALM. SPALM is an opti-
mal algorithm that employs a full-domain single-dimensional generalization scheme.
Nergiz et al. [2007] proved the anti-monotonicity property of δ-presence with respect
to full-domain generalization; if table T is δ-present, then a generalized version of T ′
is also δ-present. SPALM is a top-down specialization approach and exploits the anti-
monotonicity property of δ-presence to prune the search space effectively. MPALM is a
minimal algorithm that employs a multidimensional generalization scheme, with com-
plexity O(|C||E|log2|E|), where |C| is the number of attributes in private table T and
|E| is the number of records in the external table E. Their experiments showed that
MPALM usually results in much lower information loss than SPALM because MPALM
employs a more flexible generalization scheme.

5.4. Minimality Attack on Anonymous Data

Most privacy models assume that the attacker knows the QID of a target victim
and/or the presence of the victim’s record in the published data. In addition to this
background knowledge, the attacker can possibly determine the privacy requirement
(e.g., 10-anonymity or 5-diversity), the anonymization operations (e.g., subtree gen-
eralization scheme) to achieve the privacy requirement, and the detailed mechanism
of an anonymization algorithm. The attacker can possibly determine the privacy re-
quirement and anonymization operations by examining the published data, or its
documentation, and learn the mechanism of the anonymization algorithm by, for ex-
ample, reading research papers. Wong et al. [2007] pointed out that such additional
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Table V. Example Illustrating Minimality Attacks

(a) Original patient table
Job Sex Disease

Engineer Male HIV
Engineer Male HIV
Lawyer Male Flu
Lawyer Male Flu
Lawyer Male Flu
Lawyer Male Flu
Lawyer Male Flu

(b) Published anonymous table
Job Sex Disease

Professional Male HIV
Professional Male Flu
Professional Male Flu
Professional Male Flu
Professional Male Flu
Professional Male Flu
Professional Male HIV

(c) External table
Name Job Sex
Andy Engineer Male

Calvin Lawyer Male
Bob Engineer Male

Doug Lawyer Male
Eddy Lawyer Male
Fred Lawyer Male

Gabriel Lawyer Male

background knowledge can lead to extra information that facilitates an attack to com-
promise data privacy. This is called the minimality attack.

Many anonymization algorithms discussed in this section follow an implicit mini-
mality principle. For example, when a table is generalized from bottom-up to achieve
k-anonymity, the table is not further generalized once it minimally meets the k-
anonymity requirement. Minimality attack exploits this minimality principle to re-
verse the anonymization operations and filter out the impossible versions of the origi-
nal table [Wong et al. 2007]. The following example illustrates a minimality attack on
confidence bounding [Wang et al. 2007].

Example 5.1. Consider the original patient Table V(a), the anonymous Table V(b),
and an external Table V(c) in which each record has a corresponding original record
in Table V(a). Suppose the attacker knows that the confidence bounding require-
ment is 〈{Job, Sex} → HIV, 60%〉. With the minimality principle, the attacker can
infer that Andy and Bob have HIV based on the following reason: From Table V(a),
qid = 〈Lawyer, Male〉 has 5 records, and qid = 〈Engineer, Male〉 has 2 records. Thus,
〈Lawyer, Male〉 in the original table must already satisfy 〈{Job, Sex} → HIV, 60%〉
because even if both records with HIV have 〈Lawyer, Male〉, the confidence for in-
ferring HIV is only 2/5 = 40%. Since a subtree generalization has been performed,
〈Engineer, Male〉 must be the qid that has violated the 60% confidence requirement
on HIV, and that is possible only if both records with 〈Engineer, Male〉 have a disease
value of HIV.

To thwart minimality attack, Wong et al. [2007] proposed a privacy model, called m-
confidentiality, that limits the probability of the linkage from any record owner to
any sensitive value set in the sensitive attribute. Wong et al. [2007] also showed that
this type of minimality attack is applicable to both optimal and minimal anonymiza-
tion algorithms that employ generalization, suppression, anatomization, or permuta-
tion to achieve privacy models, including, but not limited to, �-diversity [Machanava-
jjhala et al. 2007]; (α, k)-anonymity [Wong et al. 2006]; (k, e)-anonymity [Zhang et al.
2007]; personalized privacy [Xiao and Tao 2006b]; anatomy [Xiao and Tao 2006a]; t-
closeness [Li et al. 2007]; m-invariance [Xiao and Tao 2007]; and (X, Y )-privacy [Wang
and Fung 2006]. To avoid minimality attack on �-diversity, Wong et al. [2007] proposed
to first k-anonymize the table, then, for each qid group in the k-anonymous table that
violates �-diversity, their method distorts the sensitive values to satisfy �-diversity.

5.5. Algorithms for the Probabilistic Attack Model

Many algorithms for achieving the probabilistic privacy models studied in Section 2.4
employ perturbation methods, so they do not suffer from the problem of minimality at-
tacks. The perturbation algorithms are nondeterministic; therefore, the anonymization
operations are nonreversible. The perturbation algorithms for the probabilistic attack
model can be divided into two groups. The first group is local perturbation [Agrawal

ACM Computing Surveys, Vol. 42, No. 4, Article 14, Publication date: June 2010.



Privacy-Preserving Data Publishing: A Survey of Recent Developments 14:33

and Haritsa 2005], which assumes that a record owner does not trust anyone except
himself and perturbs his own data record by adding noise before submission to the
untrusted data publisher. The second group is to perturb all records together by a
trusted data publisher, which is the data publishing scenario studied in this survey.
Although the methods in the first group are also applicable to the second by adding
noise to each individual record, Rastogi et al. [2007] and Dwork [2007] demonstrated
that the information utility can be improved with a stronger lower bounds by as-
suming a trusted data publisher who has the capability to access all records and ex-
ploit the overall distribution to perturb the data, rather than perturbing the records
individually.

A number of PPDP methods [Agrawal and Srikant 2000; Zhang et al. 2005] have
been proposed for preserving classification information with randomization. Agrawal
and Srikant [2000] presented a randomization method for decision tree classification
with the use of the aggregate distributions reconstructed from the randomized distri-
bution. The general idea is to construct the distribution separately from the different
classes. Then, a special decision tree algorithm is developed to determine the split-
ting conditions based on the relative presence of the different classes, derived from
the aggregate distributions. Zhang et al. [2005] presented a randomization method
for a naive Bayes classifier. The major shortcoming of this approach is that ordinary
classification algorithms will not work on this randomized data.

The statistics community conducts substantial research in the disclosure control of
statistical information and aggregate query results [Cox 1980; Chawla et al. 2005;
Duncan and Fienberg 1998; Matloff 1988; Ozsoyoglu and Su 1990]. The goal is to
prevent attackers from obtaining sensitive information by correlating different pub-
lished statistics. Cox [1980] proposed the k%-dominance rule which suppresses a sen-
sitive cell if the values of two or three entities in the cell contribute more than k%
of the corresponding SUM statistic. The proposed mechanisms include query size and
query overlap control, aggregation, data perturbation, and data swapping. Neverthe-
less, such techniques are often complex and difficult to implement [Farkas and Jajodia
2003], or address privacy threats that are unlikely to occur. There are some decent
surveys [Adam and Wortman 1989; Domingo-Ferrer 2001; Moore 1996; Zayatz 2007]
in the statistics community.

ε-Differential Additive Noise: One representative work that aims to thwart proba-
bilistic attack is differential privacy [Dwork 2006]; its definition can be found in Sec-
tion 2.4. Dwork [2006] proposed an additive noise method to achieve ε-differential
privacy. The added noise is chosen over a scaled symmetric exponential distribution
with variance σ 2 in each component, and σ ≥ ε/
 f , where 
 f is the maximum differ-
ence of outputs of a query f caused by the removal or addition of a single data record.
Machanavajjhala et al. [2008] proposed a revised version of differential privacy, called
probabilistic differential privacy, that yields a practical privacy guarantee for synthetic
data generation. The idea is to first build a model from the original data, then sample
points from the model to substitute for original data. The key idea is to filter unrep-
resentative data and shrink the domain. Other algorithms [Blum et al. 2005; Dinur
and Nissim 2003; Dwork et al. 2006; Dwork and Nissim 2004] have been proposed to
achieve differential privacy; refer to Dwork [2008] for a decent survey on the recent
developments in this line of privacy model.

αβ Algorithm: Recall that (d, γ )-privacy in Section 2.4 bounds the difference of P(r)
and P(r|T ), where P(r) and P(r|T ) are the prior probability and the posterior probabil-
ity of the presence of a victim’s record in the data table T before and after examining
the published table T . To achieve (d, γ )-Privacy, Rastogi et al. [2007] proposed a per-
turbation method, called αβ algorithm, consisting of two steps. The first step is to select
a subset of records from the original table D with probability α + β and insert them
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into the data table T , which is to be published. The second step is to generate some
counterfeit records from the domain of all attributes. If the counterfeit records are not
in the original table D, then insert them into T with probability β. Hence, the re-
sulting perturbed table T consists of both records randomly selected from the original
table and counterfeit records from the domain. The number of records in the perturbed
data could be larger than the original data table, in comparison with FRAPP [Agrawal
and Haritsa 2005] which has a fixed table size. The drawback of inserting counter-
feits is that the released data can no longer preserve the truthfulness of the origi-
nal data at the record level, which is important in some applications, as explained in
Section 1.1.

6. EXTENDED SCENARIOS

All the work discussed so far focuses on anonymizing and publishing a single release.
In practical applications, data publishing is more complicated. For example, the same
data may be published several times. Each time, the data is anonymized differently
for different purposes, or the data is published incrementally as new data is collected.
In this section, we consider such extended publishing scenarios.

