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Abstract—Social networking sites such as Facebook,
LinkedIn, and Xing have been reporting exponential growth
rates. These sites have millions of registered users, and they are
interesting from a security and privacy point of view because
they store large amounts of sensitive personal user data.

In this paper, we introduce a novel de-anonymization attack
that exploits group membership information that is available
on social networking sites. More precisely, we show that
information about the group memberships of a user (i.e.,
the groups of a social network to which a user belongs) is
often sufficient to uniquely identify this user, or, at least, to
significantly reduce the set of possible candidates. To determine
the group membership of a user, we leverage well-known
web browser history stealing attacks. Thus, whenever a social
network user visits a malicious website, this website can launch
our de-anonymization attack and learn the identity of its
visitors.

The implications of our attack are manifold, since it requires
a low effort and has the potential to affect millions of social
networking users. We perform both a theoretical analysis and
empirical measurements to demonstrate the feasibility of our
attack against Xing, a medium-sized social network with more
than eight million members that is mainly used for business
relationships. Our analysis suggests that about 42% of the users
that use groups can be uniquely identified, while for 90%,
we can reduce the candidate set to less than 2,912 persons.
Furthermore, we explored other, larger social networks and
performed experiments that suggest that users of Facebook
and LinkedIn are equally vulnerable (although attacks would
require more resources on the side of the attacker). An analysis
of an additional five social networks indicates that they are also
prone to our attack.

I. INTRODUCTION

Social networking sites such as Facebook, LinkedIn, Twit-
ter, and Xing have been increasingly gaining in popular-
ity [1]. In fact, Facebook has been reporting growth rates as
high as 3% per week, with more than 300 million registered
users as of September 2009 [2]. Furthermore, this site has
more than 30 billion page views per month, and it is reported
to be the largest photo storage site on the web with over one
billion uploaded photos. Clearly, popular social networking
sites are critical with respect to security and especially
privacy due to their very large user base.

Of course, social networking sites are not less secure than
other types of websites. However, the difference to other
sites lies in the amount of private and possibly sensitive data
that they store. Social networking sites are typically used to
contact friends, discuss specific topics in online discussion

forums and groups, establish new business contacts, or
simply to keep in touch with other people. Along with the
information about friendships and acquaintances, users often
provide a great deal of personal information that may be
interesting for attackers. Although social networking sites
employ mechanisms to protect the privacy of their users,
there is always the risk that an attacker can correlate data or
abuse the structure of a social network to infer information
about registered individuals [3]–[5].

In this paper, we introduce a novel de-anonymization
attack against users of social networking sites. In particular,
we show that information about the group memberships of
a user (i.e., the groups of a social network to which a
user belongs) is often sufficient to uniquely identify this
user. When unique identification is not possible, then the
attack might still significantly reduce the size of the set of
candidates that the victim belongs to.

To make the de-anonymization attack practical, we present
a way in which an adversary can learn information about
the group memberships of a user who is just browsing the
web. To do this, an attacker can leverage the well-known
technique of history stealing [6], [7]. More precisely, using
history stealing, an attacker can probe the browser history
of a victim for certain URLs that reveal group memberships
on a social network. By combining this information with
previously collected group membership data from the social
network, it is possible to de-anonymize any user (of this
social network) who visits the attacker’s website. In some
cases, this allows an attacker who operates a malicious
website to uniquely identify his visitors by their name (or,
more precisely, the names used on the corresponding social
network profiles).

Previous work in the area of de-anonymization was mostly
focusing on correlating information from several indepen-
dent data sets (datasets from different sources). For example,
Griffith and Jakobsson used public records such as marriage
and birth information to derive a mother’s maiden name [8].
Narayanan and Shmatikov showed, in two recent papers, that
information from different data sources can be combined to
de-anonymize a user [4], [9]. In contrast, our attack uses
only information from a single social networking site, and
combines it with intrinsic information that is generated while
users access the site. That is, our attack makes use of the fact
that the browser records the URLs of the social networking



site that a user visits (since browsers typically keep an access
history for some time).

To demonstrate that our attack works, we performed both
a theoretical analysis and empirical measurements for users
of the Xing social network. The results suggest that our
attack can be used to potentially de-anonymize millions of
users. Due to the limited resources that were available to us,
we focused our empirical evaluation on Xing, a medium-
sized network that has eight million registered users. We
managed to extensively collect data for this network and
achieved a high coverage of its groups and members. How-
ever, to demonstrate that the attack is not conceptually lim-
ited to one social network, we also performed an empirical
feasibility study on two other, significantly larger networks:
Facebook and LinkedIn. Furthermore, we also briefly studied
five other social networks and found that they are also
vulnerable to our attack.

Our attack can also be generalized to other websites
that generate sparse datasets (i.e., the information about
each individual user covers only a small fraction of the
overall attributes) [9]. In the case of social networks, our
attack works because even the most active user is only
a member of a small fraction of all groups, and thus,
the group membership information serves as a fingerprint.
Sparse datasets are common with websites that deal with
user data. For example, Amazon and eBay use concepts
similar to groups on social networks (“Customer Commu-
nities” and “Groups,” respectively), meaning that they are
both potentially vulnerable to our de-anonymization attack.
In summary, we make the following three contributions in
this paper:

• We introduce a novel de-anonymization attack, and
show how it can be applied to social networking sites.
The key idea of the attack is to exploit informa-
tion about specific users (in this case, membership in
groups) combined with the victim’s browsing history.

• We demonstrate several techniques to scale our attacks
to real-world social networking sites. This is a chal-
lenging task since these websites often have tens of
millions of users.

• We provide both a theoretical analysis and empirical
measurements to demonstrate the feasibility of our
attack. The results indicate that about 42% of users in
the social network Xing can be reliably de-anonymized.
Furthermore, we empirically show that both Facebook
and LinkedIn are also potentially vulnerable.

II. BACKGROUND

In this section, we provide a brief introduction to the
background concepts to allow the reader to better understand
our attack. We first present a model of social networks, and
define the terminology we use within this paper. We then
list our assumptions about the attacker. We continue with an
overview of the common structure of social networks, and

discuss the aspects of this structure that we exploit. Finally,
we explain why social networks are commonly prone to
history stealing attacks.

A. Model and Definitions

Throughout this paper, we use the following models and
definitions to describe our de-anonymization attack.

Social Networks: A social network S is modeled as
a graph G = (V,E) containing nodes V representing
users, and undirected edges E representing the “friendship”
relation between two users. Furthermore, the social network
contains G groups. Each group g ∈ G contains a set of users
from V : ∀g ∈ G : g ⊆ V . Social networks typically do
not allow empty groups without any user (and also actively
delete such groups). Thus, we can assume, without loss of
generality, that ∀g ∈ G : g 6= ∅.

Each user v ∈ V is a member of n groups, with n ≥ 0.
We model this information as a vector Γ(v) := (Γg(v))g∈G
such that:

Γg(v) =

{
1 if v is a member of group g

0 if v is not a member of group g
(1)

For each group g in which v is a member, one dimension
of Γ(v) is set to one. Otherwise, this dimension is set to
zero. For the case of n = 0 (i.e., the user is not a member
in any group), the vector Γ(v) contains only zeros. This is
the worst case for our attack.

