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Abstract

Suppose that a Facebook user, whose age is hidden or
missing, likes Britney Spears. Can you guess his/her age?
Knowing that most Britney fans are teenagers, it is fairly
easy for humans to answer this question. Interests (or
“likes”) of users is one of the highly-available on-line in-
formation. In this paper, we show how these seemingly
harmless interests (e.g., music interests) can leak privacy-
sensitive information about users. In particular, we infer
their undisclosed (private) attributes using the public at-
tributes of other users sharing similar interests. In order
to compare user-defined interest names, we extract their
semantics using an ontologized version of Wikipedia and
measure their similarity by applying a statistical learning
method. Besides self-declared interests in music, our tech-
nique does not rely on any further information about users
such as friend relationships or group belongings. Our ex-
periments, based on more than 104K public profiles col-
lected from Facebook and more than 2000 private profiles
provided by volunteers, show that our inference technique
efficiently predicts attributes that are very often hidden by
users. To the best of our knowledge, this is the first time that
user interests are used for profiling, and more generally,
semantics-driven inference of private data is addressed.

1. Introduction

Among the vast amount of personal information, user in-
terests or likes (using the terminology of Facebook) is one
of the highly-available public information on On-line So-
cial Networks (OSNs). Our measurements show that 57%
of about half million Facebook user profiles that we col-
lected publicly reveal at least one interest amongst different
categories. This wealth of information shows that the ma-
jority of users consider this information harmless to their
privacy as they do not see any correlation between their
interests and their private data. Nonetheless, interests, if
augmented with semantic knowledge, may leak informa-
tion about its owner and thus lead to privacy breach. For

example, consider an unknown Facebook user who has an
interest “Eenie Meenie”. In addition, there are many female
teenager users who have interests such as “My World 2.0”
and “Justin Bieber”. It is easy to predict that the unknown
user is probably also a female teenager: “Eenie Meenie” is
a song of “Justin Bieber” on his album “My World 2.0”,
and most Facebook users who have these interests are fe-
male teenagers. This example illustrates the two main com-
ponents of our approach: (1) deriving semantic correlation
between words (e.g., “My World 2.0”, “Eenie Meenie”, and
“Justin Bieber”) in order to link users sharing similar in-
terests, and (2) deriving statistics about these users (e.g.,
Justin Bieber fans) by analyzing their public Facebook pro-
files. To the best of our knowledge, the possibility of this
information leakage and the automation of such inference
have never been considered so far. We believe that this lack
of exploitation is due to several challenges to extract useful
information from interest names and descriptions.

First, many interests are ambiguous. In fact, they are
short sentences (or even one word) that deal with a concept.
Without a semantic definition of this concept, the interest
is equivocal. For example, if a user includes “My World
2.0” in her Art/Entertainment interests, one can imply that
this user is likely to be interested in pop as a genre of mu-
sic. Without a knowledge of what “My World 2.0” is, the
information about such an interest is hidden, and hence un-
exploited.

Second, drawing semantic link between different inter-
ests is difficult. For example, if a user includes in her public
profile “My World 2.0” and another user chooses the inter-
est “I love Justin Bieber”, then clearly, these two users are
among the Justin Bieber funs. However, at a large scale,
automating interest linkage may not be possible without se-
mantic knowledge.

Finally, interests are user-generated, and as such, very
heterogeneous items as opposed to marketers’ classified
items (e.g., in Amazon, Imdb, etc.). This is due to the fact
that OSNs do not have any control on how the descriptions
and titles of interests are constructed. As a result, inter-
est descriptions as provided by users are often incorrect,
misleading or altogether missing. It is therefore very diffi-



cult to extract useful information from interests and classify
them from the user-generated descriptions. Particularly, in-
terests that are harvested from user profiles are different in
nature, ranging from official homepage links or ad-hoc cre-
ated groups to user instantaneous input. In addition, interest
descriptions, as shown on public profiles, either have coarse
granularity (i.e., high level descriptions of classes of inter-
ests such as “Music”, “Movies”, “Books”, etc.), or they are
too fine-grained to be exploited (e.g., referring to the name
of a singer/music band, or to the title of a recent movie,
etc.). Finding a source of knowledge encompassing this
huge variety of concepts is challenging.

Therefore, linking users sharing semantically related in-
terests is the pivot of our approach. The main goal of
our work is to show how seemingly harmless information
such as interests, if augmented with semantic knowledge,
can leak private information. As a demonstration, we will
show that solely based on what users reveal as their mu-
sic interests, we can successfully infer hidden information
with more than 70% of correct guesses for some attributes
in Facebook. Furthermore, as opposed to previous works
[18, 27, 22], our technique does not need further informa-
tion, such as friend relationships or group belongings.

Technical Roadmap

Our objective is to find out interest similarities between
users, even though these similarities might not be clearly
observed from their interests. We extract semantic links be-
tween their seemingly unrelated interest names using the
Latent Dirichlet Allocation (LDA) generative model [6].
The idea behind LDA is to learn the underlying (semantic)
relationship between different interests, and classify them
into “unobserved” groups (called Interest Topics). The out-
put of LDA is the probabilities that an interest name belongs
to each of these topics.

To identify latent (semantic) relations between different
interests, LDA needs a broader semantic description of each
interest than simply their short names. For instance, LDA
cannot reveal semantic relations between interests “Eenie
Meenie” and “My World 2.0” using only these names un-
less they are augmented with some text describing their
semantics. Informally, we create a document about “Ee-
nie Meenie” and another about “My World 2.0” that con-
tain their semantic description and then let LDA identify
the common topics of these documents. These documents
are called Interest Descriptions. In order to draw seman-
tic knowledge from the vast corpus of users’ interests, we
leverage on the ontologized version of Wikipedia. An in-
terest description, according to our Wikipedia usage, is the
parent categories of the most likely article that describes the
interest. These represent broader topics organizing this in-
terest. For instance, there is a single Wikipedia article about

“Eenie Meenie” which belongs to category “Justin Bieber
songs” (among others). In addition, there is another arti-
cle about “My World 2.0” that belongs to category “Justin
Bieber albums”. Therefore, the descriptions of interests
“Eenie Meenie” and “My World 2.0” will contain “Justin
Bieber songs” and “Justin Bieber albums”, respectively, and
LDA can create a topic representing Justin Bieber which
connects the two interests. An interesting feature of this
method is the ability to enrich the user’s interests from, say
a single item, to a collection of related categories, and hence
draw a broader picture of the semantics behind the interest
of the user. We used two sets of 104K public Facebook
profiles and 2000 private profiles to derive the topics of all
the collected interests.