6.1. Multiple Release Publishing

Different data recipients may be interested in different attributes of a data table.
Suppose there is a person-specific data table T (Job, Sex, Age, Race, Disease, Salary). A
data recipient (for example, a pharmaceutical company) is interested in classification
modeling the target attribute Disease with attributes {Job, Sex, Age}. Another data re-
cipient (such as a social service department) is interested in clustering analysis on
{Job, Age, Race}. One approach is to publish a single release on {Job, Sex, Age, Race}
for both purposes. A drawback is that information is released unnecessarily, in that
neither of the two purposes needs all four attributes, which makes it is more vulner-
able to attacks. Moreover, if the information needed in the two cases is different, the
data anonymized in a single release may not be good for either of the two cases. A bet-
ter approach is to anonymize and publish a customized release for each data mining
purpose; each release is anonymized to best address the specific purpose. Given that
both releases are published, there is a possibility that the data recipients have access
to both releases; it is difficult to prevent them from colluding with each other behind
the scenes. In particular, an attacker can combine attributes from the two views to
form a sharper QID that contains attributes from both views. The following example
illustrates the join attack in multiple releases.

Example 6.1. Consider the data in Table VI(a). Suppose that the data publisher
releases one projection view T1 to one data recipient and releases another projection
view T2 to another data recipient. Both views are from the same underlying patient
table. Further suppose that the data publisher does not want {Age, Birthplace} to be
linked to Diseaset. When T1 and T2 are examined separately, the Age = 40 group
and the Birthplace = France group have size 2. However, by joining T1 and T2 using
T1.Job = T2.Job, an attacker can uniquely identify the record owner in the {40, France}
group, thus linking {Age, Birthplace} to Disease without difficulty. Moreover, the join
reveals the inference {30, US} → Cancer with 100% confidence for the record owners
in the {30, US} group. Such an inference cannot be made when T1 and T2 are examined
separately [Wang and Fung 2006].

Several works measured information disclosure arising from linking two or more
views. Yao et al. [2005] presented a method for detecting k-anonymity violation on a
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Table VI. Multiple/Sequential Release
(a) T1

Age Job Class
30 Lawyer c1
30 Lawyer c1
40 Carpenter c2
40 Electrician c3
50 Engineer c4
50 Clerk c4

(b) T2

Job Birthplace Disease
Lawyer US Cancer
Lawyer US Cancer

Carpenter France HIV
Electrician UK Cancer
Engineer France HIV

Clerk US HIV

(c) The join of T1 and T2

Age Job Birthplace Disease Class
30 Lawyer US Cancer c1
30 Lawyer US Cancer c1
40 Carpenter France HIV c2
40 Electrician UK Cancer c3
50 Engineer France HIV c4
50 Clerk US HIV c4
30 Lawyer US Cancer c1
30 Lawyer US Cancer c1

Table VII. Marginals

(a) Job marginal
Job Count

Engineer 2
Lawyer 1
Writer 2
Dancer 2

(b) Sex marginal
Sex Count

Male 3
Female 4

set of views, each view was obtained from a projection and selection query; they also
considered functional dependency as prior knowledge.

In addition to the anonymous base table, Kifer and Gehrke [2006] proposed in-
creasing the utility of published data by releasing several anonymous marginals that
are essentially duplicate preserving projection views. For example, Table VII(a) and
Table VII(b) are the Job and Sex marginals for the k-anonymous base Table II(c). The
availability of additional marginals (views) provides additional information for data
mining, but also poses new privacy threats. For example, if a combination of attribute
values has a low count, it can be used as QID to reveal sensitive attributes in other
databases. Thus, Kifer and Gehrke [2006] extended k-anonymity and �-diversity for
marginals and presented a method to check whether published marginals violate the
privacy requirement on the anonymous base table.

Barak et al. [2007] also studied the privacy threats caused by marginals, but along
the lines of differential privacy [Dwork 2006]. Their primary contribution was provid-
ing a formal guarantee to preserve all the privacy, accuracy, and consistency in the
published marginals. Accuracy bounds the difference between the original marginals
and published marginals. Consistency ensures that there exists a contingency table
whose marginals equal the published marginals. Instead of adding noise to the orig-
inal data records at the cost of accuracy, or adding noise to the published marginals
at the cost of consistency, they have proposed transforming the original data into the
Fourier domain, applying differential privacy to the transformed data by perturbation,
and employing linear programming to obtain a non-negative contingency table based
on the given Fourier coefficients.
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6.2. Sequential Release Publishing

In the multiple release publishing scenario, several releases, for different purposes,
are published at one time. In some other scenarios, the data is released continuously
and sequentially as new information becomes available. Consider the problem of
sequential anonymization [Wang and Fung 2006]: a data publisher has previously
released T1, . . . , Tp−1 and now wants to publish the next release Tp, where all Ti
are projections of the same underlying table, and each individual release, not the
join, serves a data mining purpose. The data publisher wants to prevent record and
attribute linkages through the join of T1, . . . , Tp. This requirement is specified by a
privacy model such as (X, Y )-privacy (Section 2.2) on the join of all releases because the
attacker has access to all releases. Unlike the multiple release publishing scenario, the
previous releases T1, . . . , Tp−1 have been published and, therefore, cannot be modified.
Any attempt at prevention of privacy violation has to rely on anonymizing the next
release Tp.

To address the sequential anonymization problem, Wang and Fung [2006] intro-
duced the lossy join, a negative property in relational database design, as a way to
hide the join relationship among releases. A lossy join of T1 and T2 will result in a
table containing some records that are not original records in the underlying tables T1
and T2. Such records are the result of matching some records in T1 and T2 that belong
to different owners. The next example illustrates this point.

Example 6.2. Example 6.1 shows that the record owner in the {40, France} group
becomes uniquely identifiable, thus revealing his/her contracted disease, after the join
of T1 and T2 in Table VI. In fact, the join is a double-edged sword, in that a lossy join
could also weaken identification. For example, after the join, the {30, US} group has
size 4 because the records for different owners are matched (i.e., the last two records
in the join table), whereas T1 and T2 are examined separately, both Age = 30 group
and Birthplace = US group have a smaller size.

A join attack depends critically on matching the records in T1 and T2 that represent the
same record owner; therefore, a lossy join, which matches records of different record
owners, can be used to combat the join attack. To make the join of T1 and T2 lossy, Wang
and Fung [2006] proposed generalizing the join attributes in T2 (recall that T1 has been
published and cannot be modified) so that a generalized record in T2 will match more
records in T1. For example, for the join attribute Job, all records in T2 generalized to
Professional will match all records in T1 that contain Professional or an ancestor or a
descendant of Professional in the taxonomy of Job. Intuitively, two records, one in T1
and one in T2, match if their Job values are on the same generalization path in the
taxonomy of Job. Note that this match condition is more relaxed than the traditional
equality join which requires an exact match.

To satisfy a given requirement on (X, Y )-privacy, the anonymization algorithm gen-
eralizes T2 on the attributes X ∩ att(T2), where att(T2) denotes the set of attributes
in T2. A top-down specialization process is employed to iteratively specialize T2 on
X ∩ att(T2) starting from the most general state of T2. Recall from Section 2.2 that
(X, Y )-privacy is composed of (X, Y )-anonymity and confidence bounding defined on the
join of T1 and T2. Significantly, the generalization property holds in (X, Y )-privacy: for
the subtree generalization scheme, (X, Y )-anonymity is nonincreasing and confidence
bounding is nondecreasing with respect to a specialization on T2 on X ∩ att(T2). Es-
sentially, this property means that if any of these requirements is violated, it remains
violated after a specialization. Therefore, the top-down specialization approach can
prune the remaining search space and efficiently identify a minimal anonymization
of T2.
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Table VIII. Continuous Data Publishing

(a) 2-diverse T1

Job Sex Disease
Professional Female Cancer
Professional Female Diabetes

Artist Male Fever
Artist Male Cancer

(b) 2-diverse T2 after an insertion to T1

Job Sex Disease
Professional Female Cancer
Professional Female Diabetes
Professional Female HIV

Artist Male Fever
Artist Male Cancer

(c) 2-diverse T2 after a deletion from
and an insertion to T1

Job Sex Disease
Professional Female Cancer
Professional Female Fever

Artist Male Fever
Artist Male Cancer

This sequential anonymization problem was briefly discussed in some pioneering
work on k-anonymity, but none provided a practical solution. For example, Samarati
and Sweeney [1998b] suggested to k-anonymize all potential join attributes as the
QID in the next release Tp. Sweeney [2002a] suggested generalizing Tp based on the
previous releases T1, . . . , Tp−1 to ensure that all values in Tp are not more specific
than in any T1, . . . , Tp−1. Both solutions suffer from monotonically distorting the data
in a later release. The third solution is to release a “complete” cohort in which all
potential releases are anonymized at one time, after which no additional mechanism is
required. This requires predicting future releases. The “under-prediction” means that
there will be no room for additional releases and the “over-prediction” means there will
be unnecessary data distortion. Also, this solution does not accommodate the new data
added at a later time.

6.3. Continuous Data Publishing

In the model of continuous data publishing, the data publisher has previously pub-
lished T1, . . . , Tp−1 and now wants to publish Tp, where Ti is an updated release of
Ti−1 with record insertions and/or deletions. The problem assumes that all records
for the same individual remain the same in all releases. Even though each release
T1, . . . , Tp is individually anonymous, the privacy requirement could be compromised
by comparing different releases and eliminating some possible sensitive values for a
victim. This problem assumes that the data is dynamically updated, unlike the se-
quential anonymization problem which assumes all data is static and is available at
the time of release. Furthermore, this problem assumes all releases share the same
database schema, while the sequential problem assumes all releases are projections of
the same underlying data table.

This continuous data publishing problem assumes that the attacker knows the
timestamp and QID of the victim, so the attacker knows exactly which releases con-
tain the victim’s data record. The following examples show the privacy threats caused
by record insertions and deletions.

