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Abstract

Estimating the number of distinct values is a well-
studied problem, due to its frequent occurrence in
queries and its importance in selecting good query
plans. Previous work has shown powerful nega-
tive results on the quality of distinct-values esti-
mates based on sampling (or other techniques that
examine only part of the input data). We present
an approach, called distinct sampling, that collects
a specially tailored sample over the distinct values
in the input, in a single scan of the data. In contrast
to the previous negative results, our small Distinct
Samples are guaranteed to accurately estimate the
number of distinct values. The samples can be
incrementally maintained up-to-date in the pres-
ence of data insertions and deletions, with mini-
mal time and memory overheads, so that the full
scan may be performed only once. Moreover, a
stored Distinct Sample can be used to accurately
estimate the number of distinct values within any
range specified by the query, or within any other
subset of the data satisfying a query predicate.

We present an extensive experimental study of
distinct sampling. Using synthetic and real-world
data sets, we show that distinct sampling gives
distinct-values estimates to within 0%–10% rel-
ative error, whereas previous methods typically
incur 50%–250% relative error. Next, we show
how distinct sampling can provide fast, highly-
accurate approximate answers for “report” queries
in high-volume, session-based event recording en-
vironments, such as IP networks, customer service
call centers, etc. For a commercial call center en-
vironment, we show that a 1% Distinct Sample
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provides approximate answers typically to within
0%–10% relative error, while speeding up report
generation by 2–4 orders of magnitude.

1 Introduction

Estimating the number of distinct values for some target
attribute in a data set is a well-studied problem. The statis-
tics literature refers to this as the problem of estimating the
number of species or classes in a population (see [5] for
a survey). The problem has been extensively studied in
the database literature (e.g., [22, 23, 27, 38, 21, 29, 28, 18,
9, 7]) and elsewhere (e.g., [11, 4, 10, 19]). Estimates of
the number of distinct values in a column are commonly
used in query optimizers to select good query plans. In
addition, histograms within the query optimizer commonly
store the number of distinct values in each bucket, to im-
prove their estimation accuracy [34, 32]. Distinct-values
estimates are also useful for network monitoring devices,
in order to estimate the number of distinct destination IP
addresses, source-destination pairs, requested urls, etc.

Estimating the number of distinct values in a data set is
a special case of the more general problem of approximate
query answering of distinct values queries, i.e., “count dis-
tinct” queries. Approximate query answering is becoming
an indispensable means for providing fast response times to
decision support queries over large data warehouses. Fast,
approximate answers are often provided from small syn-
opses of the data (such as samples, histograms, wavelet de-
compositions, etc.) [14, 37, 3, 25, 33, 36, 1, 6, 12, 8]. Com-
mercial data warehouses are approaching 100 terabytes,
and new decision support arenas such as click stream anal-
ysis and IP traffic analysis only increase the demand for
high-speed query processing over terabytes of data. Thus
it is crucial to provide highly-accurate approximate an-
swers to an increasingly rich set of queries. Distinct val-
ues queries are an important class of decision support
queries, and good quality estimates for such queries may
be returned to users as part of an online aggregation sys-
tem [20, 17], or an approximate query answering sys-
tem [14, 37, 2, 3, 25, 33, 36, 1, 6, 12, 8, 26]. Because
the answers are returned to the users, the estimates must be
highly-accurate (say within 10% or better with 95% confi-



select count(distinct target-attr)
from rel
where P

Figure 1: Distinct Values Query template.

select count(distinct o custkey)
from orders
where o orderdate >= ’2001-01-01’

Figure 2: Example query matching the template.

dence), and supported by error guarantees. Unfortunately,
none of the previous work in approximate query answering
provides fast, provably good estimates for common distinct
values queries.

The most well-studied approach for distinct-values es-
timation is to collect a uniform random sample S of the
data, store S in a database, and then use S at query time
to provide fast, approximate answers to distinct values
queries [22, 23, 27, 21, 29, 5, 28, 18, 19, 9, 7]. However,
previous work [28, 18, 9, 7] has shown powerful negative
results on the quality of distinct-values estimates based on
sampling (or other techniques that examine only part of the
input data), even for the simple case of counting the number
of distinct values in a column. The strongest negative result
is due to Charikar et al. [7], who proved that estimating the
number of distinct values in a column to within a small con-
stant factor (with probability � �

� ) requires that nearly the
entire data set be sampled. Moreover, all known sampling-
based estimators provide unsatisfactory results on data sets
of interest [7], even for this simple case. Thus collecting a
uniform sample of say 1% of the data (or otherwise reading
just 1% of the data) is unable to provide good guaranteed
error estimates.1 Thus highly-accurate answers are possi-
ble only if (nearly) all the data is read when constructing
the synopsis.

