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ABSTRACT

Current wireless protocols retransmit packets that fail the checksum

test, even when most of the bits are correctly received. Prior work has

recognized this inefficiency; however, the proposed solutions (PPR,

HARQ, SOFT, etc.) require changes to the hardware and physical

layer, and hence are not usable in today’s WLANs and mesh networks.

Further, they are tested using fixed modulation and coding schemes,

whereas production 802.11 WLANs adapt their modulation and codes

to maximize their ability to correct erroneous bits.

This paper makes two key contributions: 1) it introduces ZipTx,

a software-only solution that harvests gains from using correct bits

in corrupted packets with existing hardware, and 2) it characterizes

the gains of partially correct packets for the entire range of operation

of 802.11 networks, and in the presence of adaptive modulation and

forward error correction. We implement ZipTx as a driver exten-

sion and evaluate our implementation in both outdoor and indoor

environments, showing that ZipTx significantly improves throughput.

Categories and Subject Descriptors C.2.2 [Computer Sys-

tems Organization]: Computer-Communications Networks

General Terms Algorithms, Design, Performance

1 Introduction

Current wireless networks operate in an all-or-nothing mode. When a

received packet fails the checksum test, the entire packet is discarded

and retransmitted, even if most of its bits are correct. Prior work

has recognized this inefficiency and proposed a few mechanisms to

exploit such partially correct packets [20, 18, 29]. The use of soft

values from the physical layer is the principal technique underlying

these solutions. Instead of presenting a simple 0-1 value for each

bit, they require the hardware to expose a confidence value in each

decoded bit. These confidence values can then be combined across

multiple receptions to correct faulty bits [29], or used to direct the

transmitter to only retransmit the bits that are likely to be wrong [18].

However, current WiFi hardware does not expose soft values to higher

layers. Hence, any technique using soft values cannot be deployed on

current production platforms, nor on production platforms available

in the near future. In fact, all that we can get from the hardware are

hard 0-1 values for each bit in a packet. Ideally, one would want a

solution that is able to operate purely at the software layer to exploit
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partial packets in the absence of any information that selectively

identifies correct bits.

Even if such a solution exists, would it be beneficial in actual

802.11 networks? The benefits of partial packets have been demon-

strated using the GNU Radio platform, where packets have been sent

at fixed modulation and code rate [18, 29]. However, production

802.11 networks, like most production networks, run autorate algo-

rithms that adapt the coding and modulation to avoid scenarios with

high packet error rates and approach the theoretical capacity of the

medium [17]. It is unclear what further gains partial packets can

milk in the presence of adaptive modulation and coding algorithms.

Hence, there is a need to reexamine the benefits of partial packets in

production 802.11 networks.

This paper presents ZipTx, a software-only solution that signif-

icantly increases wireless throughput and reduces dead spots by

avoiding fate sharing of bits within a packet. ZipTx is implemented

as a driver extension and hence is easy to deploy in existing WiFi net-

works. ZipTx turns off the checksum test and allows the hardware to

pass up all packets including those that may contain bit errors. ZipTx

uses error correcting codes to recover packets with low BER without

knowing which bits in a packet are erroneous. However, given that

error correcting codes have to add at least twice as much redundancy

as the number of incorrect coding symbols, it is inefficient to use

coding to recover packets with a high BER. ZipTx uses known pilot

bits in each packet to identify high BER packets and recover them

via retransmission instead of coding. This heterogeneous recovery

strategy allows ZipTx to significantly increase throughput.

ZipTx’s key feature is that it operates atop autorate, and hence

presents the first work that reveals the subtle interaction between

partially correct packets, and adaptive modulation and coding. We

find that bit-rate adaptation fundamentally changes the gains from

partial packets. Specifically, the achievable gains are vastly different

in two different scenarios: typical indoor channels where SNRs are

high, and nodes are stationary, and challenged environments, where

SNRs are low, or nodes are mobile. In the typical stationary indoor

WLAN setting, SNRs are usually high, and autorate is effective, i.e.,

it finds a bit-rate that exhibits a throughput close to the capacity of the

channel. Here, partial packets are mostly beneficial when the channel

capacity is between two bit-rate options, limiting the gains to the size

of the gaps between the bit-rates available to the autorate algorithm.