Example 6.3. Let Table VIII(a) be the first release T1. Let Table VIII(b) be the
second release T2 after inserting a new record. Both T1 and T2 satisfy 2-diversity inde-
pendently. Suppose the attacker knows that a female lawyer, Alice, has a record in T2
but not in T1, based on the timestamp that Alice was admitted to a hospital. From T2,
the attacker can infer that Alice must have contracted either Flu, Fever, or HIV. By
comparing T2 with T1, the attacker can identify that the first two records in T2 must
be old records from T1 and, thus, infer that Alice must have contracted HIV.
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Example 6.4. Let Table VIII(a) be the first release T1. Let Table VIII(b) be the sec-
ond release T2 after deleting the record 〈Professional, Female, Diabetes〉 and inserting
a new record 〈Professional, Female, Fever〉. Both T1 and T2 satisfy 2-diversity indepen-
dently. Suppose the attacker knows that a female engineer, Beth, must be in both T1
and T2. From T1, the attacker can infer that Beth must have contracted either Cancer
or Diabetes. Since T2 contains no Diabetes, the attacker can infer that Beth must have
contracted Cancer.

Byun et al. [2006] were the pioneers who proposed an anonymization technique that
enables privacy-preserving continuous data publishing after new records have been
inserted. Specifically, it guarantees every release to satisfy �-diversity, which requires
each qid group contain at least � distinct sensitive values. Since this instantiation of
�-diversity does not consider the frequencies of sensitive values, an attacker could still
confidently infer a sensitive value of a victim if the value occurs frequently in a qid
group. Thus, this instantiation cannot prevent attribute linkage attacks.

Byun et al. [2006] addressed the threats caused by record insertions but not dele-
tions, so the current release Tp contains all records in previous releases. The algorithm
inserts new records into the current release Tp only if two privacy requirements re-
main satisfied after the insertion: (1) Tp is �-diverse; (2) given any previous release Ti
and the current release Tp together, there are at least � distinct sensitive values in
the remaining records that could potentially be the victim’s record. This requirement
can be verified by comparing the difference and intersection of the sensitive values
in any two “comparable” qid groups in Ti and Tp. The algorithm prefers to specialize
Tp as much as possible to improve the data quality, provided that the two privacy re-
quirements are satisfied. If the insertion of some new records would violate any of the
privacy requirements, even after generalization, the insertions are delayed until later
releases. Nonetheless, this strategy may sometimes run into a situation in which no
new data could be released. Also, it requires a very large memory buffer to store those
delayed data records.

Xiao and Tao [2007] proposed a new privacy notion called m-invariance and an
anonymization method, addressing both record insertions and deletions. In this contin-
uous data publishing model, a sequence of releases T1, . . . , Tp is m-invariant if (1) every
qid group in any Ti contains at least mrecords and all records in qid have different sen-
sitive values; and (2) for any record r with published lifespan [x, y] where 1 ≤ x, y ≤ p,
qidx, . . . , qidy have the same set of sensitive values where qidx, . . . , qidy are the gener-
alized qid groups containing r in Tx, . . . , Ty. The rationale of m-invariance is that, if a
record r has been published in Tx, . . . , Ty, then all qid groups containing r must have
the same set of sensitive values. This will ensure the intersection of sensitive values
over all such qid groups does not reduce the set of sensitive values compared to each
qid group.

Given a sequence of m-invariant T1, . . . , Tp−1, Xiao and Tao [2007] maintained a
sequence of m-invariant T1, . . . , Tp by minimally adding counterfeit data records and
generalizing the current release Tp. A table with counterfeit records could no longer
preserve the data truthfulness at the record level, which is important in some applica-
tions, as explained in Section 1.1.

Recently, Fung et al. [2008] showed a method to systematically quantify the ex-
act number of records that can be “cracked” by comparing all k-anonymous releases.
A record in a k-anonymous release is “cracked” if it is impossible to be a candidate
record of the target victim. After excluding the cracked records from a release, a table
may no longer be k-anonymous. In some cases, data records, with sensitive informa-
tion of some victims, can even be uniquely identified from the releases. Fung et al.
[2008] proposed a privacy requirement, called BCF-anonymity, to measure the true
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Fig. 4. Collaborative data publishing.

anonymity in a release after excluding the cracked records, and presented a gener-
alization method to achieve BCF-anonymity without delaying record publication or
inserting counterfeit reords. Some work misinterprets Fung et al. [2008] to mean that
they allow only record insertion but not record deletion. Indeed, T1 and T2 are inde-
pendent of each other (i.e., T2 is not an insertion or deletion of T1). Fung et al. [2008]
anonymize (T1 ∪ T2) as one release for utility on the whole data set. In contrast, all
other work [Xiao and Tao 2007] anonymizes each Ti independently, so the publishing
model in Xiao and Tao [2007] does not benefit from new data because each Ti is small,
resulting in a large distortion. Bu et al. [2008] further relax the PPDP scenario and as-
sume that the QID and sensitive values of a record owner could change in subsequent
releases.

6.4. Collaborative Data Publishing

So far, we have considered only a single data publisher. In real-life data publishing,
a single organization often does not hold the complete data. Organizations need to
share data for mutual benefits or for publishing to a third party. For example, two
credit card companies want to integrate their customer data for developing a fraud-
detection system or for publishing to a bank. However, the credit card companies do
not want to indiscriminately disclose their data to each other or to the bank for rea-
sons such as privacy protection and business competitiveness. Figure 4 depicts this
scenario, called collaborative data publishing, where several data publishers own dif-
ferent sets of attributes on the same set of records and want to publish the integrated
data on all attributes. Say, publisher 1 owns {RecID, Job, Sex, Age}, and publisher 2
owns {RecID, Salary, Disease}, where RecID, such as the SSN, is the record identifier
shared by all data publishers. They want to publish an integrated k-anonymous table
on all attributes. Also, no data publisher should learn more specific information, owned
by the other data publishers, than the information that appears in the final integrated
table.

There are two obvious but insecure approaches. The first one is “integrate-then-
generalize”: that is, first integrate the tables and then generalize the integrated table
using any single table k-anonymization method discussed in previous sections. This
approach does not preserve privacy because the data publisher holding the integrated
table will immediately know all the private information of all data publishers. The
second approach is “generalize-then-integrate”: that is, first generalize each table lo-
cally and then integrate the generalized tables. This approach does not work if the
k-anonymity involves a global QID spanning two or more data publishers.
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Wang et al. [2005] proposed an algorithm called Top-Down Specialization for 2-Party
(TDS2P) to solve the collaborative publishing problem. Essentially, TDS2P produces
the same final anonymous table as the integrate-then-generalize approach, but does
not reveal local data until the data has been generalized to satisfy a given k-anonymity
requirement. First, all data publishers generalize their attributes in QID to the most
general value ANY. At each iteration, each data publisher identifies a local special-
ization that has the highest IGPL, measured by Eq. (4), based on her own data,
and then collaboratively identifies the global specialization w that has the maximum
IGPL across all local specializations. The data publisher P, who owns the attribute
of w, first performs the specialization w on her own data. The other data publishers,
who do not own the attribute of w, have to get the “instruction” from P to partition
their local data. The instruction, represented by 〈GroupNo, RecID〉, tells how records
(identified by RecID) are specialized into different groups (identified by GroupNo).
Repeat this process, and stop if any further specialization leads to a violation of
k-anonymity. Mohammed et al. [2009] extended the idea to distributed data mashup
applications.

Jiang and Clifton [2005, 2006] addressed a similar problem by using a cryptographic
approach. First, each data publisher determines a locally k-anonymous table. Then,
the intersection of RecIDs for the qid groups in the two locally k-anonymous tables
is determined. If the intersection size of each pair of the qid group is at least k,
then the algorithm returns the join of the two locally k-anonymous tables that is
globally k-anonymous; otherwise, further generalization is performed on both tables
and the RecID comparison procedure is repeated. To prevent the other data publisher
from learning more specific information than that appearing in the final integrated
table through RecID, a commutative encryption scheme [Pohlig and Hellman 1978]
is employed to encrypt the RecID’s for comparison. This scheme ensures the equal-
ity of two values encrypted in a different order on the same set of keys, that is,
EKey1(EKey2(RecID)) = EKey2(EKey1(RecID)).

7. ANONYMIZING OTHER TYPES OF DATA

All the work discussed so far focuses on anonymizing relational and statistical data.
What about other types of (nonrelational) data? Recent studies have shown that pub-
lishing transaction data, moving object data, and textual data may also result in pri-
vacy threats and sensitive information leakages. Below, we discuss the privacy threats,
together with some privacy-preserving solutions, on these nonrelational data types.

7.1. High-Dimensional Transaction Data

Publishing high-dimensional data is part of the daily operations in commercial and
public activity. A classic example of high-dimensional data is transaction databases.
Each transaction corresponds to a record owner and consists of a set of items se-
lected from a large universe. Examples of transactions are web queries, click streams,
e-mails, market baskets, and medical notes. Such data often contains rich infor-
mation and is an excellent source for data mining. Detailed transaction data pro-
vides an electronic image of a record owner’s life, possibly containing sensitive
information.

A recent case demonstrates the privacy threats caused by publishing transaction
data: AOL released a database of query logs to the public for research purposes
[Barbaro and Zeller 2006]. However, by examining query terms, AOL user No. 4417749
was traced back to Ms. Thelma Arnold, a 62-year-old widow who lives in Lilburn. Even
if a query does not contain an address or name, a record owner (the AOL user in
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this example) may still be re-identified from combinations of query terms that are
adequately unique to the record owner. This scandal led not only to the disclosure of
private information of AOL users, but also damaged data publishers’ enthusiasm in of-
fering anonymized transaction data for research purposes. Kumar et al. [2007] further
showed that some token-hashed anonymous query logs could be cracked by invert-
ing the hash function based on the co-occurrences of tokens in some other “reference”
query logs. Clearly, there is a need for a proper anonymization method for transaction
data.