Distinct sampling. In this paper, we present an ap-
proach, called distinct sampling, that reads all the data in
a single scan, and collects a specially tailored sample over
the distinct values. In contrast to the above negative result,
our small Distinct Samples can be stored in a database and
used at query time to estimate the number of distinct values
(and answer other common distinct values queries), with
high accuracy (within 10%) and error guarantees. After the
initial scan to construct it, a Distinct Sample can be incre-
mentally maintained up-to-date as new data is inserted or
deleted, with minimal time and memory overheads. Thus
although we necessarily read all the data, we may do so
only once.

Figure 1 depicts the common distinct values queries sup-
ported by distinct sampling. Figure 1 gives a template for
distinct values queries, where P is an arbitrary predicate on
the attributes in the relation rel. (We discuss joins later in
Section 3.3.) A single Distinct Sample for a target-attr
is designed to provide estimated answers to all queries
matching the template for the given target-attr. We
collect and maintain the Distinct Sample prior to seeing

1Approaches based on histograms or wavelets [37, 25, 33, 36, 12] like-
wise fail to provide good error guarantees for distinct values queries.

any queries; thus our Distinct Samples must be sufficiently
flexible to accommodate arbitrary query predicates P. Fig-
ure 2 presents an example query matching this template,
where the schema is the TPC-D/TPC-H/TPC-R benchmark
schema. This query asks: “How many distinct customers
have placed orders this year?” Unlike previous approaches,
Distinct Samples can provide a highly-accurate approxi-
mate answer for this query, with error guarantees.

Using a variety of synthetic and real-world data sets,
we show that distinct sampling gives estimates for distinct
values queries that are within 0%–10%, whereas previous
methods were typically 50%–250% off, across the spec-
trum of data sets and queries studied.

Event reports. We further show how distinct sam-
pling can provide fast, highly-accurate approximate an-
swers for “report” queries arising in high-volume, session-
based event recording environments. In such environments,
there is a continual stream of events to be recorded (a data
stream). Each individual event is associated with a session:
A session is a sequence of logically related events that oc-
cur over time. There are a large number of overlapping
sessions. For example, in IP network protocols, a sequence
of packets comprise a session or flow between a source and
a destination; these packets are intermixed with the pack-
ets for other sessions. In the telecommunications arena,
a sequence of call-processing events comprise the session
associated with connecting and completing a phone call.
In the customer service arena, a sequence of call-handling
events (a customer dials in, is put on hold, an agent an-
swers, etc.) comprise the handling of a single customer’s
call. The event recording environment creates a log record
for each event as it occurs; the record is timestamped and
tagged with a unique id for its session.

To keep up with the rapid rate of incoming events, the
event records are simply dumped to append-only databases.
As a continuously running background process, the logs
from these databases are sent to a central data warehouse,
for data analysis. Precanned reports are executed by the
hour or even by the minute, tracking the progress of events
and sessions, system utilization, possible anomalies, etc.
(Ad hoc queries are less frequent.) The importance of
fast processing of precanned report queries is evidenced by
the recent TPC-R benchmark standard for report queries.
Due to the high volume of data and stringent response
time requirements, it is very desirable to have fast, highly-
accurate approximate reports.2 Unfortunately, none of the
previous work in approximate query answering provides
fast, highly-accurate approximate reports for session-based
event recording environments.

We show how distinct sampling can be used to provide
fast, highly-accurate approximate reports. As we shall see,
Distinct Samples are effective in this domain because – un-
like uniform random samples – if some event from a ses-
sion is in the sample, then all events from that session are
also in the sample. (This is accomplished despite the fact

2In fact, often only a few digits of precision are reported even for the
exact report, so an approximate answer that is accurate to this precision is
indistinguishable from an exact answer.



that events for multiple sessions are intermixed.) For a
real-world customer service (call center) event recording
environment, we show that a 1% Distinct Sample gives es-
timates typically to within 0%–10% relative error, while
speeding up report generation by 2–4 orders of magnitude.

This work was done in the context of the Aqua approxi-
mate query answering system [2, 3, 1].

Outline. The remainder of this paper is organized as
follows. Section 2 discusses related work in further detail.
In Section 3, we describe our distinct sampling approach.
Section 4 highlights our extensive experimental study. Due
to page constraints, most of the experimental results appear
only in the full paper [13].

2 Related Work
Sampling-based approaches. As indicated above, there
is an extensive literature on distinct-values estimation from
samples [22, 23, 27, 21, 29, 5, 28, 18, 19, 9, 7]. The
large number of different approaches studied reflects the
difficulty of the problem; this difficulty was first proved
formally by Chaudhuri et al. [9], and later extended by
Charikar et al. [7], who proved the following theorem:

Theorem 1 [7] Consider any (possibly adaptive and ran-
domized) estimator �D for the number of distinct values D
that examines at most r rows in a table with n rows. Then,
for any � � e�r, there exists a choice of the input data such

that with probability at least �, error� �D� �
q

n�r
�r ln �

� .

The error metric is the ratio error: error� �D� �

max
�
D
�D
�
�D
D

�
. They also present an extensive experimental

comparison of a number of the best approaches, including
two estimators they propose – GEE and AE – which are
discussed further in Section 4.