As we will show, the vector Γ(v) can be used to de-
anonymize users within a social network. In particular, Γ(v)
serves as the group fingerprint of a user, and we demonstrate
in our experiments that this fingerprint, in practice, is
characteristic for a given user.

Browser History: A building block that we use during
our attack is the browsing history βv of a user v. A web
browser maintains a list of web pages that the user has
recently visited. Every time a user visits a page p, the
URL φp that was used to load this page is added to βv .
Moreover, entries in βv expire. That is, after a time interval
τ has elapsed, the URL related to p is removed from βv .
The timeout itself depends on the browser and user settings.
For example, Mozilla Firefox uses τ = 90 days by default,
while Microsoft Internet Explorer only uses τ = 20 days.
Apple Safari is between both browsers with τ = 1 month
by default, whereas Google Chrome has an unlimited history
timeout τ = ∞.

Attacker Model: We have two basic assumptions about
an attacker. First, we assume that the attacker can determine
which web pages, from a given set, a specific user v has
accessed in the recent past (within time τ ). This means that
the attacker can determine whether or not a given URL φp

is in βv . The attacker, thus, has a method to compute, for
a given victim v, the function σv(φp), which is defined as



follows:

σv(φp) =

{
1 if φp ∈ βv for the user v

0 if φp 6∈ βv for the user v
(2)

It is reasonable to assume that such a function exists and that
the attacker can perform the computation based on history
stealing, as we show in Section II-C.

The second assumption is that the attacker has a way
to learn about the members of groups for a given social
network S. As defined above, a group g is a non-empty
subset of the overall users of S. The attacker does not need
to have the membership information for all groups g ∈ G.
However, knowledge about more groups makes the attack
more efficient. In Section III-C, we discuss how an attacker
can obtain the necessary group membership information.

We believe that our two assumptions about an attacker
can be (easily) satisfied in practice, and our empirical
experiments support this claim. Moreover, as we will discuss
in Section III, our attack is able to tolerate a certain amount
of inaccuracy. That is, even when the history stealing attack
does not produce a perfect group fingerprint Γ(v) for a
victim v, or when the attacker’s view of the social network
is different than the network’s actual state (e.g., due to users
who join and leave groups), the attack can still be successful.
However, in such cases, it typically proceeds slower and
produces larger candidate sets.

B. Structure of Social Networking Sites

1) Overview: Most social networking sites share the
same basic structure. Each user v within the network has
a profile pv that contains (partially sensitive) information.
This information, for example, can be the user’s full name,
photographs, date of birth, relationship status, former and
current employers, and education. One of the core technical
components of a social network is its website, and the
underlying web application. The web application provides
the main functionalities of the social network. This function-
ality often comprises of features that allow a web visitor to
become a member, to edit personal profiles, to view other
user profiles, or to join groups. To become a member of a
social network, users can sign up at the website. This process
usually only requires a valid e-mail address for verification
purposes.

Since social networks can have millions of users, most
popular social networks (see Table I) include features that
allow users to be organized in groups. This feature al-
lows users of a social network to easily find other users
with whom they might share specific interests (e.g., same
hobbies), demographic groups (e.g., studying at the same
university), political or sexual-orientation, and even medical
conditions. Typically, there exists some kind of hierarchy
within a group. That is, particular members can hold the
role of administrators or moderators, which grants them
some special privileges (e.g., sending messages to the whole

group, or removing members). In general, two different types
of groups exist:

• Public groups: These groups allow all members of
the social network to join. Typically, members are
automatically added to the group when they wish to
join. Interestingly, we found that some social networks
even allow non-group members to list the members of
public groups (e.g., Facebook).

• Closed groups: On the other hand, closed groups re-
quire some sort of authorization before a member is
allowed to join. In practice, this means that a group
administrator or moderator needs to manually approve
each membership request.

The different social networks vary widely in the number
of available groups. Networks that target a general audience
typically have a large number of groups, and the average
user is a member of many groups. Social networks that target
business users, on the other hand, have a smaller number of
groups, and the average user is only a member in a few
groups (see Section V for more specific results).

2) Web Applications: The web applications for the most
popular social networks (see Table I) rely on hyperlinks and
HTTP GET parameters to implement the communication
between a user (more precisely, her browser) and the actual
web application. For example, Figure 1 shows four real-
world examples from the web application of Facebook and
Xing that are representative for two groups of hyperlinks.
The first link is used to tell the web application to display the
currently logged-in user’s “home” area. Since the hyperlink
for this operation is the same for every user of the social
network, we refer to links of this type as static hyperlinks.
In contrast, the other links are used to inform the web appli-
cation of state changes requested by a user. For example, the
second link sends a request to the web application that the
user with the ID userID wishes to upload a new profile
picture. This link contains a dynamic token (in this case,
the ID of user v), so we consequently call it a dynamic
hyperlink. This type of links explicitly contains information
about a user since the link is unique for each user of the
social network (i.e., this link identifies a particular v ∈ V ).

Besides dynamic hyperlinks that contain information
about users, there also exist dynamic hyperlinks that contain
(or embed) information about groups. The third and fourth
link of Figure 1 show two examples in which information
about a specific group (i.e., a groupID parameter) is
encoded within the hyperlink. Note that each link uniquely
refers a group g ∈ G.

From the web application’s point of view, these hyperlinks
facilitate the “internal” state keeping and communication be-
tween the web application and the user’s web browser. Since
web browsers are agnostic to the semantic interpretation of
links, they simply add the URLs of all visited web pages
to the browsing history βv of a user v. Note that since the
interesting information is already encoded in the URL itself,



Name of social network # users Focus Alexa traffic rank [1] Supports groups
Facebook 300,000,000+ general audience, worldwide 2 4
MySpace 260,000,000+ music, worldwide 11 4
Friendster 90,000,000+ general audience, worldwide 111 4
LinkedIn 50,000,000+ business, worldwide 53 4
StudiVZ 15,000,000+ students, Germany 179 4
Xing 8,000,000+ business, Europe 285 4
Bigadda 5,500,000+ teenage audience, India 3,082 4
Kiwibox 2,500,000+ teenage audience, worldwide 74,568 4

Table I: Overview of popular social networking websites. The data is based on information provided by individual social
networks, public sources such as Alexa [1], and our analysis.

(1) http://www.facebook.com/home.php?ref=home+
(2) http://www.facebook.com/ajax/profile/picture/upload.php?id=[userID]+
(3) http://www.facebook.com/group.php?gid=[groupID]&v=info&ref=nf+
(4) https://www.xing.com/net/[groupID]/forums+

Figure 1: Examples of distinct types of web application hyperlinks for different social networks.

it does not matter if the website is using security-enhancing
protocols such as HTTPS for protecting the actual content.
The URL is nevertheless added to the browser’s history.
From an attacker’s point of view, this behavior is interesting,
since it enables the attacker to identify groups a user has
visited, and even potentially identify a specific user. That is,
if the attacker is able to determine which pages are in the
victim’s browsing history (i.e., she can compute the function
σv(φp) for pages loaded via dynamic hyperlinks φp), she can
use this information to de-anonymize a user v (as shown in
more detail later).