Transaction data is usually high-dimensional. For example, Amazon.com has sev-
eral million catalog items. Each dimension could be a potential QID attribute used
for record or attribute linkages; therefore, employing traditional privacy models, such
as k-anonymity, would require including all dimensions into a single QID. Due to the
curse of high-dimensionality [Aggarwal 2005], it is very likely that lots of data has to
be suppressed or generalized to the top-most values in order to satisfy k-anonymity,
even if k is small. Obviously, such anonymous data is useless for data analysis.

There are some recent studies on anonymizing high-dimensional data. Ghinita et al.
[2008] proposed a permutation method whose general idea is to first group transac-
tions with close proximity and then associate each group to a set of diversified sensitive
values. In any real-life privacy attack, it is unlikely that the attacker would know all
quasi-identifying attributes of a target victim due to the effort it would take to gather
every piece of background knowledge. Thus, it is reasonable to bound the attacker’s
background knowledge in the privacy model. Terrovitis et al. [2008] proposed an al-
gorithm to k-anonymize transactions by generalization. Xu et al. [2008] extended the
traditional k-anonymity model by assuming that the attacker knows at most m trans-
action items of the target victim. Specifically, the privacy model in Xu et al. [2008]
ensures that (1) every itemset I with size not greater than m in the published table
is shared by at least k records; and (2) that the confidence of inferring the sensitive
value s from I is less than a maximum confidence threshold h. Their results show that
this relaxation can substantially improve data utility. In another work, Xu et al. [2008]
consider preserving frequent itemsets as data utility. To deal with the scalability bot-
tleneck caused by exponential explosion of itemsets, Xu et al. [2008] use sets of max-
imal and minimal itemsets, called borders, to represent the itemsets that violate the
privacy requirement and the frequent itemsets. Both papers [Xu et al. 2008; Xu et al.
2008] use item suppression, instead of generalization, because the taxonomy trees for
transaction data tend to be flat and fanout. In this case, employing generalization loses
more information than employing item suppression.

Aggarwal and Yu [2007] formalized an anonymity model for the sketch-based ap-
proach, and utilized it to construct sketch-based privacy-preserving representations
of the original data. The sketch-based approach [Alon et al. 1999] reduces the dimen-
sionality of the data by generating a new representation with a much smaller num-
ber of features, where each one uses a different set of random weights to produce a
weighted sum of the original feature values. This technique is quite effective for high-
dimensional data sets, as long as the data is sparse. The sketch-based method provides
privacy protection while allowing effective reconstruction of many aggregate distance
measures. Therefore, it can be used for a variety of data mining algorithms such as
clustering and classification.

7.2. Moving Object Data

Location-based services (LBS) are information services provided to mobile subscribers
based on their specific physical locations. In recent years, a variety of location-based
services has been developed due to increasing demand from subscribers. Although the
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Table IX. Patient-Specific Path Table T
Pid Path Disease ...
1 〈a1 → d2 → b3 → e4 → f 6 → c7〉 HIV
2 〈b3 → e4 → f 6 → e8〉 Flu
3 〈b3 → c7 → e8〉 Flu
4 〈d2 → f 6 → c7 → e8〉 Allergy
5 〈d2 → c5 → f 6 → c7〉 HIV
6 〈c5 → f 6 → e9〉 Allergy
7 〈d2 → c5 → c7 → e9〉 Fever
8 〈 f 6 → c7 → e9〉 Fever

Fig. 5. Time and spatial trajectory volume [Abul et al. 2008].

advancement of telecommunication technology has improved our quality of life, re-
search has shown that 24% of potential LBS users are seriously concerned about the
privacy implications of disclosing their locations in conjunction with other personal
data [Beinat 2001]. Moving object data poses new challenges to traditional database,
data mining, and privacy-preserving technologies due to its unique characteristics:
it is time-dependent, location-dependent, and is generated in large volumes of high-
dimensional stream data. The following example shows the privacy threats caused by
publishing moving object data.

Example 7.1. A hospital wants to release the patient-specific path table, Table IX,
to a third party for data analysis. Explicit identifiers, such as patient names and Pid,
have been removed. Each record contains the moving path of a patient in the hospital
and some patient-specific (sensitive) information, for example, contracted diseases. A
moving path contains a sequence of pairs (lociti) indicating the patient’s visited location
loci at timestamp ti. For example, Pid#3 has a path 〈b3 → c7 → e8〉, meaning that the
patient has visited locations b, c, and e at timestamps 3, 7, and 8, respectively.

An attacker seeks to perform record and/or attribute linkages by using the moving
path as QID for matching. (1) Record linkage: suppose the attacker knows that the
target victim, Alice, has visited e and c at timestamps 4 and 7, respectively. Alice’s
record, together with her sensitive value (HIV in this case), can be uniquely identified
because Pid#1 is the only record that contains e4 and c7. (2) Attribute linkage: suppose
the attacker knows that another target victim, Bob, has visited d2 and f 6, matching
(Pid#1,4,5), the attacker can infer that Bob has HIV with 2/3 = 67% confidence.

There are a few recent works on anonymizing moving objects. Abul et al. [2008] ex-
tended the traditional k-anonymity model to anonymize a set of moving objects. The
intuition is to have at least k moving objects appearing within the radius δ of the path
of every moving object in the same period of time, as depicted in Figure 5. In addition to
the traditional anonymization operations discussed in Section 3, Abul et al. [2008] also
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explored space translation by adding noise to the original paths so that more objects ap-
pear at the same time and spatial trajectory volume. Terrovitis and Mamoulis [2008]
assumed that the locations are sensitive information, and that the attacker will at-
tempt to infer some sensitive locations visited by the target victim which are unknown
to the attacker. Malin and Airoldi [2006] studied the privacy threats in location-based
data in the hospital environment.

Fung et al. [2009] presented the first work to anonymize high-dimensional RFID
moving object data. Their proposed privacy model, LKC-privacy, ensures that every
RFID moving path with length not greater than L is shared by least K−1 other moving
paths, and the confidence in inferring any prespecified sensitive value is not greater
than C.

Papadimitriou et al. [2007] studied the privacy issue in publishing time-series
data and examined the trade-offs between time-series compressibility and partial
information hiding and their fundamental implications for how one should introduce
uncertainty about individual values by perturbing them. The study found that by mak-
ing the perturbation “similar” to the original data, we can both preserve the structure
of the data better, and simultaneously make breaches harder. However, as data be-
comes more compressible, a fraction of the uncertainty can be removed if true values
are leaked, revealing how they were perturbed.

7.3. Textual Data

Most previous work focused on anonymizing the structural or semistructural data.
What about the unstructural data, such as text documents? Saygin et al. [2006] de-
scribes implicit and explicit privacy threats in text document repositories. Sanitization
of text documents involves removing sensitive information or removing potential link-
ing information that can associate an individual person to the sensitive information in
a document. This research direction is in its infancy.

Kokkinakis and Thurin [2007] implemented a system for automatically anonymizing
hospital discharge letters by identifying and deliberately removing all phrases from
clinical text that satisfy some predefined types of sensitive entities. The identification
phase is achieved by collaborating with an underlying generic named entity recogni-
tion system.

Instead of simply removing phases containing predefined types of sensitive entities,
Chakaravarthy et al. [2008] presented the ERASE system to sanitize a document with
the least distortion. External knowledge is required to associate a database of enti-
ties with their context. ERASE prevents disclosure of protected entities by removing
certain terms of their context so that no protected entity can be inferred from the
remaining document text. k-safety, in the same spirit of k-anonymity, is thereafter de-
fined. A set of terms is k-safe if its intersection with every protected entity contains
at least k entities. Then the proposed problem is to find the maximum cardinality
subset of a document satisfying k-safety. Chakaravarthy et al. [2008] proposed and
evaluated both a global optimal algorithm and an efficient greedy algorithm to achieve
k-safety.

8. PRIVACY-PRESERVING TECHNIQUES IN OTHER DOMAINS

8.1. Interactive Query Model

Closely related, but orthogonal to PPDP, is the extensive literature on inference con-
trol in multilevel secure databases [Farkas and Jajodia 2003; Jajodia and Mead-
ows 1995]. Attribute linkages are identified and eliminated either at the database
design phase [Goguen and Meseguer 1984; Hinke 1988; Hinke et al. 1995], by
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Table X. Interactive Query Model
(a) Original examination data

ID University Department Score
1 Concordia CS 92
2 Simon Fraser EE 91
3 Concordia CS 97
4 Illinois CS 96

(b) Added one new record
ID University Department Score
1 Concordia CS 92
2 Simon Fraser EE 91
3 Concordia CS 97
4 Illinois CS 96
5 Illinois CS 99

modifying the schemes and meta-data, or during the interactive query time [Denning
1985; Thuraisingham 1987], by restricting and modifying queries. These techniques,
which focus on query database-answering, are not readily applicable to PPDP, where
the data publisher may not have sophisticated database management knowledge, or
does not want to provide an interface for database query. A data publisher, such as a
hospital, has no intention of being a database server; answering database queries is
not part of its normal business. Therefore, query-answering is quite different from the
PPDP scenarios studied in this survey. Here, we briefly discuss the interactive query
model.

In the interactive query model, the user can submit a sequence of queries based on
previously received query results. Although this query model could improve the sat-
isfaction of the data recipients’ information needs [Dwork et al. 2006], the dynamic
nature of queries makes the returned results even more vulnerable to attack, as il-
lustrated in the following example. (Refer to Blum et al. [2005, 2008], Dwork [2008],
Dinur and Nissim [2003] for more privacy-preserving techniques on the interactive
query model).