This extended research focus on sampling-based estima-
tors is due in part to two factors. First, in the applied statis-
tics literature, the option of collecting data on more than a
small sample of the population is generally not considered,
because there is typically a prohibitive expense for doing
so (e.g., for collecting medical data on every person in the
world, or every animal of a certain species). Second, in
the database literature, where scanning the entire data set
is viable, it is generally considered too expensive. Echoing
other works, Charikar et al. [7] argue that extracting a sam-
ple, and then estimating from that sample, is the only scal-
able approach to distinct-values estimation. In contrast, we
would argue that one pass algorithms with fast incremen-
tal maintenance (that accommodate updates without revis-
iting the existing data set) also provide a scalable approach,
whenever such algorithms exist.

One pass approximate counting. Flajolet and Mar-
tin [11] pioneered one-pass approximate distinct counting,
with an algorithm that hashes sets of data values to bit vec-
tors, for counting purposes. Each distinct value in the do-
main gets mapped to bit i in the vector with probability
���i���. To obtain a good estimator, Flajolet and Martin
take the average over tens of applications of this procedure

(with different hash functions). Alon et al. [4] also consid-
ered a similar scheme. Palmer et al. [30, 31] showed how
to extend this one pass counting to speed up by 2–3 or-
ders of magnitude the computation of the Neighbourhood
function for massive graphs, e.g., to analyze the connectiv-
ity and fault tolerance of the Internet. Whang et al. [38]
proposed and studied a technique called linear counting,
which also runs in one pass and produces an estimate with
any user specified accuracy, using hashing. They show that
a load factor (number of distinct values/hash table size) of
12 can be used for estimating to within 1% error, using a
hash function that maps each distinct value in the domain
uniformly at random to a number in ���m�. Because the
number of distinct values can be as large as the data sizeN ,
the spacem must be large as well (��N�), so this approach
fails to provide a small space synopsis. Cohen [10] pro-
posed and studied a size estimation framework, useful for
estimating the number of descendants of each node in a di-
rected graph, and related problems. At its core, this frame-
work is performing distinct counting, to ensure that descen-
dants reachable by multiple paths are not double counted.
In the approach, sets of data values are hashed to the min-
imum element of a random permutation of the values, for
counting purposes. This approach requires tens of repeated
applications, and does not handle deletions of data items.

Each of the one pass approaches above provides an es-
timator for a single target attribute. However, unlike dis-
tinct sampling, their respective hashing schemes destroy
any hope of being able to estimate the number of distinct
values over a subset of the data specified by a subsequent
predicate. Thus they fail to provide estimators for the more
general distinct values queries of Figure 1. Moreover, they
are no help in producing approximate reports.

Gibbons and Tirthapura [16] considered a distributed
setting in which each party observes a set of items, and
the goal is to estimate the size of the union of all the sets.
The parties have limited memory and can only communi-
cate with one another after all parties have observed their
respective sets. This work did not focus on distinct values
queries or database scenarios, and provided no experimen-
tal evaluation. Distinct sampling builds upon this previ-
ous work, extending their algorithm to handle distinct val-
ues queries with predicates, as well as approximate reports.
Moreover, we present techniques for incremental mainte-
nance, and provide an extensive experimental comparison
with previous sampling-based approaches.

3 Distinct Sampling

Our goal is to collect and store information on database
tables that will permit highly-accurate estimates for dis-
tinct values queries on these tables. For simplicity, we will
describe our approach focusing on a single target attribute
(target-attr) from a single table (rel), as in Figure 1.
The approach extends easily to multiple target attributes,
and we will later briefly discuss extensions to handle joins.
We assume there is an a priori bound on the storage set
aside for our purposes, e.g., space for a sample of 10K rows



from a large table.

3.1 Problems To Overcome

If we sample uniformly from the rows in rel, as a tradi-
tional sample would, we will likely miss attribute values
that occur only rarely in rel. Instead, we would like to en-
sure that all distinct values are represented in our sample.
For attributes with many distinct values, however, there
may not be room to store all the distinct values within the
given storage bound. In such cases we would like to col-
lect a uniform random sample of the distinct values. This
has advantages detailed below. Moreover, we need to know
how to scale the answers produced from this uniform sam-
ple, so we need to store the sampling rate.

Two problems arise. First, we need to detect the first oc-
currence of a value as the table is scanned. For each row,
we can certainly check the current sample to see if the row
has a value for target-attr that is already in the sam-
ple. But we have insufficient storage to keep track of all
distinct values, so what should be done if the value is not
in the current sample? We have no idea whether this is
the first time we have seen this value or we have seen it
before but ignored it (and hence for consistency we must
ignore it again). Adding the value to the sample with some
probability would not produce a uniform sample of the dis-
tinct values, and in fact would be quite biased towards fre-
quently occurring values [14]. On the other hand, ignoring
the value is no good either, because this would completely
bias the sample towards values occurring early in the table.
Second, even if we could detect the first occurrence of a
value, how would we know what sampling rate to use to
decide whether or not the value should be included in the
sample? The rate depends on the total number of distinct
values, which is the problem we are trying to solve in the
first place.