Knowing each user’s interests and the probabilities that
these interests belong to the identified topics, we compute
the likelihood of users are interested in these topics. Our in-
tuition is that users who are interested roughly in the same
topics with “similar” likelihood (called interest neighbors)
have also similar personal profile data. Hence, to infer a
specific user’s hidden attribute in his profile, we identify his
interest neighbors who publicly reveal this attribute in their
profile. Then, we guess the hidden value from the neigh-
bors’ (public) attribute values.

We postulate and verify that interest-based similarities
between users, and in particular their music preferences,
is a good predictor of hidden information. As long as
users are revealing their music interests, we show that sensi-
tive attributes such as Gender, Age, Relationship status and
Country-level locations can be inferred with high accuracy.

Organization We describe our attacker model in Section
2. Section 3 presents related work and show the main dif-
ferences between our approach and previous works. Our
algorithm is detailed in Section 4 and both of our datasets
are described in Section 5. Section VI is devoted to present
our inference results. We discuss some limitations of our
approach and present future works in Section 7 and finally
we conclude.

2. Attacker Model

Before defining our attacker model, we describe user
profiles as implemented by Facebook.

Facebook implements a user profile as a collection of
personal data called attributes, which describe the user.
These attributes can be binary such as Gender or multi-
values such as Age. The availability of these attributes
obeys to a set of privacy-settings rules. Depending on these
privacy settings, which are set by the user, information can
be revealed exclusively to the social links established on



OSN (e.g., friends in Facebook1) or partially (e.g., to friends
of friends) or publicly (i.e., to everyone). In this paper, we
demonstrate the information leakage through users’ inter-
ests by inferring the private attributes of a user. We consider
two binary attributes (Gender: male/female and Relation-
ship status: married/single) and two multi-valued attributes
(Country-level location and Age).

As opposed to previous works [18, 27], we consider an
attacker that only has access to self-declared, publicly avail-
able music interests. Hence, the attacker can be anyone who
can collect the Facebook public profile of a targeted user. In
fact, earlier attacks considered a dataset crawled from a spe-
cific community such as a university. Hence, the crawler
being part of this community had access to attributes that
are only visible to friends which impacts data availability.
Indeed, as we will show in Section 5, data availability is
different whether we deal with public data (data disclosed
to anyone) or private data (data disclosed to friends only).
Thus our attacker is more general compared to [18, 27],
since it relies only on public information.

This characteristic allows us to draw a broader attacker.
For example, our technique can be used for the purpose of
profiling to deliver targeted ads. Advertisers could automat-
ically build user profiles with high accuracy and minimum
effort, with or without the consent of the users. Spammers
could gather information across the web to send extremely
targeted spam (e.g., by including specific information re-
lated to the location or age of the targeted user).

3. Related Work

Most papers have considered two main privacy problems
in OSNs: inferring private attributes and de-anonymizing
users. Most of these works used the information of friend-
ships or group belongings in order to achieve these goals.
By contrast, our approach only relies on users’ interests.
In particular, instead of using link based classification al-
gorithms [11] and/or mixing multiple user attributes to im-
prove inference accuracy, we provide a new approach based
on semantic knowledge in order to demonstrate informa-
tion leakage through user interests. Moreover, all previous
works relied on private datasets (e.g., dataset of a private
community such as a university), and hence assumed a dif-
ferent attacker model than ours (see Section 2 for details).
We also leverage knowledge from the area of Personalizing
Retrieval in order to link users sharing similar interests.

Private Attribute Inference Zheleva and Getoor [27]
were the first to study the impact of friends’ attributes on
the privacy of a user. They tried to infer private user at-
tributes based on the groups the users belong to. For that

1Facebook has recently added a feature to split friends into sublists in
order to make some attributes accessible to a chosen subset of friends.

purpose, they compared the inference accuracy of differ-
ent link-based classification algorithms. Although their
approach provides good results for some OSNs such as
Flicker, they admit that it is not suitable to Facebook espe-
cially with multi-valued attributes such as political views.
Moreover, they made the assumption that at least 50% of
a user’s friends reveal the private attribute. However, our
experiments show that this is not realistic in our attacker
model, since users tend to (massively) hide their attributes
from public access (see Section 5). For instance, only 18%
of users on Facebook disclose their relationship status and
less than 2% disclose their birth date.

In [13], authors built a Bayes network from links ex-
tracted from a social network. Although they crawled a real
OSN (LiveJournal) they used hypothetical attributes to an-
alyze their learning algorithm. A further step was taken by
[18] who proposed a modified Naive Bayes classifier that
infers political affiliation (i.e., a binary value: liberal or
conservative) based on user attributes, user links or both.
Besides a different attacker model, we do not use the com-
bination of multiple attributes to infer the missing one (i.e.,
we only use music interests).

Rather than relying on self declared or existing graphs,
Mislove et al. [22] built “virtual” communities based
on a metric called Normalized conductance. However,
community-based inference is data dependent because the
detected community may not correlate with the attribute
to be inferred. Indeed, [25] provided an in depth study of
community detection algorithms for social networks. After
comparing the results of 100 different social graphs (pro-
vided by Facebook), they concluded that a common at-
tribute of a community is good predictor only in certain
social graphs (e.g., according to [25], the communities in
the MIT male network are dominated by residence, but it is
not the case for female networks).

De-anonymizing Users In [5], the authors considered an
anonymized network composed of nodes (users) and edges
(social links) where the attacker aims to identify a “tar-
geted” user. Another problem was considered by [26],
where a targeted user visiting a hostile website was de-
anonymized using his group belongings (stolen from his
web-history). The main idea behind both attacks is that
the group membership of a user is in general sufficient to
identify him/her. De-anonymization of users, considered by
these works, is an orthogonal privacy risk to attribute infer-
ence.

Personalizing Retrieval Our work shares techniques
with the area of personalizing retrieval where the goal is
to build personalized services to users. This can be derived
from the user “taste” or by interpreting his social interac-
tions. This is an active research domain and a broad range



of problems were resolved and used in e-commerce, recom-
mendation, collaborative filtering and similar. This knowl-
edge extraction entails the analysis of a large text corpora
from which one can derive a statistical model that explains
latent interactions between the documents. Latent seman-
tic analysis techniques provide an efficient way to extract
underlying topics and cluster documents [14, 9]. Latent
Dirichlet Allocation (LDA) [6] has been extended by Zhang
et al. [7] to identify communities in the Orkut social net-
work. The model was successfully used to recommend new
groups to users. In addition, Zheleva et al. [28] used an
adapted LDA model to derive music taste from listening ac-
tivities of users in order to identify songs related to a spe-
cific taste and the listeners who share the same taste.

Similarly to these works, we also use LDA to capture the
interest topics of users but instead of recommending con-
tent, our goal is to link users sharing semantically-related
interests to demonstrate information leakage.