C. History Stealing

History stealing is a known attack in which a malicious
website can extract the browsing history of a visitor. One
of the first descriptions of this attack dates back to the
year 2000 [10], and the technique was re-discovered sev-
eral times in the recent years (e.g., [11], [12]). The core
observation behind this attack is the fact that a web browser
treats hyperlinks differently depending on whether or not a
hyperlink was previously accessed by a user. This means
that a browser implements the function σv(φp) (that is, the
browser implicitly checks whether a target URL φp is in the
browsing history βv). Typically, hyperlinks to web pages
in the browsing history are displayed in a different color to
indicate to the user that this link has been clicked in the past.
An attacker can use various techniques to probe whether or
not a web page is in the browsing history:

• An attacker can create an HTML page with links to
target web pages of interest and use background image
tags in the a:visited style information. Since im-
ages can be referenced with URLs, the user’s browser
will then access these URLs if a target web page is in
βv .

      List of 
web pages

Script checks locally 
which pages have 
been visited 11

12

13 Information about visited
pages is sent back

AttackerVictim

Figure 2: Schematic overview of history stealing attack.

• Alternatively, an attacker can also use client-side script-
ing (for example, JavaScript) to generate and iterate
over a list of target links and programatically check for
the a:visited style to see if a link is present in βv .

Note that an attacker has to probe for each URL (and
cannot simply access the full browsing history of a victim),
obtaining one bit of information per URL that determines
whether it is contained in βv or not.

From a schematic point of view, each attack scenario is
the same (see Figure 2): First, the attacker sends a list of
URLs to the victim’s browser. Second, the attacker forces
the browser to check for each URL whether or not it is
contained in the browsing history using one of the methods
discussed above. Finally, a report is sent back to the attacker,
who then obtains a list of URLs that are contained in the
victim’s browsing history.

History stealing can be used for different kinds of attacks.
For example, it can be used for more effective phishing.
Jakobsson and Stamm presented a scenario where the at-
tacker checks the browsing history for various bank site
URLs. If the attacker sees that the victim has visited a certain



bank, she can then launch targeted phishing attacks [7] that
target this bank. In the context of web applications, this
means that an attacker can apply this technique to reconstruct
knowledge on past interaction between the victim and the
web application. While this knowledge alone might not
be sufficient for many attack scenarios (e.g., an attacker
would still need the online banking credentials to withdraw
funds – requiring a phishing step), we show that we can
successfully improve this technique to de-anonymize users
of social networks.

All popular browsers (e.g., IE, Firefox, Safari) are vulner-
able to history stealing attacks in their default settings (i.e.,
when the browser keeps a history of visited pages). To date,
the problem has not been solved as it is often viewed as a
usability feature/design issue rather than a browser bug.

D. Possible Attack Scenarios

De-anonymizing website visitors allows an adversary to
launch targeted attacks against unsuspecting victims. Such
attacks could be targeted phishing attempts [13], or could
support social engineering efforts to spread malware (e.g.,
a message such as “Hello Mr. Gerald Stonart, we have
discovered that your computer is infected. Please download
and install this file.” might be displayed to Mr. Stonart). In
addition, many people in political or corporate environments
use social networks for professional communication (e.g.,
LinkedIn). Identifying these “high value” targets might be
advantageous for the operator of a malicious website, reveal-
ing sensitive information about these individuals. For exam-
ple, a politician or business operator might find it interesting
to identify and de-anonymize any (business) competitors
checking her website. Furthermore, our attack is a huge
privacy breach: any website can determine the identity of
a visitor, even if the victim uses techniques such as onion
routing [14] to access the website – the browser nevertheless
keeps the visited websites in the browsing history.

Of course, analogous to the situation where attackers
compromise and abuse legitimate websites for drive-by
downloads, the de-anonymization technique presented in this
work can be used in a large-scale setup. That is, an attacker
could abuse several compromised (but otherwise legitimate)
websites as a vehicle for a de-anonymization attack.

III. DE-ANONYMIZATION ATTACKS

With the background concepts introduced in the previous
section, we now present our attack in more detail. We first
introduce a basic variation of the attack, which is not feasible
in practice. We then show how this basic approach can
be refined to work for real-world social networks. Finally,
we discuss how group membership information, a critical
component for the advanced attack, can be obtained with a
reasonable (limited) amount of resources.

A. Basic Attack

As mentioned in the previous section, certain dynamic hy-
perlinks contain explicit information about individual groups
g ∈ G and users v ∈ V within a given social network S.
An attacker can take advantage of this fact by using history
stealing to probe for URLs that encode user information. In
particular, the attacker can probe for a URL φ that contains
an identifier of user v. When a link is found that contains
this identifier for v, then the attacker can reasonable assume
that the browser was used by v in the past to access the
user-specific URL φ.

To find a suitable URL φ, an attacker would first perform
an information gathering step and join the target social
network. In particular, he would analyze the website and
look for dynamic hyperlinks that (a) contain identifiers that
are indicative for a specific personal profile (e.g., because
they contain a user ID) and (b) easy to predict for arbitrary
users. For example, the second link in Figure 1 satisfies
these properties: The user IDs are numerical and, hence,
easy to predict. Also, the link is indicative for a specific
user because the corresponding web application command
(i.e., modifying the profile image) can only be performed
by the owner of the profile. Thus, it is very unlikely that a
user other than v has this link in her history.

Of course, this basic attack is not feasible in practice.
The reason is that the attacker has to generate and check
one URL for every user in the social network, and each
potential victim’s browser would have to download all links
and process them. In the case of Facebook, this would mean
that more than 300 million links would have to be transferred
to each victim. Thus, using the basic attack technique, the
size of the search space (the candidate set) is far too large
to be practical. In the following paragraphs, we show how
group information can be used to to significantly reduce the
search space. Moreover, we need to keep in mind that the
basic attack is still a valuable tool to identify a specific user
among a (small) group of possible candidates.

B. Improved Attack

For our improved attack, we leverage the fact that many
social network users are members in groups. Social net-
works commonly provide special features for groups in
order to facilitate communication and interaction between
group members. Often, discussion forums or mailing lists
are provided. Since these features are incorporated into the
social network’s web application, they are also prone to the
history stealing technique. Similar to per-member actions,
dynamic hyperlinks are used to incorporate group features
into the web application. The main difference is that the
identifiers in these links are not related to individual users
within the group, but to the group itself. For example, the
URLs (3) and (4) in Figure 1 are used for opening the group
forums for two social networks.



An improved attack that leverages group membership
information proceeds in two steps: First, the attacker needs
to obtain group membership information from the social
network. That is, the attacker has to learn, for some (possibly
many) groups, who the members of these groups are. This
step will be discussed in detail in the next section.

In the second step, the attacker uses history stealing to
check the victim’s browser for URLs that indicate that this
user has recently accessed a page related to group g, and
hence, is likely a member of g. By preparing URLs for
a set of n groups, the attacker can learn a partial group
fingerprint of the victim Γ′(v). More precisely, the attacker
can learn the entry Γk(v) for each group k that is checked.
The remaining entries are undefined. Clearly, being able to
check more groups allows the attacker to learn more about
the group fingerprint of a victim (i.e., he can obtain a larger,
partial group fingerprint). This increases the chances that at
least one entry of the partial group fingerprint is non-zero,
which is necessary to be able to carry on with the attack.

Once the partial group fingerprint of a victim is ob-
tained, the attacker checks for the presence of entries where
Γk(v) = 1. Whenever such an entry is found, we assume
that the victim v is member of the corresponding group k.
At this point, the attack can continue in one of two ways.