Moreover, our goal is not only to produce an estimate
of the total number of distinct values, but also estimate dis-
tinct values queries over subsets of the data selected by sub-
sequent query predicates. Thus simply maintaining all (or a
sample of) the distinct values themselves is insufficient, be-
cause it does not permit proper accounting for subsequent
predicates (which may often be on other attributes).

3.2 Our Solution: Distinct Sampling

We now describe distinct sampling, and show how it over-
comes these problems. In a Distinct Sample:

� Each distinct target-attr value in the table rel is
equally likely to be in the sample.

� For each distinct value v in the sample, we have:

– a count of the number of times v appears in the
entire table scanned thus far, and

– either all the rows in the table with
target-attr � v, or, if there are more
than t such rows, a uniform sample of t of these
rows (t is a parameter).

Distinct Sampling( space bound B, valSampSize t )
1. initialize � := 0, S := �
2. select the hash function die-hash
3. do while (more rows R to scan) f
4. die-level := die-hash(v), for target-attr value v in R
5. if (die-level � �) f
6. if (v appears 0 to t� � times in S) f
7. add row R to S
8. if (v now appears t times)
9. add to S a dummy row for v with cv 	� t

g
10. else f // v appears exactly t times
11. retrieve the count cv from the dummy row for v
12. increment cv
13. with probability t�cv, add row R to S

and evict a random row with value v from S
g

14. if (jSj � B) f // S is full
15. evict from S all rows with target-attr values w

such that die-hash(w) � �
16. increment �

g
g

g
Figure 3: The Distinct Sampling Algorithm

The distinct sampling algorithm is given in Figure 3.
The algorithm has two parameters: the bound B on the
available sample size (the number of rows in total) and the
bound t on the maximum number of rows to retain for a
single distinct value. The basic idea is as follows. (An ex-
ample is given below.) There is a level associated with the
procedure, that is initially 0 but is incremented each time
the sample bound B is reached. Each value in the domain
is mapped to a random level, called its die-level. An easily
computed hash function is used, so that each time a given
value occurs in the table, it maps to the same die-level (Step
4). We scan through the table, only retaining rows in our
Distinct Sample S whose target-attr value’s die-level is at
least as large as the current level � (Step 5). Eventually
either we reach the end of the table or we exhaust all the
space available for S. In this latter case, we create more
room in S by evicting all rows with die-level � and then
incrementing � (Steps 14-16). We then proceed with the
scan.

The invariant we maintain throughout is that S contains
all the distinct values appearing in the scanned portion of
the table whose die-level is at least �, and no other distinct
values. Because levels for distinct values are chosen at ran-
dom, S contains a uniform sample of the distinct values in
the scanned portion. (Of course, it may have many rows
duplicating the same values.)

To expedite the sampling and subsampling, our hash
function (called die-hash) maps the value domain onto
a logarithmic range, such that each distinct value gets
mapped to i with probability ���i��� (i.e., mapped to 0
with probability �

� , to 1 with probability �
� , etc.). Thus a

current level of � indicates that only a ��� fraction of the
domain is currently eligible for S. It follows that if S is the



Rows scanned Result
row attr die distinct level

value level sample �

R� 5 0 fR�g 0
R� 3 2 fR�� R�g 0
R� 3 2 fR�� R�� R�g 0
R� 8 0 fR�� R�� R�� R�g 0
R� 2 1 fR�� R�� R�� R�� R�g 0
R� 7 0 fR�� R�� R�� R�� R�� R�g 0
R� 8 0 fR�� R�� R�g 1
R� 3 2 fR�� R�� R�� R�� c���g 1
R� 3 2 fR�� R�� R�� R�� c���g 1
R�	 5 0 fR�� R�� R�� R�� c���g 1
R�� 3 2 fR�� R�� R�� R��� c���g 1
R�� 9 1 fR�� R�� R�� R��� R��� c���g 1

Figure 4: An example run of the Distinct Sampling Algo-
rithm, for B � 
 and t � �.

Distinct Sample and � is the current level after the entire ta-
ble has been scanned, then the number of distinct values in
the table can be estimated as �� times the number of distinct
values in S.

In our algorithm description thus far, we have implied
that we retain in S all rows whose target-attr value’s die-
level is at least �. However, doing so could swamp S with
many rows having the same distinct value, leaving little
room for other distinct values. Instead, we place a limit,
valSampSize � t, on the number of rows with the same
value. For values that reach that limit, we use reservoir
sampling [35] to maintain a uniform sample of the t rows
with that value (Steps 10-13). Reservoir sampling requires
knowing the number of rows with the same value thus far
(whether currently in the Distinct Sample or not); thus we
also store a dummy row in the Distinct Sample that con-
tains the exact number of occurrences of this value thus far
(Step 9).

An example algorithm execution is depicted in Figure 4,
for a 12 row table. There are three distinct values in the
resulting Distinct Sample (2, 3, and 9), so the number of
distinct values in this table is estimated as � ��� � �, which
matches the actual number of distinct values.