4. From Interest Names to Attribute Inference

4.1. Overview

While a human can easily capture the semantics behind
different interest names (titles or short descriptions), this
task cannot be easily automated. In this section, we present
how we can extract meaningful knowledge from users’ in-
terests and then classify them for the purpose of attribute
inference.

Our technique consists of four main steps as illustrated
by Figure 1:

1. Creating Interest Descriptions: Interest descriptions
are the user-specified interest names augmented with
semantically related words which are mined from the
Wikipedia ontology.

2. Extracting semantic correlation between interest de-
scriptions using Latent Dirichlet Allocation (LDA).
The output represents a set of topics containing seman-
tically related concepts.

3. Computing Interest Feature Vectors (IFV). Based on
the discovered topics, LDA also computes the proba-
bility that an interest I belongs to Topici for all I and i
(Step 3a). Then, we derive the IFV of each user (Step
3b) which quantifies the interest of a user in each topic.

4. Computing the neighbors of each user in the feature
space (i.e., whose IFVs are similar in the feature space)
to discover similar users, and exploiting this neighbor-
hood to infer hidden attributes.

4.2. Step 1: Augmenting Interests

Interest names (shortly interests) extracted from user
profiles can be single words, phrases, and also complex
sentences. These text fragments are usually insufficient to
characterize the interest topics of the user. Indeed, most
statistical learning methods, such as LDA, need a deeper
description of a given document (i.e., interest) in order to
identify the semantic correlation inside a text corpora (i.e.,
set of interests). Moreover, the diversity and heterogene-
ity of these interests make their description a difficult task.
For instance, two different interests such as “AC/DC” and “I
love Angus Young” refer to the same band. However, these
strings on their own provide insufficient information to re-
veal this semantic correlation. To augment interest names
with further content that helps LDA to identify their com-
mon topics, we use an ontology, which provides structured
knowledge about any unstructured fragment of text (i.e., in-
terest names).

4.2.1 Wikipedia as an Ontology

Although there are several available ontologies [10, 3],
we use the ontologized version of Wikipedia, the most up-
to-date and largest reference of human knowledge in the
world. Wikipedia represents a huge, constantly evolving
collection of manually defined concepts and semantic re-
lations, which are sufficient to cover most interest names.
Moreover, Wikipedia is multilingual which allows the aug-
mentation of non-english interest names. We used the
Wikipedia Miner Toolkit [21] to create the ontologized ver-
sion of Wikipedia from a dump made on January, 2011 with
a size of 27 Gb.

Wikipedia includes articles and categories. Each ar-
ticle describes a single concept or topic, and almost all
Wikipedia’s articles are organized within one or more cate-
gories, which can be mined for broader (more general) se-
mantic meaning. AC/DC, for example, belongs to the cate-
gories Australian hard rock musical groups, Hard rock mu-
sical groups, Blues-rock groups etc. All of Wikipedia’s cat-
egories descend from a single root called Fundamental. The
distance between a particular category and this root mea-
sures the category’s generality or specificity. For instance,
AC/DC is in depth 5, while its parent categories are in depth
4 which means they are more general and closer to the root.
All articles contain various hyper links pointing to further
(semantically related) articles. For example, the article
about Angus Young contains links to articles AC/DC, mu-
sician, duckwalk, etc. The anchor texts used within these
links have particular importance as they can help with dis-
ambiguation and eventually identifying the most related ar-
ticle to a given search term: e.g., if majority of the “duck-
walk” links (i.e., their anchor texts contain string “duck-



I1 : Michael Jackson
I2 : Lady Gaga
I3 : Lil Wayne
I4 : Bob Marley
I5 : Sai Sai Kham Leng
I6 : Fadl Shaker
I7 : Charlene Choi

Interests I1 : Michael Jackson, american pop singers; american choreographers;
american dance musicians; the jackson 5 members; mtv video music
awards winners; . . .

I2 : Lady Gaga, american pop singers; american singer-songwriters; bisex-
ual musicians; musicians from new york; english-language singers; . . .

I4 : Bob Marley, jamaican songwriters; jamaican male singers; rastafarian
music; english-language singers; . . .

I5 : Sai Sai Kham Leng, burmese musicians; burmese singers; burmese
singer-songwriters; . . .

I6 : Fadl Shaker, lebanese singers; arabic-language singers; arab musicians;
. . .

Augmented interests (Interest descriptions)

Topic 1 Topic 2 Topic 3 . . .
american blues singers arabic-language singers freestyle rappers
american soul singers lebanese singers hip hop singers
american male singers rotana artists g-funk

african american singers arab musicians crips
english-language singers israeli jews hip hop djs

american pop singers egyptian singers hip hop musicians
musicians from indiana algerian musicians electro-hop musicians

musicians from philadelphia rai musicians african american songwriters

Extracted interest topics

Interest Topic 1 Topic 2 Topic 3 Topic 3 . . .
I1 0.8 0 0.4 0.5
I2 0.8 0 0.3 0
I4 0 0 0.1 0.7
I6 0 0.9 0 0
. . .

Topic belongings of Interests

User Interests
User1 I1
User2 I1, I2
User3 I6
User4 I1, I2, I6

. . .

Users
User Topic 1 Topic 2 Topic 3 Topic 3 . . .
User1 0.8 0 0.4 0.5
User2 0.96 0 0.58 0.5
User3 0 0.9 0 0
User3 0.96 0.9 0.58 0.5

. . .

Interest Feature Vectors (IFV)

IFV computation (Step 3b)

Wikipedia

(Step 1)
LDA

(Step 2)

(Step 3a)LDA

Figure 1: Computing interest feature vectors. First, we extract interest names and augment them using Wikipedia (Step 1).
Then, we compute correlation between augmented interests and generate topics (Step 2) using LDA. Finally, we compute the
IFV of each user (Step 3).

walk”) is pointing to Chuck Berry and only a few of them
to the bird Duck, then with high probability the search
term “duckwalk” refers to Chuck Berry (a dancing style
performed by Chuck Berry). Indeed, the toolkit uses this
approach to search for the most related article to a search
string; first, the anchor texts of the links made to an article
are used to index all articles. Then, the article which has the
most links containing the search term as the anchor text is
defined to be the most related article.

4.2.2 Interest Description

The description of an interest is the collection of the par-
ent categories of its most related Wikipedia article (more
precisely, the collection of the name of these categories). To
create such descriptions, we first searched for the Wikipedia
article that is most related to a given interest name using the
toolkit. The search vocabulary is extensive (5 million or
more terms and phrases), and encodes both synonymy and
polysemy. The search returns an article or set of articles that
could refer to the given interest. If a list is returned, we se-
lect the article that is most likely related to the interest name
as described above. Afterwards, we gather all the parent
categories of the most related article which constitute the
description of the interest. For example, in Figure 1, User3
has interest “Fadl Shaker”. Searching for “Fadl Shaker” in
Wikipedia, we obtain a single article which has parent cat-
egories “Arab musicians”, “Arabic-language singers” and
“Lebanese male singers”. These strings altogether (with
“Fadl Shaker”) give the description of this interest.