In contrast, in challenged outdoor environments, long multi-path

delays can create high bit errors at all bit-rates [3], causing autorate to

fail to find a bit-rate where most of the packets are correctly received.

Harnessing partial packets in such scenarios can double or triple the

throughput. Similar large gains occur in mobile scenarios, where

autorate’s long timescale adaptation is often unable to keep up with

the fast changes in channel quality.

We have built a prototype of ZipTx as an extension to the Mad-

Wifi driver [1]. We evaluate our implementation in both indoor and

outdoor scenarios. Our experiments reveal that ZipTx can effectively

harness partial packets. Our key contributions are as follows:

• We present the first characterization of partial packet behavior



in operational 802.11 networks, which exhibit autorate, and use

adaptive modulation and error correcting codes, to function across

a wide range of channel conditions.

• We describe the design and implementation of ZipTx, a system

that exploits partial packets to improve throughput across the entire

range of SNRs, using current hardware and requiring only software

modifications.

• For typical 802.11 deployment scenarios in stationary high-SNR

indoor networks, ZipTx can push the autorate algorithm to the next

highest bit rate, typically producing a throughput gain of 10-20%.

• In outdoor environments which are challenged by low SNRs and

long multi-path delays, ZipTx produces a median throughput gain

of 2-3× and significantly alleviates dead spots.

• In mobile scenarios, where autorate may be too slow to track the

optimal bit rate, ZipTx also produces a median throughput gain of

2-3×.

• ZipTx is practical. It can operate a wireless link at the maximum

rate of 54 Mb/s, while consuming only a few percent of the CPU.

2 Related Work

Recent papers have noted that wireless nodes retransmit a packet

because of a few bit errors, ignoring that most of the bits have been

correctly received. They address this inefficiency by either changing

the physical layer or its interface to higher layers [18, 29, 19, 22, 8,

20]. Specifically, PPR [18] takes advantage of “soft information”,

a confidence value typically computed by the physical layer on its

bit decoding decisions. It uses the soft information to find incorrect

chunks in a packet and retransmit only those chunks. SOFT [29] also

makes use of soft information, but instead exploits wireless spatial

diversity to address the problem. Access points that hear the same

transmission communicate over the wired Ethernet and combine their

soft information to correct faulty bits in a corrupted packet. With

Chase combining [8, 14], a receiver stores soft-information from

corrupted packets and recovers from packet corruption by combining

soft information across a packet and its retransmissions. Hybrid-

ARQ (HARQ) with incremental redundancy is used for high speed

down link packet access (HSDPA) in the 3GPP cellular networks [10].

Instead of retransmitting a corrupted packet, it transmits a new coded

version of the packet.

ZipTx builds on this foundation but differs from it in two main

ways. First, it is a pure software patch that works with existing hard-

ware and hence delivers immediate benefits to the large population of

802.11 users. Second, while the above schemes are evaluated either

via simulation [13, 14] or on USRPs using fixed modulations and

coding [29, 18], ZipTx experiments with actual wireless cards and

addresses the reality of an operational wireless channel with a variety

of modulation schemes, underlying forward error correcting codes

(FEC), and automatic bit-rate selection.

There is also a rich literature that uses coding to improve wire-

less throughput. Most wireless technologies use forward error cor-

recting codes at the link layer as well as error detection codes like

CRC [16, 9]. In [15], the authors increase the throughput of sensor

networks by dividing a packet into multiple segments, each with its

own CRC; instead of retransmitting an entire packet because of a few

erroneous bits, the sender retransmits only the corrupted segments.