3.3 Discussion and Further Details

Setting the parameter t. For queries without predi-
cates, or queries with predicates only on the target attribute,
the valSampSize t could be set to 1, resulting in the best
performance for distinct sampling on such queries, because
the available storage would be devoted entirely to distinct
values (and not to multiple rows with the same value).
However, our goal is to estimate distinct values queries for
more general predicates. A good rule of thumb is to set t
to be the minimum of (i) twice the inverse of the minimum
predicate selectivity, q, for queries of interest (e.g., � for
predicates down to 2%) and (ii) 2% of the sample size B:

t � min���q�B��� (1)

Because we store all rows for a value, up to t, we know
precisely whether any of the rows with this value satisfy
the predicate. When the number of rows with this value

exceeds t, we have a uniform sample of these rows, of size
t; thus an expected q � t of these rows will satisfy the pred-
icate, where q is the selectivity of the predicate over all the
table rows with this value. When t � �

q , we expect at least
two rows in the sample to satisfy the predicate. On the
other hand, if no rows satisfy the predicate, then no rows
in the sample satisfy the predicate, as desired for accurate
estimation.

The hash function die-hash. We now discuss the
details of the hash function die-hash. For simplicity, as-
sume the target-attr domain is the set of integers in
���D � ��, where D is a power of two. Let m � log�D.
For every value v, die-hash(v) is a mapping from ���D���
to ���m�, such that, independently for each v,

�� � ���m� �� 	 Pr fdie-hash�v� � �g � ������� (2)

Three parameters define a particular die-hash: �, �, and
hashmod. We set hashmod to be D. We choose � uni-
formly at random from [1..hashmod-1] and � uniformly at
random from [0..hashmod-1]. For any x in [0..hashmod-
1], define LeadZeros(x) to be the number of leading zeros
in x when viewed as a log��hashmod�-bit number. Then
for each value v encountered during the scan, die-hash is
computed as:

die-hash�v� � LeadZeros��� � v � �� mod hashmod�

This hash function was used in [4], where it was shown to
satisfy equation 2 and pairwise independence among the
values v.

Storing by die-level. We can store the Distinct Sam-
ple using an arrayL of size logD, such thatL�i� is the head
of a linked list of all the rows in the Distinct Sample with
die-level i. This makes finding the rows to evict during a
level change trivial. In fact, we can use lazy deletion, re-
claiming the sample slots associated with the most recently
evicted level one-at-a-time, as new slots are needed. This
has the advantage that the processing time for each row is
more consistent: there are no longer slow steps due to level
changes.

Producing an estimate. Given a stored Distinct Sam-
ple S and its current level �, we execute the distinct values
query on S, remembering to ignore the dummy rows, and
multiply the result by the scale factor ��.

Accuracy guarantees. The following theorem
presents the accuracy guarantees for distinct sampling. The
guarantees are dependent on the selectivity of the predi-
cates in the queries of interest, in a somewhat non-trivial
way. Specifically, let V be the set of distinct target-attr
values in the relation, and, for any predicate P , let VP � V
be the set of distinct values in rows satisfying P . We de-
fine the target selectivity, qtar � �, to be jVP j�jV j, i.e., the
number of distinct values satisfying P divided by the total
number of distinct values in the relation. Next, we consider
only values v in VP , and define the value selectivity for v,
qval�v� � �, to be the number of rows with target-attr
value v satisfying P divided by the total number of rows



with value v in the relation. (Note that qval�v� �  because
v � VP .) Then let the overall value selectivity, qval � �, be
the median of the qval�v�.3 Finally, let Q be the set of all
distinct values queries matching the template in Figure 1
for a given target-attr, with target selectivity at least
q�tar and value selectivity at least q�val.

Theorem 2 For any positive � � � and 	 � �, a sin-
gle Distinct Sample for the target-attr, with t �

�

�
log�����
q�

val

�
and B � �

�
t�log�����
q�tar��

�

�
, provides an esti-

mate for any query in Q such that the estimate is guaran-
teed to be within a relative error � with probability �� 	.

The proof appears in the full technical report [13], and as-
sumes fully independent random hash functions.

Handling joins. Distinct sampling over joins suf-
fers from the same difficulties as uniform sampling over
joins [3], and the same join synopsis approach can be used
to handle the common case of multiway foreign key joins.
However, the following simpler approach can work as well:
Often, fast approximate answers can be obtained by replac-
ing the large fact table in the query with a small synopsis
of that table, leaving all other relations in the query un-
changed. Even in the presence of joins, the resulting query
runs much faster, because the size of the fact table is the
performance bottleneck in the original query. Under such
scenarios, a Distinct Sample on a target-attr in the
large fact table can provide the same accuracy for queries
with joins as without joins.