A slower, but more robust, approach is to leverage the
group membership information and generate a candidate set
C that contains the union of all members {u}k in those
groups k for which Γk(v) = 1. That is, C = ∪{u}k :
Γk(v) = 1. Then, we use the basic attack for each element
c in the candidate set C. More precisely, we use the basic
attack to determine whether the victim v is one of the users
c ∈ C. If so, then the attack was successful, and the user is
successfully de-anonymized.

A faster, but more fragile, approach is to leverage the
group membership information and generate a candidate set
C that contains the intersection of all members {u}k in
those groups k for which Γk(v) = 1. That is, C = ∩{u}k :
Γk(v) = 1. Again, the basic attack is used to check for each
user c in the candidate set C. Since the second technique
uses set intersection instead of set union, it produces much
smaller candidate sets and thus, it is faster.
Robustness. To see why the first attack is more robust than
the second, we have to realize that the information that the
attacker learns might be not entirely accurate. There are two
reasons for this: First, the browsing history may contain
incomplete information about the victim’s past group activity
(e.g., a user might have deleted the browsing history at some
point in the past). Second, the group membership informa-
tion that the attacker has collected “degrades” over time,
deviating increasingly from the real group and membership
configuration as users join and leave groups.

As a result of inaccuracies, some entries Γk(v) in the
partial group fingerprint might be wrong. Two cases need to
be distinguished. The first case is that the entry Γk(v) for a

group k is 0 (or undefined), although v is a member of k. In
general, this is not a problem, as long as the attacker finds at
least one group k that the victim belongs to (and Γk(v) = 1).
The reason is the following. Since the entry for k is zero,
the first attack will not add the members of k (including
v) to the candidate set C. However, we assume that there
is another group that contains v. This means that v will be
added to C, and the attack succeeds. For the second attack,
the candidate set C can only shrink when a new group is
considered (since set intersection is used). Thus, the attacker
might need to check a larger candidate set, but he will still
find v eventually.

The second case describes the situation where the entry
Γk(v) for a group k is 1, although v is not a member of
k. This causes no problem for the first attack, which simply
adds additional users (all members from group k) to the
candidate set C. However, it is a problem for the second
technique. The reason is that the intersection operation now
includes a group that does not contain the victim user v. As
a result, v will not be a part of the candidate set C, and
hence, the attack will fail to find the victim.

In practice, an attacker would first attempt to use the fast
(but fragile) approach based on set intersection. Only if this
fails, one fall-backs onto the slower, more robust approach
based on set union.

C. Efficiently Obtaining Group Information

To carry out the advanced attack, the adversary requires
information about groups and group memberships. In this
section, we demonstrate how an attacker can obtain this
knowledge with relatively little effort.

The number of groups is typically considerably smaller
compared to the number of users. Nevertheless, collecting
information about all groups and the members of each
group is a challenging task. Therefore, we now discuss two
techniques to efficiently obtain information about groups:
group directories and group member crawling.

1) Group Directory: Typically, groups within social net-
works aim at attracting members that share a common
interest with the group. To this end, social networks either
offer a search functionality to find groups with a specific
keyword, or they publish a list of the existing groups, called
a group directory, via their website. This directory can be
listed and searched by members of the social network to find
groups related to their interests.

In our attack, it is desirable for the attacker to have
knowledge on as many groups as possible. More specifically,
the attacker is interested in the group identifiers to construct
the hyperlinks for the history stealing attack. An attacker
can use standard web crawling techniques to download the
group directory, and then extract the group IDs from the
web page’s source code. Several social networks even allow
the group directory to be viewed by non-members, which



enables an attacker to use commercial crawling services for
this task (see Section IV-C for details).

Directory Reconstruction: Some social networks do not
publish a group directory or only do so partially (i.e., not
all information about groups can be accessed this way). We
implemented three methods to successfully circumvent this
obstacle in practice.

First, the group identifiers that we observed in our exper-
iments were either systematic (for example, numerical) or
names. If group IDs can be guessed by an attacker, the group
directory can be reconstructed by simply iterating over all
(or at least a large fraction of) the ID space. The presence of
the individual groups can be verified by trying to access each
group’s web page. In Section V, we show that this brute-
force technique can be used in practice effectively with a
relatively small effort.

Second, an attacker can use the built-in search function-
ality of social networking websites to expose the group
directory by listing all groups within a specific category of
groups. Group search results are usually ranked by member
size, which means that even if the result size is limited to a
fixed value, an attacker gains valuable information.

Finally, we found that social networks may provide special
“public” member profiles that can be accessed by non-
members (i.e., they serve as “virtual” business cards). For
privacy reasons, these profiles usually contain less personal
information than the original member profiles. However,
these public profiles typically reveal the groups for a specific
member. In this case, an attacker can reconstruct the group
directory (including the group members) by crawling the
public member profiles. Note that this technique is rather
costly, since it requires to crawl member profiles.

2) Group Member Crawling: In addition to group IDs,
an attacker needs to obtain the IDs of the group members
for a significant amount of groups to successfully de-
anonymize group members. This step can also be automated
and performed on a large-scale, as we discuss below.

If we deal with a public group, the easiest case is that the
social network allows all members of this group to be listed.
Then, we can use a standard crawling approach to discover
the group members and use them for our attack. As we show
in Section V, even tens of millions of group members can
be crawled with only a limited amount of resources.

Some social networks limit the size of the member list
that can be browsed. For example, Facebook only returns
the first 6,000 members of a group. Hence, this limits a
crawling attempt to only fully discover groups with up to
6,000 members. While this is still useful in practice, clearly,
we would like to also be able to crawl larger groups.

In order to overcome this limitation, we take advantage
of the fact that social networks typically allow searching
within groups for members. This limits the amount of
members returned per search, but we can efficiently extract
most group members by searching for common first or last

names. We use publicly available data from the U.S. Census
Bureau [15] to determine common names, and then utilize
this information to search within large groups to extract their
members.

If we are dealing with a closed group, we cannot easily
access the membership information for this group since only
members can access this information. Hence, we send a
request to join the group from a legitimate user account
by using a script (i.e., “I would like to become member
of this group”). If our application is accepted, we leave
the group after we have collected membership information.
Surprisingly, such a simple automated demand is successful
in practice as we show in Section V.

Note that, depending on the resources of an attacker,
the member crawling may optionally be performed on-
the-fly instead of offline before the actual attack. In an
online setting, the attacker would crawl the groups a victim
is a member of on demand, and then use the collected
information for performing the second round of history
stealing (i.e., verification step). From a conceptual point of
view, both attacks are similar. They just vary in the amount
of resources needed.

IV. CRAWLING EXPERIMENTS

In this section, we describe our empirical experiments to
extract group information from social networks and present
the results we obtained for three social networks.

A. Ethical and Legal Considerations

Crawling data in social networks is an ethically sensitive
area. Clearly, one question that arises is if it is ethically
acceptable and justifiable to conduct crawling experiments
in social networks. Similar to the experiments conducted
by Jakobsson et al. in [16], [17], we believe that realistic
experiments are the only way to reliably estimate success
rates of attacks in the real-world.