The authors of [23] and [12] reduce wireless losses by combining

multiple corrupted receptions of the same packet using majority vot-

ing or incremental CRC. Prior work also employs network coding to

improve the throughput and reliability of mesh networks [7]. ZipTx

usage of coding however differs from the above work since it employs

an outer code that is implemented in the driver and operates on top

of the existing 802.11 link-layer convolutional codes. Furthermore,

in contrast to prior work which assumes fixed modulation and cod-

ing, ZipTx characterizes the gains of partially correct packets for the

entire range of operation of 802.11 networks, and in the presence of

adaptive modulation and forward error correction.

Finally, our work is also related to past work on characterizing

wireless errors. The communications field has spend significant effort

characterizing errors on the wireless medium and their relation to

SNR [28], whereas the networking community has looked at the

characteristics of the link layer, considering only fully correct pack-

ets [11]. In contrast, this paper is the first we are aware of to show

experimental results characterizing errors in partially correct 802.11

packets, as perceived by the driver after the failure of the FEC in the

PHY layer, and in the presence of rate adaptation.

3 Experimental Environment

We describe our experimental environment, which is used in later

sections for both characterizing the 802.11 channel and evaluating

ZipTx, a driver that exploits partial packets to improve throughput.

(a) Hardware All measurements are taken on 3.0 Ghz Intel Core2

Duo machines running Linux FC 6, and equipped with either a Net-

gear WAG311 card or DLink DWL-AG530 card, both of which are

based on an Atheros chipset and work with the Madwifi driver. Some

of our results are reported as a function of the RSSI, which on hard-

ware using the Atheros chipset, is reported as the SNR in dB.

(b) Driver Configuration We run all experiments in the Madwifi

monitor mode because this mode can be configured to deliver to

the driver all packets received by the hardware including those that

failed the CRC check. However, the interference mitigation option

in the monitor mode is known to have a bug that reduces receiver

sensitivity [2], and hence we turned this option off in our experiments.

(c) Indoor vs. Outdoor Scenarios Indoor scenarios include a set of

35 sender-receiver node pairs set up in various locations throughout

our lab. Each run involved transmitting UDP packets between a

node pair for one minute. These runs used 802.11a in order to avoid

being affected by the existing 802.11g network in our lab. Outdoor

scenarios include a set of 26 node pairs. For each pair, one node

has an antenna attached to our building, placed outside the second

story window. The second node is at ground level somewhere on the

campus. These links were generally unable to receive packets at the

higher rates of 802.11a or 802.11g, so all outdoor measurements were

taken using 802.11b. Again, each run is one minute long. The use

of multiple 802.11 modes allows us to illuminate crucial differences

between them, as discussed in §4.

(d) Measurement Methodology For each sender-receiver pair, in

the indoor and outdoor environments, we collect multiple traces. We

want to use these traces to estimate the gains of partial packets when

using the optimal bit rate for each channel. The problem, however, is

that one cannot find the optimal bit-rate for a channel, unless one tries

all bit-rates and compares their throughput. Thus, for each channel,

the sender transmits 1 packet at each rate and repeats the cycle to

collect a one-minute trace. The one-minute trace is then divided into

a sequence of short traces each of them containing 50 packets at

each rate. We then feed these short traces to an idealized autorate

algorithm that identifies for each short trace the single bit-rate that

results in the maximum throughput. Operating over a sequence of

short traces allows us to consider scenarios where the optimal bit rate

changes over time for the same sender-receiver pair.

Finally, we note that we use offline processing of traces only to

characterize the 802.11 channel. Our evaluation of ZipTx is done by



Term Definition

Correct-byte

throughput

Throughput measured over all correctly re-
ceived bytes including those in erroneous
packets

Correct-packet

throughput

Throughput measured over fully-correct
packets

Max-byte bit-

rate

Bit-rate that maximizes the correct-byte
throughput

Max-packet bit-

rate

Bit-rate that maximizes the correct-packet
throughput

Figure 1: Terms used in this paper

running the actual driver on the various channels in our indoor and

outdoor environments.