Incremental maintenance. The Distinct Sampling
algorithm in Figure 3 is well-suited to incremental mainte-
nance. Besides the Distinct Sample itself, we need to save
only the current level �, the value of t, and the two coeffi-
cients and the modulus which define die-hash. Each inser-
tion is handled by executing one loop (Steps 4-16) of the
algorithm. Note that for all but a small fraction of the inser-
tions (namely, �

�� on average), the test in Step 5 fails and no
further processing is required. Similarly, we can ignore all
but a small fraction of the updates and deletions (after we
compute their die-levels). Each deletion with a die-level at
least � must have a matching row in S (which can be safely
deleted), or its attribute value is part of a reservoir sample
for that value, in which case we apply the technique in [15]
for deleting from reservoir samples. (Note that if a substan-
tial fraction of the relation is deleted, it may be necessary to
rescan the relation in order to preserve the accuracy guar-
antees [13].) Each update with a die-level at least �, which
does not modify the target attribute, is handled by updating
the row in place, if it is present in S. Updates that change
the target attribute are handled as a deletion followed by
an insertion. To minimize overheads, insertions, deletions,
and updates can be processed in batches.

Trade-offs with traditional sampling. There are
several advantages to traditional samples over Distinct
Samples. One is that a traditional sample is much faster

3More generally, any qval no larger than a constant fraction of the
qval�v� suffices.

to construct: it can be extracted without scanning the entire
data set. Moreover, a single sample can be used for distinct-
values estimation for any target attribute (although the ac-
curacy is often poor), whereas distinct sampling requires
a separate Distinct Sample for each target attribute (and a
priori knowledge of the target attributes). All such Distinct
Samples can be collected in one scan of the data, but the up-
date costs increase with the number of target attributes. Be-
cause any combination of attributes may comprise a (com-
posite) target attribute for a distinct values query, there
can be a large number of such target attributes. On the
other hand, our experimental results show that we can of-
ten store Distinct Samples for tens of attributes within the
same space as a single traditional sample, and still obtain
far more accurate results. Moreover, the speed of answer-
ing a query from a stored sample depends on the size of the
sample used, not the overall size of all samples collected.
Thus having multiple Distinct Samples does not slow down
query response-time. Hence, in practice, one may wish to
have Distinct Samples for a dozen or so of the most impor-
tant target attributes (single attributes or attribute combina-
tions), and then resort to a traditional sample for any other
target attributes.

4 Experimental Evaluation
In this section, we highlight the results of an experimen-
tal evaluation of distinct sampling. (Our complete set of
results is in the full paper [13].) Using synthetic and real-
world data sets, we show that distinct sampling gives esti-
mates to within 0%–10% whereas previous methods were
typically 50%-250% off.

4.1 Algorithms studied

We compare estimates obtained using a Distinct Sample
to estimates obtained from a uniform random sample by
applying two of the new estimators, GEE and AE, pro-
posed in [9, 7]. These estimators, especially AE, perform
as well or better than the other estimators, across a range
of synthetic and real-world data sets [7]. Descriptions of
GEE and AE, including straightforward extensions to han-
dle predicates, can be found in the full paper [13]. Note
that in all cases, the query predicate P is not known at the
time the Distinct Sample or uniform sample is collected.

In our experiments, each algorithm is given the same
sample size. Most of our experiments compare the three
estimators for a range of sample sizes. For distinct sam-
pling, we set valSampSize � � for all our experiments
with Zipf distributions and valSampSize � � for all our
experiments with real-world data. (These settings are based
on equation 1: We use a smaller setting for the real-world
data because the data sizes and hence the sample sizes are
smaller.)

The experiments were run on a 733 MHz Pentium PC
with 256MB RAM running Linux. Each data point plotted
is the average of 7 independent trials.

To facilitate comparison with [7], we evaluate an es-
timate using the error metric they study — the ratio er-



ror metric: If A is the exact answer for the distinct val-
ues query, and �A is the estimate, then the ratio error is
error� �A� � max�A�A �

�A
A �. Note that the ratio is always � �,

and the closer to 1 the better. In the text, we often find it
revealing to convert a ratio error r into a percentage error,
which we define to be �r � �� � ��. For overestimates,

this is exactly j �A�Aj
A � ��, the standard definition of per-

centage relative error.

4.2 Experimental Results: Synthetic Data

We first studied data sets generated from Zipfian distribu-
tions. These enable us to compare the accuracy of the var-
ious methods in a controlled manner. We generated val-
ues from Zipf(z) for zipf parameter z ranging from 0 (the
uniform distribution) to 4 (very high skew). Note that this
also varies the number of distinct values from high (when
z � ) to low (when z � �).
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Figure 5: Accuracy vs. data skew