4.3. Step 2: Extracting Semantic Correlation

To identify semantic correlations between interest de-
scriptions, we use Latent Dirichlet Allocation (LDA) [6].
LDA captures statistical properties of text documents in a
discrete dataset and represents each document in terms of
the underlying topics. More specifically, having a text cor-
pora consisting of N documents (i.e., N interest descrip-
tions), each document is modeled as a mixture of latent top-
ics (interest topics). A topic represents a cluster of words
that tend to co-occur with a high probability within the
topic. For example, in Figure 1, “American soul singers”
and “American blues singers” often co-occur and thus be-
long to the same topic (Topic1). However, we do not ex-
pect to find “Arab musicians” in the same context, and thus,
it belongs to another topic (Topic2). Note that the topics are
created by LDA and they are not named. Through character-
izing the statistical relations among words and documents,
LDA can estimate the probability that a given document is
about a given topic where the number of all topics is de-
noted by k and is a parameter of the LDA model.

More precisely, LDA models our collection of interest
descriptions as follows. The topics of an interest description
are described by a discrete (i.e., categorical) random vari-
able M(φ) with parameter φ which is in turn drawn from a
Dirichlet distribution D(α) for each description, where both
φ and α are parameter vectors with a size of k. In addition,
each topic z out of the k has a discrete distribution M(βz)
on the whole vocabulary. The generative process for each
interest description has the following steps:

1. Sample φ from D(α).

2. For each word wi of the description:



(a) Sample a topic zi from M(φ).

(b) Sample a word wi from M(βzi).

Note that α and B = ∪z{βz} are corpus-level parame-
ters, while φ is a document-level parameter (i.e., it is sam-
pled once for each interest description). Given the parame-
ters α and B, the joint probability distribution of an interest
topic mixture φ, a set of words W , and a set of k topics Z
for a description is

p(φ, Z,W |α, B) = p(φ|α)
∏

∀i
p(zi|φ)p(wi|βzi) (1)

The observable variable is W (i.e., the set of words in the
interest descriptions) while α, B, and φ are latent variables.
Equation (1) describes a parametric empirical Bayes model,
where we can estimate the parameters using Bayes infer-
ence. In this work, we used collapsed Gibbs sampling [19]
to recover the posterior marginal distribution of φ for each
interest description. Recall that φ is a vector, i.e., φi is the
probability that the interest description belongs to Topici.

4.4. Step 3: Interest Feature Vector (IFV) Extrac-
tion

The probability that a user is interested in Topici is the
probability that his interest descriptions belong to Topici.
Let V denote a user’s interest feature vector, I is the set
of his interest descriptions, and φI

i is the probability that
interest description I belongs to Topici. Then, for all 1 ≤
i ≤ k,

Vi = 1−
∏

∀I∈I
(1− φI

i )

is the probability that the user is interested in Topici.
For instance, in Figure 1, User4 has interests “Lady

Gaga”, “Michael Jackson”, and “Fadl Shaker”. The prob-
ability that User4 belongs to Topic1, which represents
American singers, is the probability that at least one of these
interests belongs to Topic1. This equals 1− ((1− 0.8)(1−
0.8)) = 0.96.

4.5. Step 4: Inference

4.5.1 Neighbors Computation

Observe that an IFV uniquely defines the interest of an
individual in a k-dimensional feature space. Defining an
appropriate distance measure in this space, we can quantify
the similarity between the interests of any two users. This
allows the identification of users who share similar interests,
and likely have correlated profile data that can be used to
infer their hidden profile data.

We use a chi-squared distance metric. In particular, the
correlation distance dV,W between two IFV vectors V and
W is

dV,W =
k∑

i=1

(Vi −Wi)2

(Vi +Wi)

In [23], authors showed that the chi-squared distance
gives better results when dealing with vectors of probabil-
ities than others. Indeed, we conducted several tests with
different other distance metrics: Euclidean, Manhattan and
Kullback-Leibler, and results show that the chi-squared dis-
tance outperforms all of them.

Using the above metric, we can compute the $ nearest
neighbors of a user u (i.e., the users who are the closest to
u in the interest feature space). A naive approach is to com-
pute all M2/2 pairwise distances, where M is the number
of all users, and then to find the $ closest ones for each user.
However, it becomes impractical for large values of M and
k. A more efficient approach using k-d tree is taken. The
main motivation behind k-d trees is that the tree can be con-
structed efficiently (with complexity O(M log2 M)), then
saved and used afterwards to compute the closest neighbor
of any user with a worst case computation ofO(k·M1−1/k).

4.5.2 Inference

We can infer a user’s hidden profile attribute x from that
of its $ nearest neighbors: first, we select the $ nearest
neighbors out of all whose attribute x is defined and pub-
lic. Then, we do majority voting for the hidden value (i.e.,
we select the attribute value which the most users out of the
$ nearest neighbor have). If more than one attribute value
has the maximal number of votes, we randomly choose one.

For instance, suppose that we want to infer User4’s
country-level location in Figure 1, and User4 has 5 near-
est neighbors (who publish their locations) because all of
them are interested in Topic2 with high probability (e.g.,
they like “Fadl Shaker”). If 3 out of these 5 are from Egypt
and the others are from Lebanon then our guess for User4’s
location is Egypt.

Although there are multiple techniques besides majority
voting to derive the hidden attribute value, we will show
in Section 6.2 that, surprisingly, even this simple technique
results in remarkable inference accuracy.

5. Dataset Description

For the purpose of our study, we collected two profile
datasets from Facebook. The first is composed of Facebook
profiles that we crawled and which we accessed as “every-
one” (see Section 5.1). The second is a set of more than
4000 private profiles that we collected from volunteers us-
ing a Facebook application (see Section 5.2). Next, we de-
scribe our methodology used to collect these datasets. We



also present the technical challenges that we encountered
while crawling Facebook. Finally, we describe the charac-
teristics of our datasets.

5.1. Crawling Public Facebook Profiles

Crawling a social network is challenging due to several
reasons. One main concern is to avoid sampling biases.
A previous work [15] has shown that the best approach
to avoid sampling bias is a so called True Uniform Sam-
pling (UNI) of user identifiers (ID). UNI consists in generat-
ing a random 32-bits ID and then crawling the correspond-
ing user profile in Facebook. This technique has a major
drawback in practice: most of the generated IDs are likely
to be unassigned, and thus not associated with any profile
(only 16% of the 32-bits space is used). Hence, the crawler
would quickly become very resource-consuming because
a large number of requests would be unsuccessful. In our
case, inspired by the conclusions in [15], and avoiding sam-
pling bias that might be introduced by different social graph
crawls (e.g. Breadth-First Search), we follow a simple, yet
efficient two-steps crawling methodology as an alternative
to UNI.