First, in the crawling experiments we conducted, we
only accessed user information that was publicly available.
Second, note that the crawler we wrote was not powerful
enough to influence the performance of any social network
we investigated. Third, the commercial crawling services we
used had misuse protection mechanisms such as bandwidth
throttling in place that prevented them from launching denial
of service-like attacks against the websites that they were
crawling (i.e., because of a higher crawling load).

We also consulted the legal department of our university
(comparable to the IRB in the US), and we were informed
that our experiments are approved.

B. Overview

For our experiments, we performed an in-depth analysis
of the Xing platform. Furthermore, we carried out feasibility
studies for Facebook [2] and LinkedIn [18].

We chose these networks as they are representative of the
different categories of popular social networks. For example,



Facebook aims at an audience that would like to maintain
and create friendships, whereas LinkedIn and Xing are more
focused towards business users who would like to maintain
and extend their professional networks. Furthermore, each
network has a unique way of representing its member and
group directories.

Because of resource limitations, and because we had
access to more Xing users for real-world user experiments,
we chose to perform an in-depth analysis of Xing (Xing’s
size is considerably smaller than Facebook or LinkedIn, but
it still has more than eight million users).

In the following, we discuss how an attacker can automat-
ically extract group information (i.e., which is a prerequisite
for the de-anonymization attack) from each of these social
networks.

C. Social Network Crawling Approaches

In order to access group information, an attacker can
either run crawlers on her machines, or use third-party crawl-
ing services. For our experimental evaluation, we followed
both approaches by implementing a custom web crawler,
and by using commercial crawling services.

1) Custom Crawler: We implemented a web crawler that
works by following the hyperlinks on a given starting public
web page and then continues to download the HTML source
code of each hyperlinked web page. To be able to also
access parts of the social network that are only restricted
to members, we added features that allow the crawler to
login using provided member credentials. To this end, we
manually registered three members to the social network
using valid registration data (e.g., e-mail for our lab, etc.).

To extract the desired data, the crawler matches a set
of regular expressions against the HTML source code. The
extracted data (for example, group IDs and group names) are
then stored in a database. To speed up the crawling process,
we ran up to four instances of our crawler simultaneously.

Anti-Crawling Techniques: Most social networks em-
ploy anti-crawling techniques to protect the data of their
members. Typically, if a member behaves suspiciously (for
example, if he tries to access an overly large amount of user
profiles in a short amount of time), this member’s account
will be temporarily, or permanently disabled. In contrast, no
similar restrictions are in place for group directories. We
believe that this mainly has two reasons:

1) The content is regarded as being public, and not
security-relevant.

2) As a means of promoting groups, it should be inten-
tionally easy to access the directory.

In addition, we observed that group directories often
contain additional information that is relevant for an attacker
(e.g., group size, or additional meta data). In our scenario,
an attacker benefits from these factors, as it allows her to
prepare the history stealing attack with relatively little effort.

2) Commercial Crawling Services: Attackers with lim-
ited computing or network resources might resort to com-
mercial crawling services instead of operating their own web
crawler. Such services allow customers to specify which
websites to visit. Typically, the crawling service might
accept a given list of web pages and regular expressions.
Such a service can be very cost effective. For example,
services such as 80legs [19] charge as low as $0.25 per one
million crawled URLs. In our experiments, we used such a
service provider to perform some of our experiments.

D. Crawling Experiments

We applied the two different crawling strategies to the
three social networks Xing, Facebook and LinkedIn. In the
following, we elaborate on how the group directories for
each network can be retrieved, and provide an overview of
the results.

1) Xing: We mainly concentrated our crawling experi-
ments on this network, as its smaller size allowed us to
fully crawl its public groups. This network is being actively
policed by administrators who, for example, quickly remove
empty, or inactive groups.

By directing our custom crawler to Xing, we could
download the data of 6,574 groups containing more than
1.8 million unique members. Xing claims to have about 8
million members in total (i.e., including members that do not
use groups at all). Hence, the users in these groups represent
a substantial fraction of the entire social network.

Closed Groups: On Xing, the largest groups are public.
That is, there are no restrictions on who is allowed to
join these groups. On the other hand, an attacker might
also be interested in crawling closed groups (that require
manual approval by a moderator) in order to increase the
effectiveness of the de-anonymization attack. To test how
restrictive these groups are, we sent automated member
requests from a legitimate account to the groups that had
a large number of members.

We automatically applied for membership in 1,306
groups, and were accepted to 108 groups (8.2%). This
allowed us, as an attacker, to see the user IDs of a total
of 404,331 group members. Note that membership was
denied by 1,199 groups (91.8%). However, despite the high
rejection rate, we believe that our test demonstrates that
a malicious user can successfully launch automated social
engineering attacks to become member of closed groups.
In practice, a real attacker would probably use fake fotos,
detailed fake information, and a corresponding application
text to increase her success rate. In our experiments, we
simply asked if we could become member of the group.

Interestingly, our success rate was higher for the larger
(i.e., more important from the attacker’s point of view)
groups. We were often instantly added to the group with-
out receiving any feedback. Hence, membership application
seems to be a formality for many large, closed groups.



2) Facebook: Recovering the group directory for Face-
book initially appeared straightforward. The network pub-
lishes a group directory on its website. Access to the direc-
tory is not restricted. As a result, everyone can download it
from the web. The directory itself is organized in a multi-
level hierarchical collection of alphabetically ordered lists
that provide pointers to individual web pages to make it
convenient for a human to navigate.

Due to the large size of the dictionary, we decided to
use a commercial crawling service to download it. In total,
the dictionary consisted of 7.1GB of HTML data in about
7,4 million files that contain 39,156,580 group IDs. The
crawling service cost us $18.47 and we received the data
after five days.

To enumerate Facebook’s group members, we extracted
the group IDs from the group directory, and then used our
custom crawler to enumerate the members for each group.
Facebook permits each logged-in user to search within the
member lists of arbitrary groups. This search can be used
to filter the member lists to only show members whose first
and/or last name fully matches the search token. Using an
empty string as the search token returns random sample of
the group members. The size of each search result is limited
to 6,000 members, and can be retrieved in chunks of 100
members per HTTP request.

Using Member Search Functionalities: Since most
Facebook groups have less than 6,000 members, this thresh-
old is high enough and often allows us to obtain full member
lists. An attacker can additionally use the search function-
ality to enumerate members in larger groups by searching
for common first or last names. For example, with only 757
first names (233 male, 524 female), an attacker would be
able to cover a cumulative percentage of more than 75% for
each gender. According to the public 1990 US census [15]
statistics, the most common first name, “James”, has a
3.318% probability among males, and 1.635% among the
overall population. Hence, for groups with about 367,000
members, an attacker could obtain all members with this
name (i.e., the search returns about 6,000 members for
each name) on average. An attacker could even refine this
approach by computing a more accurate name distribution
by downloading Facebook’s own (also publicly available)
member directory.

Note that enumerating very large groups that contain
millions of members only provides a limited benefit for
an attacker. Apart from the high crawling effort, the time
required to check for so many members via history stealing
would defeat the purpose of using groups as a means of
search space reduction in a realistic attack scenario (e.g.,
see throughput rates in Section V-C). However, an attacker
can also use the group member search functionality to verify
the membership of individual members.