Accuracy vs. skew. Our first experiment (Figure 5)
studies the accuracy of the three estimators over a range of
skew in the data set. We generate 1 million values from a
Zipf(z) distribution, for z � �� ��� ��� ���� � � � � ��. The
sample size for both the Distinct Sample and the traditional
sample used by GEE and AE is fixed at 10K, which is a 1%
sample. The distinct sampling estimator has an average ra-
tio error of less than ��� (i.e., less than a 2% relative error)
across the entire range of skew. An examination of the data
values plotted reveals that the average ratio error for dis-
tinct sampling is ���� (0.2% error) for uniform data, in-
creasing to ���� for z � �, and then back down to exactly
1 for high skew (z � ���). Distinct sampling produced an
exact answer for the z � ��� data sets because there was
sufficient space to fit a sample of size valSampSize for all
the distinct values in the data set. The GEE estimator was
much worse, ranging between 1.26 (i.e., 26% error) and
3.37 (i.e., off by more than a factor of 3). Such large errors
are likely unacceptable for approximate answers returned
in response to user queries. The AE estimator was better
than the GEE at low skew, with ratios of 1.06 (6% error)
and 1.74 (74% error) for the uniform and z � �� distri-
butions, but then much worse at moderate to high skew (up

data set number target domain num. of
of rows attribute size distinct

wuthering 120,951 words 128K 10,545
covtype 581,012 elevation 8K 1,978
census 48,842 native-country 64K 42

call-center 418,921 workitem-id 1M 46,691

Table 1: Data set characteristics

to a 6.5 ratio). In summary, the percentage errors for both
GEE and AE are at least 25 times larger than for distinct
sampling at every single skew value.
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Figure 6: Accuracy vs. predicate selectivity

Accuracy vs. predicate selectivity. Our next experi-
ment (Figure 6) shows that distinct sampling again achieves
very low ratios (1.01 to 1.07) compared with both GEE
(3.34 to 6.23) and AE (4.98 to 6.22), across a range of pred-
icate selectivities, from 2% to 100%. The predicate was a
one-sided range predicate on a non-target attribute, and the
sample was a 1% sample.

Other zipf experiments. In the full paper, we re-
port on experiments varying the data size from 100K to 1
million, varying the sample sizes from 0.2% to 6.4%, and
varying the number of simultaneous Distinct Samples shar-
ing the target space bound from 1 to 32. The results were
qualitatively the same as those discussed above.

4.3 Experimental Results: Real-World Data

We next studied three real-world data sets, summarized
in Table 1. (The fourth, call-center, is studied in Sec-
tion 4.4.) The results were similar to the zipfian data sets,
with the distinct sampling estimator doing quite well, while
the other two estimators having large errors.

Wuthering Heights. Wuthering is a data set of the
words in Wuthering Heights, in the order they appear in the
text. As can be seen from Table 1, there are 120K words of
which 10K are distinct. Figure 7 compares the three esti-
mators, for sample sizes ranging from 500 (0.4%) to 8000
(16.5%). The distinct sampling estimates ranged from 1.08
down to 1.017, which were far better than both the GEE
estimates (ranging from 2.86 down to 1.59) and the AE es-
timates (ranging from 8.11 down to 1.66). Note that, as in
the experiments on synthetic data, the distinct sampling er-
ror at the smallest sample size is much better (by a factor
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Figure 7: Accuracy vs. sample size for the text of Wuther-
ing Heights

select count(distinct elevation)
from covtype.data
where elevation � 2500 and cover-type = SpruceFir

Figure 8: Cover Type query

of 7) than the GEE or AE errors at the largest sample size,
despite the factor of 40 range in sample sizes. Thus even
if the sample space B were to be divided evenly among
40 Distinct Samples targeting 40 different target attributes,
Distinct sampling has a factor of 7 smaller error.
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Figure 9: Accuracy vs. sample size for the Cover Type
query

Cover Type. Covtype is the Forest Covertype data
set from the National Forest Service, down-loaded from
U.C. Irvine [24]. Each tuple has 54 attributes (elevation,
slope, distance to highway, forest cover type, etc). Many of
the attributes are low cardinality; we chose elevation, with
nearly 2K distinct values, in order to study an attribute with
moderate cardinality. We considered the query in Figure 8:
“At how many distinct elevations above 2500 meters was
there a SpruceFir forest?”. We consider sample sizes of
�K� �K� �K� �K� ��K� ��K, which ranges from a 0.17%
sample to a 5.5% sample. Note that the predicate restricts
not just the target-attr (i.e., elevation), but also another at-
tribute (i.e., cover-type). The selectivity of the Cover Type

select count(distinct native-country)
from census.data
where workclass = ’Federal-gov’ or
workclass = ’State-gov’ or workclass = ’Local-gov’

Figure 10: Census query

query predicate is 36.5%. In terms of the distinct eleva-
tions, 1161 out of 1978 satisfy the predicate (= 58.7%).
Figure 9 presents the results of this experiment. At the
smallest sample size, the distinct sampling estimator has
a ratio of 1.56. This reflects the fact that the predicate
reduces the effective sample size by almost a factor of 3.
At the second smallest size (0.34% sample), the ratio im-
proves to 1.09, and continues to improve down to 1.03 with
increasing sample sizes. The GEE ratios range from 3.93
down to 1.18. The AE ratios range from 1.77 down to 1.06.
Thus the distinct sampling errors are consistently smaller
than the GEE and AE errors, but not by as large of margin
as in previous experiments.
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Figure 11: Accuracy vs. sample size for the Census query