4 Partial Packets in Production 802.11 Channels

802.11, like most modern wireless technologies (e.g., WiMax, cel-

lular), is designed with multiple modulation and coding schemes

to allow it to provide the highest possible throughput for a given

underlying channel quality. An autorate algorithm typically runs in

the driver and decides which of the available modulation and coding

schemes to use at any given time. Such adaptation was not consid-

ered in prior works [18, 29, 15, 12]. In contrast, here we focus on

the benefits of partial packets in 802.11 production networks, where

autorate is a critical part of maintaining high throughput.

The goal of autorate is to select from a set of available bit-rates the

bit-rate that maximizes the channel’s throughput. It is important to

note that the optimal bit rate may differ depending on whether the

nodes can exploit correct bytes in partial packets. In particular, if

the nodes cannot utilize partial packets, they will typically maximize

their throughput by using a bit-rate at which the vast majority of the

packets are received fully correct. In contrast, if the nodes can utilize

correct bytes in partial packets, they may be able to increase their

throughput by jumping to a higher bit-rate at which many packets

contain errors. In this paper, we define the correct-byte throughput

as the channel throughput measured over all correctly received bytes

including those in erroneous packets, and the correct-packet through-

put as the channel throughput measured over fully-correct packets.

We also define the max-byte bit-rate as the bit-rate that maximizes the

correct-byte throughput, and the max-packet bit-rate as the bit-rate

that maximizes the correct-packet throughput.1 Figure 1 lists these

definitions.

Next, we investigate the gains from harnessing partial packets in

both typical and challenged 802.11 channels.

4.1 Typical 802.11 Channels

Typical 802.11 production networks are indoor WLANs, where most

nodes are stationary, and dense access point deployment ensures

relatively high SNRs. Such SNRs allow 802.11 to operate in the g or

a mode and pick from a large variety of available bit-rates, as shown

in Figure 2.2 This fine granularity of available bit-rates enables the

autorate algorithm to find a bit-rate that accurately matches the ideal

rate sustainable by the channel.

1We focus on correct bytes rather than bits. Looking at correct bit throughput can
be misleading because even a completely random packet will have 50% correct bits
on average. We instead consider the correct bytes which more accurately reflect the
information available from partial packets.

2The table ignores the 9Mb/s bit-rate specified by the standard because we find, as
did past work [4], that it is never the optimal bit-rate choice and hence never chosen by
the autorate algorithm.

Bit-Rate (Mb/s) Max Throughput (Mb/s) Relative Gap

6 5.7 n/a
12 10.9 2x
18 15.8 1.5x
24 20.0 1.25x
36 27.9 1.5x
48 34.3 1.25x
54 37.5 1.12x

Figure 2: 802.11a/g Autorate options: The table shows the available bit-rates as well
as the resulting maximum throughput. The difference between the maximum throughput
and the corresponding bit-rate comes from the practical overheads of packet headers and
channel acquisition. It also shows the relative increase in bit-rate (and throughput) as
autorate jumps from one bit rate to the next.
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Figure 3: CDF of byte error rates in typical 802.11 channels: The figure plots the
byte error rate for when the autorate algorithm maximizes the correct-packet throughput,
as in today’s networks, and when it maximizes the correct-byte throughput.
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Figure 4: Byte Error vs. Gap Size: Byte error rates in partial packets increase with
the size of the gap between the used bit-rate and the one below it.

(a) How often do we see partial packets in typical 802.11 chan-

nels, and how many errors do they have? The answer to this

question depends, not only on the channel, but also on the bit-rate

chosen by the autorate algorithm. However, the chosen bit-rate itself

depends on whether the receiver can utilize partial packets. If it

cannot it will operate at the max-packet bit-rate, whereas if can, it

will instead operate at the max-byte bit-rate often choosing a rate

with a large fraction of partial packets.