First, we randomly crawled a large fraction of the Face-
book Public directory3. As a result, a total of 100 Million
(and 120 thousands) URLs of searchable Facebook profiles
were collected (without profile data). This technique allows
to avoid the random generation of user identifiers while
uniformly (independently from the social graph properties)
collecting existing user identifiers.

Second, from this list of candidate URLs of profiles, we
crawled a set of randomly selected 494 392 profiles out of
the 100 millions. The crawled dataset is called RawProfiles.

Finally, the entire RawProfiles dataset was sanitized to
fit our validation purposes. Two restrictions were consid-
ered: (1) non Latin-written profiles were filtered out from
the dataset and (2) only profiles with at least one music
interest with its corresponding Wikipedia description were
kept. Therefore, we obtained a set of 104 401 profiles. This
data set, called PubProfiles, is then used as an input of our
inference algorithm (see details in Section 4.4).

Technical challenges

As noted above, we crawled profiles to collect public in-
formation that are available to everyone. However, Face-
book, as most OSNs operators do, protects this data from
exhaustive crawling by implementing a plethora of anti-
crawler techniques. For instance, it implements a request
rate limit that, if exceeded, generates a CAPTCHA to be
solved. To bypass this restriction and to be cautious not to
DoS the system, we set a very slow request frequency (1 per

3available at:http://www.facebook.com/directory/

minute). In addition, we distributed our crawler on 6 dif-
ferent machines that were geographically spread. In addi-
tion, it is worth noting that one of the trickiest countermea-
sures that Facebook implements to prevent easy crawling
is the rendering of the web page. In particular, rather than
sending a simple HTML page to the client browser, Face-
book embeds HTML inside JavaScript, thus, the received
page is not a valid HTML page but a JavaScript code that
has to be interpreted. Unfortunately, most publicly avail-
able crawling libraries do not interpret JavaScript. Thus,
we developed our own lightweight web browser, based on
the Qt Port of WebKit [1], which is capable of interpreting
JavaScript. This allows our crawler to be served with easy-
to-parse HTML page.

5.2. A Facebook Application to Collect Private At-
tributes

We developed a Facebook application to gather private
attributes from users. The application was distributed to
many of our colleagues and friends on Facebook, and was
surprisingly used by more users than expected. Users vol-
unteered to install the application, and hence, their private
information was collected by our tool. We collected pri-
vate attributes from 4012 profiles out of which 2458 profiles
have at least one music interest. These anonymized private
profiles, collected from April 6 to April 20 in 2011, repre-
sent our private dataset (called VolunteerProfiles).

The usage of this dataset is motivated by our need to
understand how data availability varies between public and
private datasets, and to verify whether it impacts the results
of our algorithm.

5.3. Ethical and Legal Considerations

In order to comply with legal and ethical aspects in
crawling online social networks data, we were cautious not
to inadvertently DoS the Facebook infrastructure (as men-
tioned in Section 5.1). Also cautionary measures were
taken to prevent our crawler from requesting off-limit in-
formation. In other words, our crawler is compliant with
the Robots Exclusion Protocol [2]. Even though we ac-
cessed publicly available information, we anonymized the
collected data by removing user names and all information
which were irrelevant to our study.

The Facebook application needed more sanitization to
ensure users’ anonymity. The reader might refer to the ‘Dis-
closure and Privacy Policy’ of the application4 for more in-
formation.

4available at http://apps.facebook.com/social_
privacy/



Figure 2: Left: Complementary Cumulative Distribution Function of Music Interests. Right: Cumulative Distribution Func-
tion (CDF) of Country-level Locations (retrieved from the CurrentCity attribute)

5.4. Dataset Description

In the following, we provide statistics that describe
the datasets used in this study. First, Table 1 summa-
rizes the statistics about the availability of attributes in
the three datasets (i.e., in RawProfiles, PubProfiles and
VolunteerProfiles).

Attributes Raw(%) Pub(%) V olunteer(%)

Gender 79 84 96
Interests 57 100 62

Current City 23 29 48
Looking For 22 34 -
Home Town 22 31 48
Relationship 17 24 43
Interested In 16 26 -

Birth date 6 11 72
Religion 1 2 0

Table 1: The availability of attributes in our datasets.

We observe that Gender is the most common attribute
that users publicly reveal. However, three attributes that
we want to infer are largely kept private. The age is the
information that users conceal the most (89% are undis-
closed in PubProfiles). Comparing the availability of the
attributes in PubProfiles and VolunteerProfiles is enlight-
ening. We can clearly note that users tend to hide their
attribute values from public access even though these at-
tributes are frequently provided (in their private profiles).
For instance, the birth date is provided in more than
72% in VolunteerProfiles, whereas it is rarely available in
PubProfiles (only 1.62% of users provide their full birth
date). The current city is publicly revealed in almost 30% of
the cases, whereas half of all volunteers provided this data
in their private profile. Recall that the attributes we are in-

terested in are either binary (Gender, Relationship) or multi-
valued (Age, Country-level location). Finally, note that, as
it is shown in Table 1, the public availability of attributes in
PubProfiles and in RawProfiles are roughly similar.

Also note that the availability of interests slightly
changes from RawProfiles (57%) to VolunteerProfiles
(62%), yet still relatively abundant. This behavior might
have at least two explanations: (1) by default, Facebook sets
Interest to be a public attribute, (2) users are more willing
to reveal their interests compared to other attributes. Figure
2 (left) depicts the complementary CDF of music interests
publicly revealed by users in the three datasets. Note that
more than 30% of RawProfiles profiles reveal at least one
music interest. Private profiles show a higher ratio which is
more than 75%.

Figure 2 (right) plots the cumulative distribution of the
country-level locations of users in our datasets. The three
curves show that a single country is over-represented, and
that a large fraction of users’ locations is represented only
by a few countries. Independently from the dataset, 40% of
users come from a single country, and the top 10 countries
represent more than 78% of users. The gentler slope of the
curves above 10 countries indicates that other countries are
more widely spread across the remaining profiles. Notably,
the number of countries appearing in VolunteerProfiles
shows that the distribution does not cover all countries in
the world. In particular, our volunteers only come from
less than 35 different countries. Nevertheless, we believe
that VolunteerProfiles still fits for purpose because the over-
representation shape of location distributions is kept, and
illustrated by the Facebook statistics [4] in general (more
than 50% of users come from only 9 countries). Motivated
by this over-representation in our datasets, we validate our
inference technique in Section 6.2 on users that come from
the top 10 countries (following the Facebook statistics).