Census. Census is a data set from the U.S. census
database, also down-loaded from U.C. Irvine [24]. Each
tuple has 15 attributes (age, workclass, marital status, etc).
Most of the attributes have only tens of distinct values;
we chose native-country (with 42 distinct values) as a rep-
resentative attribute. We will consider the query in Fig-
ure 10: “How many distinct nationalities are represented
by people working in government?” The query tests the ef-
fectiveness of the estimators when there are only a small
number of distinct values. We consider sample sizes of
�� �� �� �� �, which ranges from a 0.1%
sample to a 1.6% sample. The selectivity of the Census
query predicate is 13.4%. In terms of the distinct native-
country values, 39 out of 42 satisfy the predicate (= 85.7%).
At the smallest sample size, the distinct sampling ratio is
1.36, due to the low predicate selectivity. This drops to 1.2
for the 0.2% sample, and then below 1.013 (within 1.3% er-
ror) for all larger sample sizes. The GEE estimator ranges
from 1.76 down to 1.15, and is consistently better than the
AE estimator. The AE estimator drops dramatically from
118 to 16 (both off the plot) to 3.7 to 1.8 to 1.3. For each
sample size 0.8% or larger, the AE percentage errors are



over 12 times larger than the distinct sampling percent-
age errors, but the difference is less for the smaller sample
sizes.

To summarize, distinct sampling performs quite well for
these real-world data sets, even in the presence of predi-
cates, and far better than GEE and AE, which tend to alter-
nate as to which is better.

4.4 Experimental Results: Call Center Reports

Call-center is a privately-available data set, obtained with
permission. It is a collection of event records tracking the
workflow of individual calls into a customer service center
(“call center”). Records associated with an individual call
are all tagged with the same workitem-id, unique to that
call, and are intermixed with all other records. This data
set is 10 hours of simulated call activity used in an actual
test run of an alpha-version of a commercial call center pro-
cessing system. This studies the high cardinality case (46K
distinct workitem-ids). Note that call centers for large com-
panies can generate �

� gigabyte or more of event data per
week, causing the report generation to be slow for the more
complicated reports.

In the full paper [13], we report on a series of experi-
ments with two real-world reports on the call-center data
set. These experiments were run on the same 733 MHz
Pentium PC with 256MB RAM as above, but this time run-
ning Windows NT 4.0. The call-center data was loaded
into Microsoft SQL Server 7.0. Traditional samples and
Distinct Samples of various sizes (1% to 25%) were ex-
tracted from the central event table, and stored in the same
SQL Server database as the original data. It took only a few
minutes to extract and store all the samples used in our ex-
periments. The reports were developed for execution from
within Seagate Crystal Reports, a commercial report gen-
eration application. The reports were rewritten to query the
samples instead of the full event table.

The two reports studied are typical for session-based
event reports in that all the events for a call session must
be in the sample in order to compute the derived statistics
for that call. Accordingly, for our Distinct Samples, we set
the valSampSize to be larger than the maximum number of
events for a call (t � ��). In contrast, traditional samples
suffered dramatically by having only some of the events for
any given session, as discussed in the full paper.

Table 2 depicts the query times and relative errors in
the answers for each field in the Call Center Performance
Report (one of the reports studied), for Aqua reports using a
range of Distinct Sample sizes (a single trial each). Highly-
accurate answers are obtained in orders of magnitude less
time than producing the exact report.

The second report studied, the Call Center Time of Day
Performance Report, suffered dramatically from substan-
tial memory thrashing when producing an exact report. On
our experimental platform, the exact report took 5 hours
and 26 minutes to generate, whereas an Aqua report using
a 5% Distinct Sample took only 10 seconds to generate,
while producing answers within a 7% relative error on av-

erage.
As detailed in the full paper, the results provide a com-

pelling case for the effectiveness of distinct sampling for
speeding-up call center reports.

5 Conclusions
Distinct values queries are commonplace both within the
query optimizer and in user queries and reports. As multi-
terabyte data recording and warehousing environments be-
come increasingly the norm, complex queries over such en-
vironments suffer from increasingly slow response times.
Thus obtaining fast approximate answers becomes an im-
portant, attractive option for users. Previously, there were
no effective techniques for providing fast approximate an-
swers to the broad range of distinct values queries consid-
ered in this paper. This paper has presented a novel ap-
proach, called distinct sampling, for providing fast, highly-
accurate approximate answers to distinct values queries for
a given target attribute. Our experiments show that distinct
sampling provides estimates to within 0%–10% relative er-
ror, whereas previous methods were typically 50%–250%
off, for the same storage space. Moreover, Distinct Sam-
ples can be computed in one pass over the data, and in-
crementally maintained, with low overheads. Finally, we
demonstrated how distinct sampling can provide approx-
imate event reports that are also within 0%–10% relative
error, while speeding up report generation by 2–4 orders of
magnitude. Therefore, distinct sampling is the first effec-
tive technique for providing fast, approximate answers to
distinct values queries and session-based event reports, and
is recommended for large data recording and warehousing
environments.
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