Figure 3 plots the CDF of byte error rate taken over all packets,

both for the case where the receiver cannot exploit partial packets

and hence runs at the max-packet bit-rate, and when it can exploit

partial packets and hence runs at the max-byte bit-rate. The figure

shows that whether the receiver observes partial packets depends

on whether it can harness them. Specifically, if the receiver cannot

use partial packets, it will select a bit-rate where the vast majority

of the packets are received fully correct, and will hardly see any

partial packets; whereas if it can utilize partial packets, it will push

for a higher bit-rate, often ending up with a significant fraction of its
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Figure 5: Ideal gains from partial packets in typical indoor channels: The figure
plots the ratio of the maximum correct-byte throughput to that of the maximum correct-
packet throughput as a function of the RSSI on the channel.
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Figure 6: Difference between the max-byte bit-rate and the max-packet bit-rate

in typical channels. The figure shows that in 70% of the traces the max-byte bit-rate
is one step higher than the max-packet bit-rate, indicating that in most of the indoor
scenarios the gains of partial packets arise from autorate jumping one bit-rate higher, and
hence are limited by the gap between adjacent bit-rates.

packets being partially correct. The figure shows that, in the scenario

that the receiver can use partial packets, 35% of the packets are fully

correct, 55% are partially correct, and about 10% are erasures, i.e.,

not captured at all.

The figure also reveals that, in typical 802.11 channels, partial

packets have low byte error rates, smaller than 5%. Hence, all one

needs to recover these partial packets is to correct a few erroneous

bytes. This low byte error rate can be attributed to the autorate

algorithm. Specifically, if at the current rate, partial packets have too

many erroneous bytes, this will reduce the correct-byte throughput at

that rate, causing the autorate algorithm to move to a lower bit-rate

with fewer byte errors. Furthermore, the byte error rate is typically

lower if the difference between the current rate and the one below

it is small. For example, the 54 Mb/s bit-rate experiences very low

byte error rates because the relative drop in rate as we move down to

48 Mb/s is fairly small. Our empirical results confirm this argument.

Figure 4 shows how the 90th percentile error rate changes with the

size of the gap between the current rate and the one below it. The

figure clearly shows that as the gap increases the error rate in partial

packets increases as well. Thus, in typical indoor channels, where

autorate can choose from a fine-grained selection of bit-rates, partial

packets have only a few percent byte errors.

(b) So, how much gain can we obtain from harnessing partial

packets in typical 802.11 channels? We answer this question em-

pirically using the traces from our indoor environments. For each

trace we compute two values, the first is the correct-byte throughput

assuming the autorate algorithm maximizes correct bytes, and the

second is the correct-packet throughput assuming the autorate algo-

rithm maximizes correct packets. We then compute the ratio of these

Bit-Rate (Mb/s) Max Throughput (Mb/s) Relative Gap

1 0.93 n/a
2 1.77 2x

5.5 4.06 2.7x
11 6.45 2x

Figure 7: 802.11b Autorate options: The table shows the available bit-rates as well
as the resulting maximum throughput. It also shows that in 802.11b the relative increase
in bit-rate (and throughput) as autorate jumps from one bit rate to the next is at least 2x,
i.e., significantly higher than in the 802.11a/g modes.
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Figure 8: CDF of byte error rates in challenged outdoor channels: The figure
plots the byte error rate for when the autorate algorithm maximizes the correct-packet
throughput, as in today’s networks, and when it maximizes the correct-byte throughput.
In contrast to the indoor channels, both bit-rates have many partial packets. Note also
that more than 40% of the packets are erasures.

two values, which provides an upper bound on the ideal gain one

can hope to achieve from harnessing partial packets in typical indoor

channels. Figure 5 plots this ideal gain as a function of the average

RSSI in a trace. The figure shows that the gain from partial packets

in typical indoor channels varies between 10% and 70%. While such

a throughput improvement is significant, it is smaller than the gains

reported by prior work [18, 29, 15, 12, 20], showing that the results

from non-adaptive channels do not directly apply to channels with

adaptive rate selection.