Example 8.1. Suppose that an examination center allows a data miner to access
its database, Table X(a), for research purposes. The attribute Score is sensitive. An
attacker wants to identify the Score of a target victim, Bob, who is a student at the
computer science department at Illinois. The attacker can first submit the query:

Q1: COUNT (University = Illinois) AND (Department = CS)
Since the count is 1, the attacker can determine Bob’s Score = 96 by the following
query:

Q2: AVERAGE Score WHERE (University = Illinois) AND (Department = CS).
Suppose that the data publisher has inserted a new record as shown in Table 9(b).
Now the attacker tries to identify another victim by resubmitting query Q1. Since the
answer is 2, the attacker knows another student at the computer science department
at Illinois took this exam and can then submit the query:

Q3: SUM Score WHERE (University = Illinois) AND (Department = CS)
Benefiting from this update, the attacker can learn the Score of the new record by
calculating Q3 − Q2 = 99.

Query auditing has a long history in statistical disclosure control. It can be broadly
divided into two categories: online auditing and offline auditing.

Online auditing: The objective of online query auditing is to detect and deny queries
that violate privacy requirements. Miklau and Suciu [2004] measured information dis-
closure of a view set, V , with respect to a secret view S. S is secure if publishing V
does not alter the probability of inferring the answer to S. Deutsch and Papakonstanti-
nou [2005] studied whether a new view disclosed more information than the existing
views with respect to a secret view. To put the data publishing scenario considered
in this survey in their terms: the anonymous release can superficially be considered
as the “view” and the underlying data can be considered as the “secret query.” How-
ever, the two problems have two major differences: First, the anonymous release is
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obtained by anonymization operations, not by conjunctive queries as in Deutsch and
Papakonstantinou [2005] and Miklau and Suciu [2004]. Second, the publishing sce-
narios employ anonymity as the privacy measure, whereas Miklau and Suciu [2004]
and Deutsch and Papakonstantinou [2005] adopted the perfect secrecy for the security
measure. The released data satisfies perfect secrecy if the probability that the attacker
finds the original data after observing the anonymous data is the same as the proba-
bility or difficulty of getting the original data before observing the anonymous data.

Kenthapadi et al. [2005] proposed another privacy model, called stimulatable au-
diting, as an interactive query model. If the attacker has access to all previous query
results, the method denies the new query if it leaks any information beyond what
the attacker already knows. Although this “detect and deny” approach is practical,
Kenthapadi et al. [2005] pointed out that the denials themselves may implicitly dis-
close sensitive information, making the privacy protection problem even more compli-
cated. This motivates the offline query auditing.

Offline auditing: In offline query auditing [Evfimievski et al. 2008], the data recip-
ients submit their queries and receive their results. The auditor checks if a privacy
requirement has been violated after the queries have been executed. The data recipi-
ents have no access to the audit results and, therefore, the audit results do not trigger
extra privacy threats as in the online mode. The objective of offline query audition
is to check for compliance of privacy requirements, not to prevent the attackers from
accessing the sensitive information.

8.2. Privacy Threats Caused by Data Mining Results

The release of data mining results or patterns could pose privacy threats. There are
two broad research directions in this family.

The first direction is to anonymize the data so that sensitive data mining patterns
cannot be generated. Aggarwal et al. [2006] pointed out that simply suppressing the
sensitive values chosen by individual record owners is insufficient because an attacker
can use association rules learnt from the data to estimate the suppressed values. They
proposed a heuristic algorithm to suppress a minimal set of values to combat such
attacks. Verykios et al. [2004] proposed algorithms for hiding sensitive association
rules in a transaction database. The general idea is to hide one rule at a time by either
decreasing its support or its confidence, achieved by removing items from transactions.
Rules satisfying a specified minimum support and minimum confidence are removed.
However, in the notion of anonymity, a rule applying to a small group of individuals
(i.e., low support) presents a more serious threat because record owners from a small
group are more identifiable.

The second direction is to directly anonymize the data mining patterns. Atzori et al.
[2008] proposed the insightful suggestion that if the goal is to release data mining re-
sults, such as frequent patterns, then it is sufficient to anonymize the patterns rather
than the data. Their study suggested that anonymizing the patterns yields much bet-
ter information utility than performing data mining on anonymous data. This opens
up a new research direction for privacy-preserving patterns publishing. Kantarcioglu
et al. [2004] defined an evaluation method to measure the loss of privacy due to releas-
ing data mining results.

8.3. Privacy-Preserving Distributed Data Mining

Privacy-preserving distributed data mining (PPDDM) is a cousin to the research topic
of privacy-preserving data publishing (PPDP). PPDDM assumes a scenario that mul-
tiple data holders want to collaboratively perform data mining on the union of their
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data without revealing their sensitive information. PPDDM usually employs crypto-
graphic solutions. Although the ultimate goal of both PPDDM and PPDP is to perform
data mining, they have very different assumptions on data ownerships, attack mod-
els, privacy models, and solutions, so PPDDM is out of the scope of this survey. We
refer readers interested in PPDDM to work by [Clifton et al. 2002; Kantarcioglu 2008;
Pinkas 2002; Vaidya 2008; Wright et al. 2005].

9. SUMMARY AND FUTURE RESEARCH DIRECTIONS

Information sharing has become part of the routine activity of many individuals, com-
panies, organizations, and government agencies. Privacy-preserving data publishing
is a promising approach to information sharing, while preserving individual privacy
and protecting sensitive information. In this survey, we reviewed the recent develop-
ments in the field. The general objective is to transform the original data into some
anonymous form to prevent from inferring its record owners’ sensitive information.
We presented our views on the difference between privacy-preserving data publish-
ing and privacy-preserving data mining, and gave a list of desirable properties of a
privacy-preserving data publishing method. We reviewed and compared existing meth-
ods in terms of privacy models, anonymization operations, information metrics, and
anonymization algorithms. Most of these approaches assumed a single release from a
single publisher, and thus only protected the data up to the first release or the first
recipient. We also reviewed several works on more challenging publishing scenarios,
including multiple release publishing, sequential release publishing, continuous data
publishing, and collaborative data publishing.

Privacy protection is a complex social issue, which involves policy-making, tech-
nology, psychology, and politics. Privacy protection research in computer science can
provide only technical solutions to the problem. Successful application of privacy-
preserving technology will rely on the cooperation of policy makers in governments and
decision makers in companies and organizations. Unfortunately, while the deployment
of privacy-threatening technology, such as RFID and social networks, grows quickly,
the implementation of privacy-preserving technology in real-life applications is very
limited. As the gap becomes larger, we foresee that the number of incidents and the
scope of privacy breach will increase in the near future. Below, we identify a few po-
tential research directions in privacy preservation, together with some desirable prop-
erties that could facilitate the general public, decision makers, and systems engineers
to adopt privacy-preserving technology.

Privacy-preserving tools for individuals. Most previous privacy-preserving tech-
niques were proposed for data publishers, but individual record owners should also
have the right and responsibility to protect their own private information. There is
an urgent need for personalized privacy-preserving tools, such as privacy-preserving
web browsers and minimal information disclosure protocols for e-commerce activi-
ties. It is important that the privacy-preserving notions and tools developed are in-
tuitive for novice users. Xiao and Tao [2006b]’s work on “personalized privacy preser-
vation” provides a good start, but little work has been conducted on this direction
since.

Privacy protection in emerging technologies. Emerging technologies, like location-
based services [Atzori et al. 2007; Hengartner 2007; You et al. 2007], RFID [Wang
et al. 2006], bioinformatics, and mashup web applications, enhance our quality of life.
These new technologies allow corporations and individuals to have access to previously
unavailable information and knowledge; however, such benefits also bring up many
new privacy issues. Nowadays, once a new technology has been adopted by a small
community, it can become very popular in a short period of time. A typical example is
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the social network application called Facebook.2 Since its deployment in 2004, it has
acquired 70 million active users. Due to the massive number of users, the harm could
be extensive if the new technology is misused. One research direction is to customize
existing privacy-preserving models for emerging technologies.

Incorporating privacy protection in engineering process. The issue of privacy pro-
tection is often considered after the deployment of a new technology. Typical exam-
ples are the deployments of mobile devices with location-based services [Abul et al.
2008; Atzori et al. 2007; Hengartner 2007; You et al. 2007], sensor networks, and so-
cial networks. The privacy issue should be considered as a primary requirement in
the engineering process for developing new technology. This involves formal specifica-
tion of privacy requirements and formal verification tools to prove the correctness of a
privacy-preserving system.

Finally, we emphasize that privacy-preserving technology solves only one side of the
problem. It is equally important to identify and overcome the nontechnical difficul-
ties faced by decision makers when they deploy a privacy-preserving technology. Their
typical concerns include the degradation of data/service quality, loss of valuable infor-
mation, increased costs, and increased complexity. We believe that cross-disciplinary
research is the key to remove these obstacles, and urge computer scientists in the
privacy protection field to conduct cross-disciplinary research with social scientists in
sociology, psychology, and public policy studies. Having a better understanding of the
privacy problem from different perspectives can help realize successful applications of
privacy-preserving technology.

ACKNOWLEDGMENTS

We sincerely thank the reviewers of this manuscript for greatly improving the quality of this survey.

REFERENCES

ABUL, O., BONCHI, F., AND NANNI, M. 2008. Never walk alone: Uncertainty for anonymity in moving objects
databases. In Proceedings of the 24th IEEE International Conference on Data Engineering (ICDE). 376–
385.

ADAM, N. R. AND WORTMAN, J. C. 1989. Security control methods for statistical databases. ACM Comput.
Surv. 21, 4, 515–556.

AGGARWAL, C. C. AND YU, P. S. 2008a. A framework for condensation-based anonymization of string data.
Data Min. Knowl. Discov. 13, 3, 251–275.

AGGARWAL, C. C. AND YU, P. S. 2008b. On static and dynamic methods for condensation-based privacy-
preserving data mining. ACM Trans. Datab. Syst. 33, 1.