Results: In total, we successfully crawled more than
43.2 million group members from 31,853 groups in a period

of 23 days using only two machines. While this is still only
a fraction of the overall Facebook groups and members, it
demonstrates the feasibility of the approach.

In general, we believe that an attacker could also use a
malicious botnet in real-life, or crawl for a longer period of
time, and collect significantly more data compared to our
effort with only limited resources.

3) LinkedIn: Just like Xing, LinkedIn focuses on business
users. LinkedIn is a popular service and is widely-known.

Third-Party Crawling Use-Cases: LinkedIn does not
publish a full group directory, but provides a group search
functionality for logged-in users. Theoretically, this func-
tionality could be exploited in a similar fashion to the group
member search functionality of Facebook. However, this
requires a much larger effort due to the higher variation in
possible group names as opposed to first or last names of
individuals.

LinkedIn uses easy to predict group IDs. Specifically,
LinkedIn uses numerical group IDs that range from 0 (old-
est) to about 3,000,000 (the newest groups). In addition, the
group ID space seems to be sparsely populated, as according
to the network itself, it currently has only 442,434 registered
groups.

In a two-phase crawling scenario, we first started a crawl-
ing pass with a commercial service [19]. In a preparation
step, we first generated three million hyperlinks for the
observed group ID space, and then used these links as
“seed” for the commercial crawling service. The results of
the crawling service can be used to identify which group
IDs actually exist (i.e., a group profile page is returned if
the ID exists). The cost for this experiment was $7.49.

After probing for the existing groups, we performed a
second crawling run to retrieve additional information for
each group such as its group size and group description. As
this operation requires a logged-in user, we had to use our
custom crawler.

While LinkedIn restricts access to its group directory, we
found this not to be the case for its public member directory.
For privacy reasons, the public member profiles are much
less detailed than the regular profiles within the social net-
work. Surprisingly, though, they do contain the membership
status and group IDs for all groups that a member has
joined. Clearly, data on groups and group memberships does
not seem to be regarded as being security-relevant. As the
public member profiles can be freely accessed over the web,
an attacker can use automated legal third-party services to
fully “outsource” the information gathering phase of the de-
anonymization attack.

In a different crawling scenario, we performed an exper-
iment and used an external crawling service to crawl the
public profiles of three million members that we randomly
picked from LinkedIn’s member directory. The costs for
the crawling were $6.57. Assuming a linear cost model,
we estimate overall costs of about $88 for crawling all 40



Facebook MySpace Friendster LinkedIn StudiVZ Xing Bigadda Kiwibox
Uses dynamic links 4 4 4 4 4 4 4 4
Group directory Full Searchable Full Searchable Searchable Searchable Searchable Full
Member directory Full Searchable Full Full Searchable Searchable Searchable Searchable
Group member enumeration ≤6,000 Unlimited Unlimited ≤500 Unlimited Unlimited Unlimited Unlimited
Public member profiles 4 4 4 4 4 4 4 ×
Vulnerable 4 4 4 4 4 4 4 4

Table II: Vulnerability Comparison of Social Networks.

million public profiles. This small investment would allow
an attacker to target all group members of LinkedIn in a
de-anonymization attack.

4) Other Social Networks: In order to find out how
generic the problem of group information disclosure is, we
manually analyzed five additional popular social networks
that share features with the three networks that we analyzed
in more detail.

Table II shows the features that are related to our de-
anonymization scenario for these networks. All networks
are vulnerable to history stealing and de-anonymization via
groups. While we did not conduct crawling experiments
for these networks, we expect the results and techniques
to be similar to the ones we described in this section. Our
empirical results demonstrate that group memberships are
generally not considered as being privacy-relevant in many
social networks.

V. EVALUATION

In this section, we evaluate the practical feasibility of the
de-anonymization attack.

A. Analytical Results

To assess the effectiveness of our de-anonymization at-
tack, we first perform an analytical analysis of Xing. For
this social network, we have a comprehensive overview.
More precisely, we have crawled all public and several
closed groups, together with all member information for
these groups. We start with an overview of the different
parameters of that network related to our attack scenario.

In total, we collected membership information for more
than 1.8 million unique users in 6,466 public and 108 closed
groups. Based on our data, the average Xing user is a
member of 3.49 groups. By using data from Xing’s group
directory, we found that for the whole network, the sum
of group member sizes (i.e., the number of membership
relations) for the 6,466 public groups totals to more than 5.7
million. In contrast, the 15,373 closed groups only contain
about 4.4 million membership relations. Furthermore, the
average size of public groups is 914 members, whereas it
is only 296 members for closed groups. The closed groups
that we crawled contain 404,548 unique users. However, of
these users, 329,052 (81.34%) were already covered by the
public groups in our dataset.
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Figure 3: Cumulative distribution for number of unique users
seen after crawling a specific number of groups (Xing).

These figures indicate, that an attacker can already collect
a substantial amount of information by only focussing on
public groups. The practical impact of closed groups appears
to be rather low, given the increased effort that is necessary
for gaining membership data for closed groups.

As mentioned in Section III, the improved de-
anonymization attack requires that the history stealing step
finds at least one group k that the victim is a member of
(that is, Γkv = 1 for at least one k). Thus, when probing
for an increasing number of groups, it is interesting to see
how the number of unique users grows that appear in at least
one of these groups. When this number grows quickly, the
attacker has a good chance to get a “hit” after inspecting a
small number of groups.

Of course, one also needs to consider the order in which
the history stealing step should probe for group membership:
Clearly, the attacker wants to optimize the process such that
he sees each user at least once after as few attempts as
possible. One approach is to perform a greedy search. That
is, the attacker first probes the largest group, then the second
largest group, and so on. The problem is that this order
might not be optimal, since it does not take into account
group membership overlaps. An alternative approach is to
choose the groups by information gain (i.e., in each step,
test the group which has most members not seen before).
This might lead to a better probing procedure, since the
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Figure 4: Cumulative distribution for the size of candidate
sets (Xing).

attacker covers in each step the largest possible number of
previously-unseen users.

Figure 3 shows the cumulative distribution for the number
of unique users seen after crawling a specific number of
groups. Besides considering all groups, we also studied the
effect of limiting the search space to groups with at most
50,000 and 20,000 members, respectively. This takes into
account that really large groups with hundreds of thousands
of members are too large to probe efficiently. Thus, we
restrict an attack to groups with an upper bound on the group
size. The results indicate that an attack is very effective in
practice: Even after testing only a few hundred groups, we
have seen a significant percentage of all users at least once
(i.e., a specific user is a member in at least one of the groups
we have tested so far). In fact, we have seen more than 50%
of the users after testing only 61 groups. After testing 1,108
groups, we have seen 90% of the users at least once. When
restricting the search space, we can observe that we do not
find each member at least once since some users are only
member of large groups. Nevertheless, we can find more
than 90% of the overall users when only considering groups
smaller than 20,000 members.

Figure 3 also shows that the difference between the
greedy and the information strategy is small. More precisely,
the overall shape is very similar, only the number of tested
group is significantly different: With the information gain
strategy, an attacker only needs to probe 6,277 groups until
he has seen each user at least once, whereas the brute-force
approach requires to test 6,571 of all 6,574 groups before
the complete set of users (who are part of at least one group)
is covered.