Let us try to understand the origins of the gains in typical indoor

channels and why they differ from those observed on channels with-

out rate adaptation. Recall that we have shown that typical indoor

802.11 channels operating at the max-packet bit-rate, as they do to-

day, hardly experience any partial packets. Thus, the only way to

harness any gain from partial packet is to push to higher bit rates. Our

measurements show that in most cases, the ability to harness partial

packets allows the autorate algorithm to push the bit-rate one step

higher. Specifically, Figure 6 plots the number of steps between the

max-byte bit-rate and the max-packet bit-rate over all indoor traces

(e.g., there is one step between adjacent bit rates such as 48 Mb/s and

54 Mb/s). It shows that in 70% of the cases the max-byte bit-rate is

just one step higher. Thus, the gains from partial packets in these

networks are upper bounded by the size of the gap between adjacent

bit rates. Hence, they can be significantly smaller than those in non-

adaptive channels, where there is no such bound. Furthermore, since

the gap between adjacent bit-rates is higher at the lower bit-rates used

at lower RSSIs, the gains are also higher in that range.

4.2 Challenged 802.11 Channels

While 802.11 is most commonly deployed as stationary indoor

WLANs, the widespread availability of cheap hardware has mo-

tivated its deployment in a number of additional, more challenged
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Figure 9: Ideal gains from partial packets in challenged outdoor channels: The
figure plots the relative throughput gain from harnessing partial packets as a function of
the RSSI. The gains are significantly larger than in typical indoor channels.

environments, including outdoor mesh networks [25], rural wireless

networks [27], vehicular networks [6], and mobile environments [5].

Bit-rate adaptation is less effective in such channels. Specifically, in

the outdoor scenarios, the SNR is typically low, requiring the use

of 802.11b, which offers the coarse selection of bit-rates shown in

Figure 7. This reduces the ability of autorate to find a bit-rate that ac-

curately matches the quality of the underlying channel and eliminate

bit errors. Furthermore, long multi-path delays in outdoor channels

can create high errors rates at all bit-rates [3], causing autorate to fail

to find a bit-rate where most of the packets are correctly received.

Similarly, autorate often struggles in mobile scenarios because it is

unable to keep up with the fast changes in channel quality. In this

section, we focus on stationary outdoor scenarios, while in §7.3, we

show that mobile indoor scenarios exhibit similar behavior.

(a) How often do we see partial packets in challenged outdoor

channels, and how many errors do they have? Similarly to the

indoor case, we answer this question by plotting the byte error rate

in transmitted packets, both for the case when autorate maximizes

the correct-packet throughput and when it maximizes the correct-

byte throughput. Figure 8 shows two interesting differences from

the typical indoor scenario in Figure 3. First, the byte error rate is

strikingly similar between the max-byte bit-rate and the max-packet

bit-rate, and more importantly the max-packet bit-rate exhibits a large

fraction of partial packets. Indeed more than 40% of all received

packets are partial packets. This indicates that challenged channel

can obtain large gains from harnessing partial packets because almost

half of the packets they receive in today’s networks are partial packets.

Furthermore, since such channels can improve throughput without

moving a step up in bit-rate, their gains are not as limited by the gap

between adjacent channels.

Second, the figure shows that partial packets in challenged chan-

nels have much higher byte error rates than in typical indoor channels.

Specifically, while in the indoor scenarios, almost all partial packets

have less than a 5% byte error rate, only half of the partial packets in

our outdoor channels have less than 5% of their bytes in errors, and

many have error rates as high as 50-100%. In practice, there is an

overhead associated with recovering erroneous bytes. For example,

the receiver may have to inform the sender of the location of such

errors [18]. This overhead increases with increased byte error rates.