Attribute Overall marginal distribution (OMD) Inference accuracy on VolunteerProfiles
PubProfiles Facebook statistics PubProfiles OMD Facebook statistics OMD

Gender 62% (Female) 51% (Male) 39.3% 60.7%
Relationship 55% (Single) Unknown 36.7% 50%4

Age 50% (18-25) 26.1% (26-34) 33.9% 57.9%
Country 52% (U.S) 23% (U.S) 2.3% 2.3%

Table 2: Baseline inference using different marginal distributions. Inference of VolunteerProfiles based on Facebook OMD
is better than PubProfiles OMD.

6. Experimentation Results and Validation

In the following, we validate our interest-based inference
technique using both VolunteerProfiles and PubProfiles.
We evaluated the correctness of our algorithm in terms of
inference accuracy, i.e. the fraction of successful inferences
and the total number of trials. An inference is successful if
the inferred attribute equals to the real value. In particular,
for both PubProfiles and VolunteerProfiles datasets and for
each attribute to be inferred, we select users that provide
the attribute and then we compute the inference accuracy:
we hide each user’s attribute, compute the nearest neigh-
bors of the user, do a majority voting as described in Sec-
tion 4.5.1, and then verify whether the inference yields the
real attribute.

Before discussing our validation results, in the following,
we introduce a maximum likelihood-based inference tech-
nique that we consider as a baseline technique with which
we compare our method.

6.1. Baseline Inference Technique

Without having access to any friendship and/or commu-
nity graph, an adversary can rely on the marginal distribu-
tions of the attribute values. In particular, the probability of
value val of a hidden attribute x in any user’s profile u can
be estimated as the fraction of users who have this attribute
value in dataset U :

P (u.x = val|U) =
|{v | v.x = val ∧ v ∈ U}|

|U |
Then, a simple approach to infer an attribute is to guess its
most likely value for all users (i.e., the value x for which
P (u.x = val|U) is maximal).

To compute P (u.x = val|U), an adversary can crawl a
set of users and then derive the Overall Marginal Distribu-
tion (OMD) of an attribute x from the crawled dataset (more
preciselly, U is the subset of all crawled users who pub-
lished that attribute). However, this OMD is derived from
public attributes (i.e., U contains only publicly revealed at-
tributes), and hence, may deviate from the real OMD which
includes both publicly revealed and undisclosed attributes.

4Using random guessing instead of maximum likelihood decision

To illustrate the difference, consider Table 2 that com-
pares the real OMD of the four attributes to be inferred, as
provided by Facebook statistics (composed of both private
and public attributes [4]), with the OMD derived from our
public dataset PubProfiles. The two distributions suggest
different predominant values which highly impacts the in-
ference accuracy when the guess is based on the most likely
attribute value. For instance, PubProfiles conveys that the
majority of Facebook users are female which contradicts
Facebook statistics (with a significant difference of 11%).
Similarly, the age of most users according to PubProfiles is
between 18 and 25-years old, while the predominant cate-
gory of ages, according to Facebook, is 26-34.

In fact, all public datasets (e.g., PubProfiles) are biased
towards the availability of attributes (not to be confused
with the bias in sampling discussed in Section 5.1). Re-
call that, as shown in Table 1, some attributes (in particular
Age, Relationship status and Country) are publicly avail-
able for only a small fraction of users (see the PubProfiles
column). Put simply, the difference between the two OMDs
is mainly due to the mixture of private and public attributes
in Facebook statistics and the absence of private attributes
in PubProfiles. Whether revealing attributes is driven by
some sociological reasons or others is beyond the scope of
this paper.

To illustrate how the bias towards attribute availability
impacts inference accuracy, we conduct two experiments.
First, we infer the attributes in VolunteerProfiles using the
OMD derived from PubProfiles. In the second experiment,
we infer the same attributes using the OMD computed from
Facebook statistics. As shown in Table 2, the second ap-
proach always performs better. The results show that using
the Facebook statistics we obtain an inference accuracy gain
of 21% for the gender and 25% for the age. Since Face-
book does not provide statistics about the relationship sta-
tus of their users, we used random guessing instead (i.e., we
randomly chose between single and married for each user).
Surprisingly, even random guessing outperforms the max-
imum likelihood-based approach using PubProfiles OMD.
Therefore, we conclude that the maximum likelihood-based
inference performs better when we use the OMD derived
from Facebook statistics. Accordingly, in our performance
evaluation, we also used this in our baseline inference tech-



nique.
Finally, note that previous works [27, 18] computed the

inference accuracy using private data (i.e., their dataset is
a crawl of a community, and thus, they could access all
attributes that can only be seen by community members).
Hence, these results are obtained with different attacker
model, and the assumption that 50% of all attributes are ac-
cessible, as suggested in [27], is unrealistic in our model.

6.2. Experiments

In order to validate our interest-based inference tech-
nique, we follow two approaches. First, for each attribute,
we randomly sample users from PubProfiles such that the
sampled dataset has the same OMD as the real Facebook
dataset [4]. Then, we measure the inference accuracy on
this sampled dataset. Second, we test our technique on
the VolunteerProfiles dataset where both private and pub-
lic attributes are known. Since we know the attribute values
in the collected profiles, we can check if the inference is
successful or not. In particular, we infer four attributes in
both approaches: Gender, Relationship status, Age, and the
Country of current location. We run experiments to infer an
attribute a in PubProfiles as follows:

1. From all users that provide a in PubProfiles, we ran-
domly sample a set of users (denoted by S) following
the OMD of Facebook. The size of S for each attribute
is tailored by (i) Facebook OMD and (ii) the number
of available samples in PubProfiles. Table 3 shows the
size of S.

2. For this sampled set, we compute the inference accu-
racy as it has been described in Section 6.2.

3. We repeat Steps 2 and 3 fifteen times and compute the
average of all inference accuracy values (Monte Carlo
experiment).

For VolunteerProfileswe proceed as for PubProfiles, but
since the attributes are a mix of public and private attributes,
there is no need to do sampling, and we skip Step 1.