For our next analysis, we assume that the attacker has
successfully launched a history stealing attack and has com-
puted an accurate group fingerprint Γ(v) for a victim v. This
allows the attacker to use the fast de-anonymization attack
based on set intersection. To demonstrate the effectiveness of

Figure 5: Cumulative distribution for the size of group union
sets (Xing).

this attack, we show in Figure 4 the cumulative distribution
of the candidate set sizes after set intersection. Each user
in the candidate set needs to be inspected by the basic
attack. Thus, a smaller size is favorable for the attacker.
Interestingly, for 42.06% of the users (= 753,357 users), the
group fingerprint is exact. That is, only a single user in the
social network is a member of exactly these groups. These
users can be uniquely identified just based on their group
fingerprint, and no additional steps are required. For one
million users, we can narrow down the candidate set to less
than 32 users, and for 90% of all users, the candidate set
is reduced from initially ∼1.8 million to less than 2,912
users. These results show that one can significantly narrow
down the search space of candidates (who are then compared
against the victim, one by one, using the basic attack).

Extracting a partial group fingerprint for a victim v
might not always work flawlessly (for reasons discussed in
Section III). As a result, the fast de-anonymization attack
based on set intersection could fail. In this case, the attacker
needs to resort to the slower but more robust attack based
on set union. In Figure 5, we show the cumulative distribu-
tion of the candidate set sizes when performing set union.
Compared to the candidate sets from Figure 4, the union
sets are considerably larger due to the fact that we merge
each group for which we have a match. Second, there is
still a significant reduction in size compared to the overall
number of users in Xing for a larger fraction of victims.
For example, the set union attack still reduces the size of
candidate set to less than 50,000 for more than 72% of all
users on Xing.

We performed the same kind of analysis for Facebook.
Since we did not completely crawl this social network, the
results in Figure 6 provide an overview for the snapshot of
group information we obtained during our experiment. For
the 43.2 million users we have seen in 31,853 groups, 9.9
million have an exact group fingerprint Γ(v). Furthermore,
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Figure 6: Cumulative distribution for the number of users
seen in the candidate set (Facebook).

for 25.2 million users, the size of the candidate set is smaller
than 1,000. The distribution of users in a candidate set of
a given size is different compared to the Xing experiment,
but we expect that the shape of the cumulative distribution
to also be similar for Facebook if an attacker has crawled
the complete network.

B. Real-World Experiments

To demonstrate the practical feasibility of our attack, we
created a website that performs a de-anonymization attack
against Xing. While there is no technical restriction that
limits our attack scheme to a specific network, we chose
to only implement it for Xing, as our crawling experiments
had covered the highest fraction of groups and members for
this network.

For ethical reasons, we only promoted this website to
volunteers that we picked from our personal contacts. Before
the actual de-anonymization process starts, a warning page
explains the purpose of the experiment to visitors. Then, the
visitors need to explicitly acknowledge that they would like
to participate in the experiment. Once a visitor decides to
take part, she also needs to fill out a brief questionnaire that
asks her about how she uses the social network, if she shares
her computer or user account with someone else, and how
often she participates in social networking groups.

Once the experiment starts, the visitor’s browsing history
is probed for the URL of the main web page of Xing. If
this URL is not present in the history, we assume that the
visitor has not used Xing recently, or that she has disabled
her browsing history (see the discussion in Section VI). In
this case, we abort the de-anonymization attempt, and do
not proceed.

If we do identify that a user has visited Xing before, we
then use history stealing to probe for the URLs of the groups
within Xing. That is, for each group, we check the visitor’s
browsing history for dynamic group links. We only expect

these links to be present in the browsing history of users
who are indeed members of these groups. We then perform
the analysis based on the obtained group fingerprint, and
present the result to the user.

Results: In total, we launched our attack on 26 volun-
teers from our Xing contacts. For 11 of these visitors, we
could not find any dynamic links that indicated interaction
with groups in their browsing history. The reasons for this
can be manifold, for example only seldom usage of groups
or regularly flushing the browsing history.

For the remaining 15 visitors, we could determine group
fingerprints, and successfully launched de-anonymization
attacks. More precisely, we could leverage the faster group
intersection variant of the attack, and could compute in-
tersection sets for 11 visitors. The median size of these
intersection sets was only 570 members, thus a search
within this set can be performed easily. For 4 visitors, we
had to fallback to the more robust, but slower union set-
based variant of our attack. As expected, the union set is
significantly larger compared to the intersection set: the
median size was 30,013 members, which can nevertheless
be probed during a history stealing attack.

In summary, our experiments with real users show that
our attack works in practice. We managed to de-anonymize
15 of 26 users who participated in our experiment.

C. Run-Time and Throughput Rate

The runtime of the attack significantly influences its suc-
cess rate in practice. Recall that we perform an active attack,
and probe the victim’s browsing history. Thus, the victim
needs to interact with the attacker for a certain amount of
time. There are many techniques to convince a victim to stay
longer at the attacker’s website. These techniques range from
benign attempts such as showing a video or music clip, to
offensive techniques such as “hijacking” the user’s browser
with the help of JavaScript to prevent her from leaving the
site. In any case, from the point of view of the attacker, it
is desirable that the attack takes as little time as possible.

We measured the typical time it takes to perform a history
stealing attack in practice. We performed experiments with
the four major web browsers (i.e., Internet Explorer, Firefox,
Safari, Chrome) on different operating systems (i.e., Win-
dows Vista, Ubuntu Linux, Mac OS X). The test machine
was a MacBook Pro with a 2.8 GHz Intel Core 2 Duo
processor and 4 GB RAM. We booted the operating system
natively on the machine, and used no virtualization software
to prevent side-effects. In each test case, we measured the
time it takes to perform a history stealing attack by checking
a specific number of URLs (i.e., we check if these URLs
have been visited or not): That is, we started with 1,000
URLs, and we increased the number of URLs to be checked
in steps of thousand until we reached 90,000. We performed
each test ten times, and calculated the mean values. These
values are shown in Figure 7. In order to increase readability,
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Figure 7: Runtime benchmark for different web browsers on
different operating systems. The legend corresponds to the
browsers from left to right.

and since the mean error between individual runs was always
below 5%, we omit error bars.

Safari on both Mac OS X and Windows achieved the
best results in our experiments: A history stealing attack
with 90,000 tests can be performed in less than 20 seconds.
Chrome is about 25% slower, while Firefox requires between
48 and 59 seconds, depending on the operating system. The
slowest performance was measured for Internet Explorer,
which took 70 seconds to probe all pages. Nevertheless,
even for Internet Explorer, we could probe more than 13,000
URLs in less than 10 seconds. Together with the results from
Figure 3, this show that an attacker can detect many groups
of a victim in a small amount of time.

D. Fluctuation in Groups

Another aspect we need to consider is the fluctuation rate
in groups. From the viewpoint of an attacker, it is interesting
to understand how the groups and members in a social
network change over time.

First, it is unlikely that an attacker has access to the
networking and computing capacity that would enable her to
take a complete snapshot of a social network (i.e., permit her
to collect the necessary data for a de-anonymization attack
in a time span that is short enough to prevent any change
in both groups and members). In practice, depending on the
size of the network and the attacker’s resources, the duration
from start to end of crawling and the reconstruction of the
groups directory might take days, or even weeks.