Hence, though challenged channels could offer large gains, collecting

such gains comes at the price of higher practical overheads.

(b) So, how much gain can we obtain from harnessing partial
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Figure 10: Difference between the max-byte bit-rate and the max-packet bit-

rate in challenged outdoor channels. The figure shows that in about 70% of the traces
the max-byte bit-rate is the same as the max-packet bit-rate, indicating that in most of
the outdoor scenarios the gains of partial packets arise from keeping the same bit-rate
that one would use to maximize the throughput of correct packets but fixing the partial
packets on it.

packets in challenged outdoor channels? Figure 9 plots the ideal

gain from partial packets as a function of RSSI. The ideal gain is

computed as the ratio of the correct-byte throughput assuming the

autorate algorithm maximizes correct bytes, to the correct-packet

throughput assuming the autorate algorithm maximizes correct pack-

ets. The figure shows that the potential gain from partial packets in

challenged channels could be as high as 7x. Further, the gains are

higher at lower RSSIs because at these low RSSIs partial packets

account for a higher fraction of the received packets.

Figure 10 gives a deeper insight about the origin of these gains.

It shows that in 70% of the outdoor traces, the rate that maximizes

the correct-byte throughput is the same as the rate that maximizes

the correct-packet throughput. Hence, in most outdoor scenarios,

collecting the gains of partial packets does not require autorate to

jump to higher rates. The gains rather arise from harnessing the

partial packets that naturally occur even when using the bit-rate that

maximizes the throughput from fully correct packets.

5 Harnessing Partial Packets

Now that we have shown the potential gains from taking advantage

of the correct bytes in partial packets, what software techniques

can we use to harness these gains? As we have seen earlier, every

channel has to deal with three types of packets: correct, erasure,

and partially correct. Regardless of the protocol details, we believe

that any technique to harness partial packets should adhere to the

following guidelines on how to handle each type of packets:

• Correct Packets: Figures 3 and 8 show that even channels opti-

mized for correct-byte throughput still see more than 30% fully

correct packets. Thus, we would like a technique that does not

introduce any extra overhead to correct packets.

• Erasure Packets: When a packet is lost completely and not cap-

tured by the hardware we cannot take advantage of any partial

packet information. In this case, the optimal mechanism is to

retransmit the packet. Any scheme that tries to do anything else

will be wasting throughput.

• Partially Correct Packets: Since we are using off the shelf hard-

ware, we cannot modify the physical layer in order to get addi-

tional information from it. Without information from the PHY

about which bits are incorrect, there are really only two high-level

approaches to harnessing partial packets: error detection typically

done using CRCs, and error correction typically done using error

correcting codes. Below we explain these two options in detail and

compare their ability to harness partially correct packets.



5.1 Exploiting Partial Packets Using Per Block CRCs

The simplest technique for taking advantage of partial packets is to

determine which parts of the packet are in error and retransmit only

those parts instead of retransmitting the entire packet. One way to

do this is for the sender to divide the packet into smaller blocks and

compute a separate CRC for each of these blocks. Upon receiving a

partial packet, the receiver recomputes the CRC for each block and

any block that does not pass the CRC test must be retransmitted.

But what block size maximizes throughput? Choose too small a

block size, and the overhead of sending the per block CRCs them-

selves negates the gain of partial packets. Choose too large a block

size and most blocks will have incorrect bytes requiring retransmis-

sion of almost all blocks in a partially correct packet. We determine

the optimal block size using empirical measurements. Figure 11

shows for various block sizes the difference in throughput between a

per block CRC scheme and a scheme that uses only correct packets.