Attribute Size of S
Gender 1000

Relationship 400
Country 1000

Age 105

Table 3: Size of S

Parameter Estimation Recall from Section 4.5.1 that our
algorithm is based on majority voting. Hence, estimating
the number of neighbors that provides the best inference

Attribute Baseline Random guess IFV Inference
Gender 51% 50% 69%

Relationship 50% 50% 71%
Country 41% 10% 60%

Age 26% 16.6% 49%

Table 4: Inference Accuracy of PubProfiles

accuracy for each attribute is essential. Figure 3 depicts the
inference accuracy in function of the number of neighbors.
This figure clearly shows that each attribute has a specific
number of neighbors that results in the best inference accu-
racy. Note that, as discussed at the beginning of this section,
we rely on repeated random sampling to compute the re-
sults, and hence, the computed parameters are independent
from the input data. Age inference requires two neighbors.
This can be explained by the limited number of users that
disclose their age which causes the IFV space to be very
sparse: the more neighbors we consider the more likely it is
that these neighbors are far and have different attribute val-
ues. For other attributes, the optimal number of neighbors
is between 3 and 5. We tested different IFV sizes (i.e., k
the number of topics). Notably, best results were achieved
with k = 100. In the sequel, we will use these estimated
numbers of neighbors as well as k = 100 which yield the
best inference accuracy.

Figure 3: Correlation between Number of Neighbors and
Inference accuracy

Table 4 provides a summary of the results for
PubProfiles. The information leakage can be estimated to
20% in comparison with the baseline inference. Surpris-
ingly, the amount of the information is independent from
the inferred attribute since the gain is about 20% for all of
them. These results show that music interest is a good pre-
dictor of all attributes.



!!!!!!!!!!Attribute
Inferred Male Female

Male 53% 47%
Female 14% 86%

Table 5: Confusion Matrix of Gender

Gender Inference Table 4 shows that the gender can be
inferred with a high accuracy even if only one music interest
is known in the PubProfiles. Our algorithm performs 18%
better than the baseline. Recall that the baseline guesses
male for all users (Table 2). To compare the inference ac-
curacy for both males and females, we computed the con-
fusion matrix in Table 5. Surprisingly, memale inference is
highly accurate (86%) with a low false negative rate (14%).
However, it is not the case for male inference. This behav-
ior can be explained by the number of female profiles in
our dataset. In fact, females represent 61.41% of all col-
lected profiles (with publicly revealed gender attribute) and
they were subscribed to 421685 music interests. However,
males share only 273714 music interests which represents
35% less than woman. Hence, our technique is more capa-
ble of predicting females since the amount of their disclosed
(music) interest information is larger compared to males.
This also confirms that the amount of disclosed interest in-
formation is correlated with inference accuracy.

!!!!!!!!!!Attribute
Inferred Single Married

Single 78% 22%
Married 36% 64%

Table 6: Confusion Matrix of Relationship

Relationship Inference Inferring the relationship status
(married/single) is challenging since less than 17% of
crawled users disclose this attribute showing that it is highly
sensitive. Recall that, as there is no publicly available statis-
tics about the distribution of this attribute, we do random
guessing as the baseline (having an accuracy of 50%). Our
algorithm performs well with 71% of good inference for
all users in PubProfiles. As previously, we investigate how
music interests are a good predictor for both single and mar-
ried users by computing the confusion matrix (Table 6). We
notice that single users are more distinguishable, based on
their IFV, than married ones. The explanation is that single
users share more interests than married ones. In particular,
a single user has an average of 9 music interests whereas a
married user has only 5.79. Likewise in case of gender, this
confirms that the amount of disclosed interest information
is correlated with inference accuracy.

Country of Location Inference As described in Section
5, we are interested in inferring the users’ location in the
top 10 countries in Facebook. Our approach can easily
be extended to all countries, however, as shown by Fig-
ure 2, more than 80% of users in PubProfiles belong to
10 countries and these countries represent more than 55%
of all Facebook users according to [4]. As the number of
users belonging to the top 10 countries is very limited in
VolunteerProfiles, we do not evaluate our scheme on that
dataset. Table 4 shows that our algorithm has an accuracy
of 60% on PubProfiles with 19% increase compared to the
baseline (recall that, following Table 2, the baseline gives
U.S. as a guess for all users). Figure 4 draws the confusion
matrix6 and gives more insight about the inference accuracy.
In fact, countries with a specific (regional) music have better
accuracy than others. Particularly, U.S. has more than 94%
of correct inference, Philippine 80%, India 62%, Indonesia
58% and Greece 42%. This highlights the essence of our
algorithm where semantically correlated music interests are
grouped together and hence allow us to extract users inter-
ested in the same topics (e.g., Philippine music). Without
a semantic knowledge that specifies the origin of a singer
or band this is not possible. As for Gender and relation-
ship, the number of collected profiles can also explain the
incapacity of the system to correctly infer certain countries
such as Italy, Mexico or France. In particular, as shown in
Table 7, the number of users belonging to these countries
is very small. Hence, their interests may be insufficient to
compute a representative IFV which yields poor accuracy.

""""""""Att
Inferred 13-17 18-24 25-34 35+

13-17 58.33% 30% 11.6% 0%
18-24 17% 67% 3.4% 1.3%
25-34 15.38% 46.15% 38.4% 0%
35+ 0% 100% 0% 0%

Table 8: Confusion Matrix of Age Inference

Age Inference Finally, we are interested in inferring the
age of users. To do that, we created five age categories7

that are depicted in Table 8. Recall that the baseline tech-
nique always predicts the category of 26 and 34 years for all
users. Table 4 shows that our algorithm performs 23% bet-
ter than the baseline attack. Note that our technique gives
good results despite that only 3% of all users provide their
age (3133 users in total) in PubProfiles. We investigate how
music interests are correlated with the age bin by computing

6We removed Brazil since all its entries (2) were wrongly inferred. This
is caused by the small number of Brazilians in our dataset.

7We created six categories but since in PubProfiles we have only few
users in the last 3 bins, we merge them together. For VolunteerProfiles
we have six bins.



Figure 4: Confusion Matrix of Country Inference

Country % of users
US 71.9%
PH 7.80%
IN 6.21%
ID 5.08%
GB 3.62%
GR 2.32%
FR 2.12%
MX 0.41%
IT 0.40%
BR 0.01%

Table 7: Top 10 countries distribution in
PubProfiles

the confusion matrix in Table 8. We find that, as expected,
most errors come from falsely putting users into their neigh-
boring bins. For instance, our method puts 30% of 13-18
years old users into the bin of 18-24 years. However, note
that fewer bins (such as teenager, adult and senior) would
yield better accuracy, and it should be sufficient to many
applications (e.g., for targeted ads). Observe that we have
an error of 100% for the last bin. This is due to the small
number of users (3 in PubProfiles) who belong to this bin
(we cannot extract useful information and build a represen-
tative IFV for such a small number of users).