AGGARWAL, C. C. AND YU, P. S. 2008c. Privacy-Preserving Data Mining: Models and Algorithms. Springer,
Berlin.

AGGARWAL, C. C. AND YU, P. S. 2007. On privacy-preservation of text and sparse binary data with sketches.
In Proceedings of the SIAM International Conference on Data Mining (SDM).

AGGARWAL, C. C., PEI, J., AND ZHANG, B. 2006. On privacy preservation against adversarial data mining.
In Proceedings of the 12th ACM SIGKDD. ACM, New York.

AGGARWAL, C. C. 2005. On k-anonymity and the curse of dimensionality. In Proceedings of the 31st
Conference on Very Large Data Bases (VLDB). 901–909.

AGGARWAL, G., FEDER, T., KENTHAPADI, K., MOTWANI, R., PANIGRAHY, R., THOMAS, D., AND ZHU, A. 2006.
Achieving anonymity via clustering. In Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART PODS
Conference. ACM, New York.

AGGARWAL, G., FEDER, T., KENTHAPADI, K., MOTWANI, R., PANIGRAHY, R., THOMAS, D., AND ZHU, A. 2005.
Anonymizing tables. In Proceedings of the 10th International Conference on Database Theory (ICDT).
246–258.

2http://www.facebook.com

ACM Computing Surveys, Vol. 42, No. 4, Article 14, Publication date: June 2010.



14:48 B. C. M. Fung et al.

AGRAWAL, D. AND AGGARWAL, C. C. 2001. On the design and quantification of privacy preserving data-
mining algorithms. In Proceedings of the 20th ACM Symposium on Principles of Database Systems
(PODS). ACM, New York, 247–255.

AGRAWAL, R. AND SRIKANT, R. 2000. Privacy preserving data mining. In Proceedings of the ACM SIGMOD.
ACM, New York, 439–450.

AGRAWAL, S. AND HARITSA, J. R. 2005. A framework for high-accuracy privacy-preserving mining. In Pro-
ceedings of the 21st IEEE International Conference on Data Engineering (ICDE). 193–204.

ALON, N., MATIAS, Y., AND SZEGEDY, M. 1999. The space complexity of approximating the frequency mo-
ments. J. Comput. Syst. Sci. 58, 1, 137–147.

ATZORI, M., BONCHI, F., GIANNOTTI, F., AND PEDRESCHI, D. 2008. Anonymity preserving pattern discovery.
Int. J. Very Large Data Bases 17, 4, 703–727.

ATZORI, M., BONCHI, F., GIANNOTTI, F., PEDRESCHI, D., AND ABUL, O. 2007. Privacy-aware knowledge discov-
ery from location data. In Proceedings of the International Workshop on Privacy-Aware Location-based
Mobile Services (PALMS). 283–287.

BARAK, B., CHAUDHURI, K., DWORK, C., KALE, S., MCSHERRY, F., AND TALWAR, K. 2007. Privacy, accuracy,
and consistency too: A holistic solution to contingency table release. In Proceedings of the 26th ACM
Symposium on Principles of Database Systems (PODS). ACM, New York, 273–282.

BARBARO, M. AND ZELLER, T. 2006. A face is exposed for AOL searcher no. 4417749. New York Times (Aug.
9).

BAYARDO, R. J. AND AGRAWAL, R. 2005. Data privacy through optimal k-anonymization. In Proceedings of
the 21st IEEE International Conference on Data Engineering (ICDE). 217–228.

BEINAT, E. 2001. Privacy and location-based: Stating the policies clearly. GeoInformatics.
BLUM, A., LIGETT, K., AND ROTH, A. 2008. A learning theory approach to non-interactive database privacy.

In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC). ACM, New York,
609–618.

BLUM, A., DWORK, C., MCSHERRY, F., AND NISSIM, K. 2005. Practical privacy: The sulq framework. In Pro-
ceedings of the 24th ACM Symposium on Principles of Database Systems (PODS). ACM, New York,
128–138.

BRAND, R. 2002. Microdata protection through noise addition. In Inference Control in Statistical
Databases, From Theory to Practice, London, 97–116.

BU, Y., FU, A. W. C., WONG, R. C. W., CHEN, L., AND LI, J. 2008. Privacy preserving serial data publishing
by role composition. Proc. VLDB Endowment 1, 1, 845–856.

BURNETT, L., BARLOW-STEWART, K., PROS, A., AND AIZENBERG, H. 2003. The gene trustee: A universal iden-
tification system that ensures privacy and confidentiality for human genetic databases. J. Law and
Medicine 10, 506–513.

BYUN, J.-W., SOHN, Y., BERTINO, E., AND LI, N. 2006. Secure anonymization for incremental datasets. In
Proceedings of the VLDB Workshop on Secure Data Management (SDM).

CARLISLE, D. M., RODRIAN, M. L., AND DIAMOND, C. L. 2007. California inpatient data reporting manual,
medical information reporting for California (5th Ed), Tech. rep., Office of Statewide Health Planning
and Development.

CHAKARAVARTHY, V. T., GUPTA, H., ROY, P., AND MOHANIA, M. 2008. Efficient techniques for documents
sanitization. In Proceedings of the 17th ACM Conference on Information and Knowledge Management
(CIKM). ACM, New York.

CHAUM, D. 1981. Untraceable electronic mail, return addresses, and digital pseudonyms. Comm. ACM 24,
2, 84–88.

CHAWLA, S., DWORK, C., MCSHERRY, F., SMITH, A., AND WEE, H. 2005. Toward privacy in public databases.
In Proceedings of the Theory of Cryptography Conference (TCC). 363–385.

CHAWLA, S., DWORK, C., MCSHERRY, F., AND TALWAR, K. 2005. On privacy-preserving histograms. In Pro-
ceedings of the Uncertainty in Artificial Intelligence Coference (UAI).

CLIFTON, C., KANTARCIOGLU, M., VAIDYA, J., LIN, X., AND ZHU, M. Y. 2002. Tools for privacy preserving
distributed data mining. ACM SIGKDD Explor. Newsl. 4, 2, 28–34.

CLIFTON, C. 2000. Using sample size to limit exposure to data mining. J. Comput. Security 8, 4,
281–307.

COX, L. H. 1980. Suppression methodology and statistical disclosure control. J. Am. Statistical Assoc. 75,
370, 377–385.

DALENIUS, T. 1986. Finding a needle in a haystack - or identifying anonymous census record. J. Official
Statistics 2, 3, 329–336.

ACM Computing Surveys, Vol. 42, No. 4, Article 14, Publication date: June 2010.



Privacy-Preserving Data Publishing: A Survey of Recent Developments 14:49

DALENIUS, T. 1977. Towards a methodology for statistical disclosure control. Statistik Tidskrift 15, 429–
444.

DENNING, D. E. 1985. Commutative filters for reducing inference threats in multilevel database systems.
In Proceedings of the IEEE Symposium on Security and Privacy.

DEUTSCH, A. AND PAPAKONSTANTINOU, Y. 2005. Privacy in database publishing. In Proceedings of the 10th
International Conference on Database Theory (ICDT). 230–245.

DINUR, I. AND NISSIM, K. 2003. Revealing information while preserving privacy. In Proceedings of the 22nd
ACM Symposium on Principles of Database Systems (PODS). 202–210.

DOMINGO-FERRER, J. 2008. Privacy-Preserving Data Mining: Models and Algorithms. Springer, Berlin, 53–
80.

DOMINGO-FERRER, J. AND TORRA, V. 2008. A critique of k-anonymity and some of its enhancements. In
Proceedings of the 3rd International Conference on Availability, Reliability and Security (ARES). 990–
993.

DOMINGO-FERRER, J. AND TORRA, V. 2002. Theory and Practical Applications for Statistical Agencies. North-
Holland, Amsterdam, 113–134.

DOMINGO-FERRER, J. 2001. Confidentiality, Disclosure and Data Access: Theory and Practical Applications
for Statistical Agencies, 91–11.

DU, W. AND ZHAN, Z. 2003. Using randomized response techniques for privacy-preserving data mining. In
Proceedings of the 9th ACM SIGKDD. ACM, New York.

DUNCAN, G. AND FIENBERG, S. 1998. Obtaining information while preserving privacy: A Markov perturba-
tion method for tabular data. In Statistical Data Protection, 351–362.

DWORK, C. 2008. Differential privacy: A survey of results. In Proceedings of the 5th International Confer-
ence on Theory and Applications of Models of Computation (TAMC). 1–19.

DWORK, C. 2007. Ask a better question, get a better answer: A new approach to private data analysis. In
Proceedings of the International Conference on Database Theory (ICDT). 18–27.

DWORK, C. 2006. Differential privacy. In Proceedings of the 33rd International Colloquium on Automata,
Languages and Programming (ICALP). 1–12.

DWORK, C., MCSHERRY, F., NISSIM, K., AND SMITH, A. 2006. Calibrating noise to sensitivity in private data
analysis. In Proceedings of the 3rd Theory of Cryptography Conference (TCC). 265–284.

DWORK, C. AND NISSIM, K. 2004. Privacy-preserving data mining on vertically partitioned databases. In
Proceedings of the 24th International Cryptology Conference (CRYPTO). 528–544.

EMAM, K. E. 2006. Data anonymization practices in clinical research: A descriptive study. Tech. rep. Ac-
cess to Information and Privacy Division of Health in Canada.

EVFIMIEVSKI, A., FAGIN, R., AND WOODRUFF, D. P. 2008. Epistemic privacy. In Proceedings of the 27th ACM
Symposium on Principles of Database Systems (PODS). ACM, New York, 171–180.

EVFIMIEVSKI, A., SRIKANT, R., AGRAWAL, R., AND GEHRKE, J. 2002. Privacy preserving mining of association
rules. In Proceedings of the 8th ACM SIGKDD. ACM, New York, 217–228.