Second, there will also be changes that are caused by
normal user behavior after the initial crawling phase. For
example, members will join or leave groups, or new groups
will be created. Over time, these changes cause the crawled
data to increasingly deviate from the real configuration of
groups and members in the network. Determining how stable
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Figure 8: Degradation of group data in Xing.

the group data is, is related to the question of how often
an attacker would have to recrawl parts or the entire social
network. Hence, this directly influences how much effort
an attacker has to invest for a de-anonymization attack. An
attacker can also develop iterative approaches for keeping
the collected information up-to-date, e.g. social networking
features that explicitly allow the listing of only new members
in groups and newly created groups can be used.

For measuring the fluctuation in groups, we conducted
experiments for Xing. Instead of repeatedly crawling the
entire network, we only downloaded the group directory and
the member size for each group. This permitted us to repeat
this operation every four hours over a period of 18 days.

Figure 8 shows the CDF for the changes in group size for
four different periods. Interestingly, while the results from
our measurements confirm that the quality of the collected
group and member data degrades over time, they also show
that the data stays relatively stable, significantly reducing
the necessary crawling effort for an attacker.

While we are aware of the possibility that the amount
of users that either join or leave a group might lead to the
same overall group size, we believe that the result of our
experiment is still accurate enough to give an indication
of the amount of change that affects the Xing’s group
configurations.

VI. POSSIBLE MITIGATION TECHNIQUES

The approach presented in this work allow a malicious
user to launch de-anonymization attacks against a large num-
ber of victims with relatively little effort. Whereas history
stealing by itself is often not enough to identify individual
users, combined with the misuse of group membership
information stored in social networks, it becomes a critical
weakness. In this section, we list mitigation techniques that
aim to thwart our attack.



A. Server-side Mitigation

As a server-side mitigation, web applications could use
dynamic hyperlinks that an attacker cannot easily predict.
For example, existing systems could be hardened against the
history stealing attack by automatically adding HTTP GET
parameters that contain random tokens to all hyperlinks.
Depending on the utilized web server, it might be possible
to retrofit existing web applications by using URL rewriting
to automatically add such tokens to each URL.

Even adding a simple, alphanumerical string of length
2 would increase the attacker’s search space by a factor
of 3844 (622). Hence, the attack would effectively be
prevented.

Also, web applications should preferably use HTTP POST
instead of HTTP GET in order to send parameters. This is
because only GET parameters are stored in the browsing
history. In fact, a server-side mitigation solution that random-
izes web-application links is presented in existing work [20].

Note that one difficulty with server-side mitigation is that
the usability of the web applications may be affected. For
example, it may become more difficult to bookmark parts
of the application, or links to certain groups may become
more difficult to remember.

B. Client-side Mitigation

On the client-side, history stealing is more difficult to
fix without sacrificing functionality. Obviously, the goal
is to prevent browsers from leaking sensitive and private
information via style information. As a solution, browsers
could generally restrict client-side scripts from accessing the
CSS properties of hyperlinks. Unfortunately, this could also
break existing websites that legitimately do so.

In [6], the authors offer a clever solution by extending
the same-origin concept of web browsers to visited links.
Unfortunately, so far, none of the published countermeasures
to history sniffing have experienced wide-spread adoption,
whether on the server, nor on the client-side.

Current web browsers only provide limited options for
protection against attacks that are based on history stealing.
Because the attack can be implemented without the need
for client-side scripting, turning off JavaScript, or using
browser add-ons that protect against script-based attacks (for
example, NoScript [21]) may only provide limited help.

Users can also permanently, or temporarily disable the
browsing history. They can, for example, use the “private
browsing modes” that are supported by several current
browsers (e.g., Firefox, Safari). Unfortunately, all of these
methods also require some effort on behalf of the user, and
reduce the usability of web browsers and web applications.

VII. RELATED WORK

Clearly, de-anonymization of privacy-sensitive data is not
a new concept. Research initially focused on anonymization
and de-anonymization of network level data. For example,

work by Pang et al. [22] presents techniques for anonymizing
network packet traces with the intent of sharing data be-
tween researchers. As a reaction to anonymization research,
Coulls et al. [23] introduced approaches that allow an at-
tacker to de-anonymize network traces, and recover sensitive
data on network topologies.

Information Leakage and Social Networks: Due to the
popularity of social networks and the large amounts of sensi-
tive data they store, the focus of de-anonymization research
has recently extended to this area. Several publications have
shown that seemingly non-sensitive data from publicly avail-
able sources can be used to recover private information about
individuals. For example, Griffith and Jakobsson [8] use
public records to infer individuals’ mothers’ maiden names,
and Heatherly et al. [24], as well as Zheleva and Getoor [5],
show how public data provided by social networks can be
used to infer private information.

In addition, several publications have analyzed and mea-
sured features of social networks that are privacy-related.
For example, Mislove et al. present a measurement study on
social networks [25] while Bonneau and Preibusch evaluate
the privacy settings and policies of a large number of social
networks in [26]. Closely related to this context, several re-
cent papers focus on scenarios for malicious activity directed
against social networks. For example, Jagatic et al. evaluate
the success rates of phishing attacks [13], and Brown et al.
discuss context-aware spam [27]. Another study [28] by
Bilge et al. shows the feasibility of automated identity theft
attacks in social networks.

Attacks on Browsing Privacy: The de-anonymization
scenario presented in this work leverages a browsing history
stealing technique that is based on CSS and has been known
since the year 2000. This technique has been discussed in
several browser bug reports [10]–[12], and has been shown
to be practical for targeted phishing attacks by Jakobsson and
Stamm [7]. Despite its malicious potential, browser history
stealing has not lead to any changes in browser software.

There are also other techniques that aim at exposing
private browsing information. Several systems use timing
properties to recover private information. For example, Fel-
ten and Schneider show an attack on web browsing history
by analyzing caching operations [29], while Bortz and
Boneh [30] use timing attacks to recover private information
from web applications.

De-Anonymization of Social Networks: Narayan and
Shmatikow have shown that statistical methods can be
applied to de-anonymize micro-data by cross-correlating
multiple datasets [9]. They extend their approach to social
networks in [4], and prove that it is possible to de-anonymize
members by mapping known, auxiliary information on the
(social) network topology.

In [31], Diaz et al. present a de-anonymization approach
that uses information gained from observing communication
patterns between social network members.



In contrast to existing work, our attack uses only infor-
mation from a single social networking site, and combines
it with the browsing history of a user to identify individu-
als. Furthermore, our attack is highly practical, and works
effectively in the real-world. In fact, as we demonstrate in
the paper, the attack has the potential to affect the privacy
of millions of registered social network users.

VIII. CONCLUSION

In this paper, we introduce a novel, practical de-
anonymization attack that makes use of the group infor-
mation in social networking sites. Using empirical, real-
world experiments, we show that the group membership of
a user in a social network (i.e., the groups within a social
network in which a user is a member), may reveal enough
information about an individual user to identify her when
visiting web pages from third parties.

The implications of the attack we present are manifold.
The attack requires a low effort, and has the potential to
affect millions of registered social networking users who
have group memberships.

The theoretical analysis and empirical measurements we
present demonstrate the feasibility of the attack on the Xing,
Facebook, and LinkedIn social networks. Furthermore, our
investigations suggest that many more social networks that
support group memberships can potentially be misused for
similar attacks.
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