6.2.1 VolunteerProfiles Inference

Attribute Baseline Random guess IFV Inference
Gender 51% 50% 72.5%

Relationship 50% 50% 70.5%
Age 26% 16.6% 42%

Table 9: Inference Accuracy for VolunteerProfiles

As a second step to validate our IFV technique, we per-
form inference on VolunteerProfiles. Table 9 shows that
our algorithm also performs well on this dataset. Notice
that Age inference is slightly worse than in PubProfiles.
Recall from Section 6.2 that we had only a few users
in the last three bins in PubProfiles, and hence, we
merged these bins. However, in VolunteerProfiles, we
have enough users and we can have 6 different age cat-
egories. This explains the small difference in inference
accuracy between VolunteerProfiles and PubProfiles. Re-
garding other attributes, the accuracy is slightly worse for
Relationship (-0.5%) and better for Gender (+3.5%). This
small variation in inference accuracy between PubProfiles
and VolunteerProfiles demonstrates that our technique has
also good results with users having private attributes: in
PubProfiles, we could compute the inference accuracy only

on users who published their attribute values, while in
VolunteerProfiles, we could also test our method on users
hiding their attributes.

7. Discussion

Topic modeling We used LDA for semantic extraction.
Another alternative is to use Latent Semantic Analysis
(LSA) [17]. As opposed to LDA, LSA is not a generative
model. It consists in extracting a spatial representation for
words from a multi-document corpus by applying singular
value decomposition. However, as pointed out in [12],
spatial representations are inadequate for capturing the
structure of semantic association; LSA assumes symmetric
similarity between words which is not the case for a vast
majority of associations. One classical example given
in [12] involves China and North Korea: Griffiths et al.
noticed that, generally speaking, people have always the
intuition that North Korea is more similar to China than
China to North Korea. This problem is resolved in LDA
where P (occurence of word1 |occurence of word2 ) &=
P (occurence of word2 |occurence of word1 ). In addition,
[12] showed that LDA outperforms LSA in terms of
drawing semantic correlations between words.

Collaborative Filtering Our algorithm is based on dis-
covering latent correlations between user interests in order
to cluster users. An alternative approach could be to employ
model-based collaborative filtering (MBCF) that avoids us-
ing semantic-knowledge. In MBCF, each user is repre-
sented by his interest vector. The size of this vector equals
the number of all defined interest names, and its coordi-
nates are defined as follows: a coordinate is 1 if the user has
the corresponding interest name, otherwise it is 0. Since
interest names are user-generated, the universe of all such
names, and hence the vector size can be huge. This nega-
tively impacts the performance.



In particular, collaborative filtering suffers from a “cold-
start” effect [24], which means that the system cannot draw
correct inferences for users who have insufficient informa-
tion (i.e., small number of interests). Recall from Section
5 that 70% of users in PubProfiles have less than 5 inter-
ests and it is more than 85% in RawProfiles. Hence, the
sparseness of users’ interest vectors is very high (the aver-
age density8 is 0.000025). Moreover, [8] has studied the
effect of cold-start in recommendation systems (for both
item-based and collaborative-based) on real datasets gath-
ered from two IP-TV providers. Their results show that
a well-known CF algorithms, called SVD [20], performs
poorly when the density is low (about 0.0005) with a re-
call between 5% and 10%. Additionally, the number of new
users and interests is ever growing (on average, 20 millions
new users joined Facebook each month in the first half of
2011 [4]). This tremendous number of new users and in-
terests keeps the system in a constant cold-start state. In
addition, users, in MBCF typically evaluate items using a
multi-valued metric (e.g., an item is ranked between 1 and
5) but it must be at least binary (e.g. like/dislike), whereas
in our case, only “likes” (interests) are provided. In fact, the
lack of an interest I in a user profile does not mean that the
user is not interested in I , but he may simply not have dis-
covered I yet. In these scenarios, when users only declare
their interests but not their disinterest, MBCF techniques
(e.g. SVD [20]) are less accurate than nearest neighbor-like
approaches that we employed [16].

OSN independence One interesting feature of our tech-
nique is that it is OSN independent. In particular, it does
not rely on any social graph, and the input data (i.e. interest
names) can be collected from any other source of informa-
tion (e.g., deezer, lastfm, or any other potential sources).

No need for frequent model updates (stability) One
may argue that our LDA model needs frequent updates since
user interests are ever-growing. Nevertheless, recall from
Section 4.2 that our technique uses the parent topics of the
user interests (according to Wikipedia) to augment the se-
mantics knowledge of each interest. There are substantially
fewer higher-level parent categories than leaf categories in
the Wikipedia hierarchy, and they change less frequently.
Thus, there is no need to update the LDA model, unless the
considered interest introduces a new parent category in the
running model. Hence, our approach is more stable than
MBCF; once the IFV vector is extracted and similarity is
computed, we can readily make inference without having to
retrain the system.

8The density of this vector is the number of coordinates equal one di-
vided by the vector size.

Targeted advertising and spam Using our technique,
advertisers could automatically build online profiles with
high accuracy and minimum effort without the consent of
users. Spammers could gather information across the web
to send targeted spam. For example, by matching a user’s
Facebook profile and his email address, the spammer could
send him a message containing ads that are tailored to his
inferred geo-localization, age, or marital status.

Addressing possible limitations First, we only tested our
approach on profiles that provide music interests. Even
with this limitation, our results show the effectiveness of
our technique in inferring undisclosed attributes. In addi-
tion, we only based our method on user interests and did not
combine it with any other available attributes (e.g. gender or
relationship) to improve inference accuracy. We must em-
phasize that our main goal was to show information leakage
through user interests rather than developing a highly accu-
rate inference algorithm. Considering other interests (e.g.
movies, books, etc.) and/or combining with different avail-
able attributes can be a potential extension of our scheme
which is left for future work. Second, we demonstrated our
approach using an English-version of Wikipedia. However,
our approach is not restricted to English, since Wikipedia is
also available in other languages. Finally, we encountered
few examples that denotes a non-interest (or “dislike”). In
particular, we observed interests that semantically express a
dislike for a group, or an ideology. For instance, an inter-
est can be created with the title “I hate Michael Jackson”.
Our semantics-driven classification will falsely identify the
users having this interest as “Michael Jackson” fans. How-
ever, as a minority of users are expected to use such a strat-
egy to show their non-interest, this has a small impact on
our approach. Additionally, one might integrate Applied
Linguistics Techniques to handle such peculiar cases and
filter out dislikes.

8 Conclusion

This paper presents a semantics-driven inference tech-
nique to predict private user attributes. Using only Music
Interests that are often disclosed by users, we extracted un-
observable Interest topics by analyzing the corpus of Inter-
ests, which are semantically augmented using Wikipedia,
and derived a probabilistic model to compute the belong-
ing of users to each of these topics. We estimated simi-
larities between users, and showed how our model can be
used to predict hidden information. Therefore, on-line ser-
vices and in particular OSNs should raise the bar of privacy
protections by setting a restrictive by-default behavior, and
explicitly hide most user information.
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