FARKAS, C. AND JAJODIA, S. 2003. The inference problem: A survey. ACM SIGKDD Explor. Newsl. 4, 2,
6–11.

FULLER, W. A. 1993. Masking procedures for microdata disclosure limitation. Official Statistics 9, 2, 383–
406.

FUNG, B. C. M., CAO, M., DESAI, B. C., AND XU, H. 2009. Privacy protection for RFID data. In Proceedings
of the 24th ACM SIGAPP Symposium on Applied Computing (SAC). ACM, New York.

FUNG, B. C. M., WANG, K., WANG, L., AND HUNG, P. C. K. 2009. Privacy-preserving data publishing for
cluster analysis. Data Knowl. Engin. 68, 6, 552–575.

FUNG, B. C. M., WANG, K., FU, A. W. C., AND PEI, J. 2008. Anonymity for continuous data publishing. In
Proceedings of the 11th International Conference on Extending Database Technology (EDBT). ACM, New
York, 264–275.

FUNG, B. C. M., WANG, K., WANG, L., AND DEBBABI, M. 2008. A framework for privacy-preserving cluster
analysis. In Proceedings of the 2008 IEEE International Conference on Intelligence and Security Infor-
matics (ISI). 46–51.

FUNG, B. C. M., WANG, K., AND YU, P. S. 2007. Anonymizing classification data for privacy preservation.
IEEE Trans. Knowl. Data Engin. 19, 5, 711–725.

FUNG, B. C. M., WANG, K., AND YU, P. S. 2005. Top-down specialization for information and privacy preser-
vation. In Proceedings of the 21st IEEE International Conference on Data Engineering (ICDE). 205–216.

GEHRKE, J. 2006. Models and methods for privacy-preserving data publishing and analysis. Tutorial at
the 12th ACM SIGKDD.

ACM Computing Surveys, Vol. 42, No. 4, Article 14, Publication date: June 2010.



14:50 B. C. M. Fung et al.

GHINITA, G., TAO, Y., AND KALNIS, P. 2008. On the anonymization of sparse high-dimensional data. In
Proceedings of the 24th IEEE International Conference on Data Engineering (ICDE). 715–724.

GOGUEN, J. AND MESEGUER, J. 1984. Unwinding and inference control. In Proceedings of the IEEE Sympo-
sium on Security and Privacy.

HEGLAND, M., MCINTOSH, I., AND TURLACH, B. A. 1999. A parallel solver for generalized additive models.
Comput. Statistics Data Anal. 31, 4, 377–396.

HENGARTNER, U. 2007. Hiding location information from location-based services. In Proceedings of the
International Workshop on Privacy-Aware Location-based Mobile Services (PALMS). 268–272.

HINKE, T. 1988. Inference aggregation detection in database management systems. In Proceedings of the
IEEE Symposium on Security and Privacy. 96–107.

HINKE, T., DEGULACH, H., AND CHANDRASEKHAR, A. 1995. A fast algorithm for detecting second paths in
database inference analysis. J. Comput. Security.

HUANG, Z., DU, W., AND CHEN, B. 2005. Deriving private information from randomized data. In Proceedings
of the ACM SIGMOD. ACM, New York, 37–48.

HUNDEPOOL, A. AND WILLENBORG, L. 1996. 1- and %-argus: Software for statistical disclosure control.
In Proceedings of the 3rd International Seminar on Statistical Confidentiality.

IYENGAR, V. S. 2002. Transforming data to satisfy privacy constraints. In Proceedings of the 8th ACM
SIGKDD. ACM, New York, 279–288.

JAJODIA, S. AND MEADOWS, C. 1995. Inference problems in multilevel database management systems. In
IEEE Information Security: An Integrated Collection of Essays. 570–584.

JAKOBSSON, M., JUELS, A., AND RIVEST, R. L. 2002. Making mix nets robust for electronic voting by ran-
domized partial checking. In Proceedings of the 11th USENIX Security Symposium. 339–353.

JIANG, W. AND CLIFTON, C. 2005. Privacy-preserving distributed k-anonymity. In Proceedings of the 19th
Annual IFIP WG 11.3 Working Conference on Data and Applications Security. 166–177.

JIANG, W. AND CLIFTON, C. 2006. A secure distributed framework for achieving k-anonymity. Very Large
Data Bases J. 15, 4, 316–333.

KANTARCIOGLU, M. 2008. Privacy-Preserving Data Mining: Models and Algorithms. Springer, Berlin, 313–
335.

KANTARCIOGLU, M., JIN, J., AND CLIFTON, C. 2004. When do data mining results violate privacy? In Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
New York, 599–604.

KARGUPTA, H., DATTA, S., WANG, Q., AND SIVAKUMAR, K. 2003. On the privacy preserving properties of
random data perturbation techniques. In Proceedings of the 3rd IEEE International Conference on Data
Mining (ICDM). 99–106.

KENTHAPADI, K., MISHRA, N., AND NISSIM, K. 2005. Simulatable auditing. In Proceedings of the 24th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. ACM, New York,
118–127.

KIFER, D. AND GEHRKE, J. 2006. Injecting utility into anonymized datasets. In Proceedings of ACM SIG-
MOD. ACM, New York.

KIM, J. AND WINKLER, W. 1995. Masking microdata files. In Proceedings of the ASA Section on Survey
Research Methods. 114–119.

KOKKINAKIS, D. AND THURIN, A. 2007. Anonymization of Swedish clinical data. In Proceedings of the 11th
Conference on Artificial Intelligence in Medicine (AIME). 237–241.

KUMAR, R., NOVAK, J., PANG, B., AND TOMKINS, A. 2007. On anonymizing query logs via token-based hash-
ing. In Proceedings of the 16th World Wide Wed Conference. 628–638.

LEFEVRE, K., DEWITT, D. J., AND RAMAKRISHNAN, R. 2006a. Mondrian multidimensional k-anonymity. In
Proceedings of the 22nd IEEE International Conference on Data Engineering (ICDE).

LEFEVRE, K., DEWITT, D. J., AND RAMAKRISHNAN, R. 2006b. Workload-aware anonymization. In Proceedings
of the 12th ACM SIGKDD. ACM, New York.

LEFEVRE, K., DEWITT, D. J., AND RAMAKRISHNAN, R. 2005. Incognito: Efficient full-domain k-anonymity. In
Proceedings of ACM SIGMOD. ACM, New York, 49–60.

LI, J., TAO, Y., AND XIAO, X. 2008. Preservation of proximity privacy in publishing numerical sen-
sitive data. In Proceedings of the ACM Conference on Management of Data (SIGMOD). 437–
486.

LI, N., LI, T., AND VENKATASUBRAMANIAN, S. 2007. t-closeness: Privacy beyond k-anonymity and l-diversity.
In Proceedings of the 21st IEEE International Conference on Data Engineering (ICDE).

ACM Computing Surveys, Vol. 42, No. 4, Article 14, Publication date: June 2010.



Privacy-Preserving Data Publishing: A Survey of Recent Developments 14:51

MACHANAVAJJHALA, A., KIFER, D., ABOWD, J. M., GEHRKE, J., AND VILHUBER, L. 2008. Privacy: Theory meets
practice on the map. In Proceedings of the 24th IEEE International Conference on Data Engineering
(ICDE). 277–286.

MACHANAVAJJHALA, A., KIFER, D., GEHRKE, J., AND VENKITASUBRAMANIAM, M. 2007. l-diversity: Privacy be-
yond k-anonymity. ACM Trans. Knowl. Discov. Data 1, 1.

MACHANAVAJJHALA, A., GEHRKE, J., KIFER, D., AND VENKITASUBRAMANIAM, M. 2006. l-diversity: Privacy
beyond k-anonymity. In Proceedings of the 22nd IEEE International Conference on Data Engineering
(ICDE).

MALIN, B. AND AIROLDI, E. 2006. The effects of location access behavior on re-identification risk in a dis-
tributed environment. In Proceedings of the 6th Workshop on Privacy Enhancing Technologies (PET).
413–429.

MARTIN, D., KIFER, D., MACHANAVAJJHALA, A., GEHRKE, J., AND HALPERN, J. 2007. Worst-case background
knowledge in privacy-preserving data publishing. In Proceedings of the 23rd IEEE International Con-
ference on Data Engineering (ICDE).

MATLOFF, N. S. 1988. Inference control via query restriction vs. data modification: A perspective. In
Database Security: Status and Prospects. 159–166.

MEYERSON, A. AND WILLIAMS, R. 2004. On the complexity of optimal k-anonymity. In Proceedings of the
23rd ACM SIGMOD-SIGACT-SIGART PODS. ACM, New York, 223–228.

MIKLAU, G. AND SUCIU, D. 2004. A formal analysis of information disclosure in data exchange. In Proceed-
ings of the ACM SIGMOD. ACM, New York, 575–586.

MOHAMMED, N., FUNG, B. C. M., WANG, K., AND HUNG, P. C. K. 2009. Privacy-preserving data mashup. In
Proceedings of the 12th International Conference on Extending Database Technology (EDBT).

MOORE, R. A., JR. 1996. Controlled data-swapping techniques for masking public use microdata sets.
Statistical Research Division Report Series RR 96-04, U.S. Bureau of the Census, Washington, D.C.

MOTWANI, R. AND XU, Y. 2007. Efficient algorithms for masking and finding quasi-identifiers. In Proceed-
ings of the Conference on Very Large Data Bases (VLDB).

NERGIZ, M. E., ATZORI, M., AND CLIFTON, C. W. 2007. Hiding the presence of individuals from shared
databases. In Proceedings of ACM SIGMOD Conference. ACM, New York, 665–676.

NERGIZ, M. E. AND CLIFTON, C. 2007. Thoughts on k-anonymization. Data Knowl. Engin. 63, 3, 622–645.
NERGIZ, M. E., CLIFTON, C., AND NERGIZ, A. E. 2007. Multirelational k-anonymity. In Proceedings of the

23rd International Conference on Data Engineering (ICDE). 1417–1421.
OHRN, A. AND OHNO-MACHADO, L. 1999. Using Boolean reasoning to anonymize databases. Artif. Intell.

Medicine 15, 235–254.
OZSOYOGLU, G. AND SU, T. 1990. On inference control in semantic data models for statistical databases. J.

Comput. Syst. Sci. 40, 3, 405–443.
PAPADIMITRIOU, S., LI, F., KOLLIOS, G., AND YU, P. S. 2007. Time series compressibility and pri-

vacy. In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB),
459–470.

PINKAS, B. 2002. Cryptographic techniques for privacy-preserving data mining. ACM SIGKDD Explor.
Newsl. 4, 2, 12–19.

POHLIG, S. AND HELLMAN, M. 1978. An improved algorithm for computing logarithms over gf(p) and its
cryptographic significance. IEEE Trans. Inform. Theory IT-24, 106–110.

PRESIDENT INFORMATION TECHNOLOGY ADVISORY COMMITTEE. 2004. Revolutionizing health care through
information technology. Tech. rep., Executive Office of the President of the United States.

QUINLAN, J. R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.
RASTOGI, V., SUCIU, D., AND HONG, S. 2007. The boundary between privacy and utility in data pub-

lishing. In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB). 531–
542.

REISS, S. P. 1984. Practical data-swapping: The first steps. ACM Trans. Datab. Syst. 9, 1, 20–37.
REISS, S. P., POST, M. J., AND DALENIUS, T. 1982. Non-reversible privacy transformations. In Proceedings of

the 1st ACM Symposium on Principles of Database Systems (PODS). 139–146.
ROSEN, B. E., GOODWIN, J. M., AND VIDAL, J. J. 1992. Process control with adaptive range coding. Biological

Cyber. 67, 419–428.
RUBIN, D. B. Discussion statistical disclosure limitation. J. Official Statistics 9, 2.
SAMARATI, P. 2001. Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data En-

gin. 13, 6, 1010–1027.

ACM Computing Surveys, Vol. 42, No. 4, Article 14, Publication date: June 2010.



14:52 B. C. M. Fung et al.

SAMARATI, P. AND SWEENEY, L. 1998a. Generalizing data to provide anonymity when disclosing informa-
tion. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART (PODS). ACM, New York, 188.

SAMARATI, P. AND SWEENEY, L. 1998b. Protecting privacy when disclosing information: k-anonymity and
its enforcement through generalization and suppression. Tech. rep., SRI International.

SAYGIN, Y., HAKKANI-TUR, D., AND TUR, G. 2006. Web and Information Security. IRM Press, 133–148.
SHANNON, C. E. 1948. A mathematical theory of communication. The Bell Syst. Tech. J. 27, 379 and 623.
SKOWRON, A. AND RAUSZER, C. 1992. Intelligent Decision Support: Handbook of Applications and Advances

of the Rough Set Theory.
SWEENEY, L. 2002a. Achieving k-anonymity privacy protection using generalization and suppression. Int.

J. Uncertainty, Fuzziness, Knowl.-Based Syst. 10, 5, 571–588.
SWEENEY, L. 2002b. k-Anonymity: A model for protecting privacy. Int. J. Uncertainty, Fuzziness, Knowl.-

Based Syst. 10, 557–570.
SWEENEY, L. 1998. Datafly: A system for providing anonymity in medical data. In Proceedings of the IFIP

TC11 WG11.3 11th International Conference on Database Securty XI: Status and Prospects. 356–381.
TERROVITIS, M. AND MAMOULIS, N. 2008. Privacy preservation in the publication of trajectories. In Proceed-

ings of the 9th International Conference on Mobile Data Management (MDM). 65–72.
TERROVITIS, M., MAMOULIS, N., AND KALNIS, P. 2008. Privacy-preserving anonymization of set-valued data.

Proc. VLDB Endowment 1, 1, 115–125.
THURAISINGHAM, B. M. 1987. Security checking in relational database management systems augmented

with inference engines. Comput. Security 6, 479–492.
TRUTA, T. M. AND BINDU, V. 2006. Privacy protection: p-sensitive k-anonymity property. In Proceedings of

the Workshop on Privacy Data Management (PDM). 94.
VAIDYA, J. 2008. Privacy-Preserving Data Mining: Models and Algorithms. Springer, Berlin, 337–358.
VERYKIOS, V. S., ELMAGARMID, A. K., BERTINO, E., SAYGIN, Y., AND DASSENI, E. 2004. Association rule hiding.

IEEE Trans. Knowl. Data Engin. 16, 4, 434–447.
VINTERBO, S. A. 2004. Privacy: A machine learning view. IEEE Trans. Knowl. Data Engin. 16, 8, 939–948.
WANG, K., XU, Y., FU, A. W. C., AND WONG, R. C. W. 2009. ff-anonymity: When quasi-identifiers are missing.

In Proceedings of the 25th IEEE International Conference on Data Engineering (ICDE).
WANG, K., FUNG, B. C. M., AND YU, P. S. 2007. Handicapping attacker’s confidence: An alternative to

k-anonymization. Knowl. Inform. Syst. 11, 3, 345–368.
WANG, K. AND FUNG, B. C. M. 2006. Anonymizing sequential releases. In Proceedings of the 12th ACM

SIGKDD Conference. ACM, New York.
WANG, K., FUNG, B. C. M., AND DONG, G. 2005. Integrating private databases for data analysis. In Pro-

ceedings of the IEEE International Conference on Intelligence and Security Informatics (ISI). 171–
182.

WANG, K., FUNG, B. C. M., AND YU, P. S. 2005. Template-based privacy preservation in classification prob-
lems. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM). 466–473.

WANG, K., YU, P. S., AND CHAKRABORTY, S. 2004. Bottom-up generalization: A data mining solution to
privacy protection. In Proceedings of the 4th IEEE International Conference on Data Mining (ICDM).

WANG, S.-W., CHEN, W.-H., ONG, C.-S., LIU, L., AND CHUANG, Y. 2006. RFID applications in hospitals: A
case study on a demonstration RFID project in a Taiwan hospital. In Proceedings of the 39th Hawaii
International Conference on System Sciences.

WARNER, S. L. 1965. Randomized response: A survey technique for eliminating evasive answer bias. J.
Am. Statistical Assoc. 60, 309, 63–69.

WONG, R. C. W., FU, A. W. C., WANG, K., AND PEI, J. 2007. Minimality attack in privacy preserving data
publishing. In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB). 543–
554.

WONG, R. C. W., LI., J., FU, A. W. C., AND WANG, K. 2006. (a,k)-anonymity: An enhanced k-anonymity model
for privacy preserving data publishing. In Proceedings of the 12th ACM SIGKDD. ACM, New York,
754–759.

WRIGHT, R. N., YANG, Z., AND ZHONG, S. 2005. Distributed data mining protocols for privacy: A review
of some recent results. In Proceedings of the Secure Mobile Ad-Hoc Networks and Sensors Workshop
(MADNES).

XIAO, X. AND TAO, Y. 2007. m-invariance: Towards privacy preserving re-publication of dynamic datasets.
In Proceedings of the ACM SIGMOD Conference. ACM, New York.

XIAO, X. AND TAO, Y. 2006a. Anatomy: Simple and effective privacy preservation. In Proceedings of the
32nd Conference on Very Large Data Bases (VLDB).

ACM Computing Surveys, Vol. 42, No. 4, Article 14, Publication date: June 2010.



Privacy-Preserving Data Publishing: A Survey of Recent Developments 14:53

XIAO, X. AND TAO, Y. 2006b. Personalized privacy preservation. In Proceedings of the ACM SIGMOD Con-
ference. ACM, New York.

XU, J., WANG, W., PEI, J., WANG, X., SHI, B., AND FU, A. W. C. 2006. Utility-based anonymization using local
recoding. In Proceedings of the 12th ACM SIGKDD Conference. ACM, New York.

XU, Y., FUNG, B. C. M., WANG, K., FU, A. W. C., AND PEI, J. 2008. Publishing sensitive transactions for
itemset utility. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM).

XU, Y., WANG, K., FU, A. W. C., AND YU, P. S. 2008. Anonymizing transaction databases for publication. In
Proceedings of the 14th ACM SIGKDD Conference. ACM, New York.

YANG, Z., ZHONG, S., AND WRIGHT, R. N. 2005. Anonymity-preserving data collection. In Proceedings of the
11th ACM SIGKDD Conference. ACM, New York, 334–343.

YAO, C., WANG, X. S., AND JAJODIA, S. 2005. Checking for k-anonymity violation by views. In Proceedings
of the 31st Conference on Very Large Data Bases (VLDB). 910–921.

YOU, T.-H., PENG, W.-C., AND LEE, W.-C. 2007. Protect moving trajectories with dummies. In Proceedings
of the International Workshop on Privacy-Aware Location-Based Mobile Services (PALMS). 278–282.

ZAYATZ, L. 2007. Disclosure avoidance practices and research at the U.S. Census Bureau: An update. J.
Official Statistics 23, 2, 253–265.

ZHANG, P., TONG, Y., TANG, S., AND YANG, D. 2005. Privacy-preserving naive Bayes classifier. Lecture Notes
in Computer Science, vol. 3584.

ZHANG, Q., KOUDAS, N., SRIVASTAVA, D., AND YU, T. 2007. Aggregate query answering on anonymized tables.
In Proceedings of the 23rd IEEE International Conference on Data Engineering (ICDE).

Received April 2008; revised December 2008; accepted December 2008

ACM Computing Surveys, Vol. 42, No. 4, Article 14, Publication date: June 2010.