The results are for a CRC size of 4 bytes, the same as the 802.11

packet-level CRC, and are computed ignoring the overhead of the

receiver’s communication of which blocks are in error. The results

show that the optimal block size is 64, and we find that this same

result holds not just for the average across all RSSIs, but for each in-

dividual RSSI as well. Thus we use this block size for our evaluation

of the per block CRC scheme.

How effective is a CRC based scheme in harnessing the gains of

partial packets? Clearly, any practical realization of such a scheme

would incur overheads resulting from the need for receiver feedback

and the associated communication delay. We consider two possible

realizations. The first is an idealized per block CRC scheme that

assumes infinite receiver feedback, i.e., it assumes the receiver will

keep updating the sender about which blocks have errors until all

blocks are correctly received, and that such feedback has no overhead

and incurs no delay. The second is a more practical scheme that

limits itself to two rounds of feedback. In this scheme the sender

transmits all native data packets as normal. If the receiver fails to

recover a packet, it uses a first round of communication to request the

per-block CRCs, and a second round of communication to request

the retransmission of only those blocks that fail the CRC check. If

the packet is still undeliverable after the erroneous blocks have been

retransmitted, it is considered as a loss.

Figure 12 plots the gain of harnessing partial packets with the

above CRC-based schemes. We compute the gain as the ratio of the

throughput delivered by the scheme to the throughput delivered using

today’s methods which drop all partial packets. The figure compares

these gains to the ideal gains discussed in §4.1(b). The results are

from the indoor traces and they are similar in nature to those from

the outdoor traces. The figure shows that the two-round CRC scheme

can garner about 50% of the ideal gains of partial packets, while

the idealized CRC scheme captures slight more than 60% of these

gains. The reason these schemes fail to collect all of the ideal gains

is the natural trade-off between using a small block size but incurring

a large overhead from sending the per-block CRCs, versus using a

large block size but increasing fate-sharing among the bytes in partial

packets.

5.2 Exploiting Partial Packets Using Coding

We have seen that simply detecting errors and retransmitting erro-

neous sections of the packet allow us to obtain 50% to 60% of the

ideal gains available from partial packets. Can we do better? Without

physical layer information, the only other way we can envision to

take advantage of partial packets is through the use of error correct-

ing codes. At the most basic level, error correction involves sending
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Figure 11: Throughput gain of the per block CRC scheme across block sizes:

The figure plots for various block sizes the difference in throughput between a per block
CRC scheme and a scheme that uses only correct packets, averaged over all indoor traces.
A block size of 64 provides the best choice.
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Figure 12: Effectiveness of the per block CRC schemes in harnessing partial

packets: The figure shows that an idealized per block CRC scheme captures about
60% of the ideal gains available from partial packets, whereas a more realistic 2-round
CRC-based scheme obtains 50% of these gains.

parity bits (i.e., redundancy) in addition to the original message, such

that even in the face of some corruption in the transmission, the

receiver is able to figure out the original message. Error correcting

codes are a natural fit for scenarios where the receiver does not have

access to physical layer information, because the receiver does not

need to know which individual bytes are erroneous. As long as it has

an estimate of the byte error rate, it can request sufficient redundancy

to correct all the errors.

One may wonder, given that 802.11 already uses convolutional

codes at the physical layer (PHY), whether there is any benefit from

having an additional code at the higher layer. There are two problems

with the current PHY-layer FEC. The first is that they are short

convolution codes which cannot handle long error bursts. The second

is that the added redundancy must be chosen before the packet is sent

independently of how many errors occur in the packet’s transmission.

Error correcting codes at a higher layer can address both of these

limitations. In fact, they work as outer codes on top of the inner

convolution codes provided by the PHY. It is widely known [24] that

the concatenation of outer and inner codes is useful for combating

long error bursts. Further, working at a higher layer allows the

transmitter to apportion the redundancy based on receiver feedback

instead of making the decision before the packet is sent.

(a) Which Error Correcting Code Should We Use? Coding for

error correcting is a vast field, with many trade-offs between the

various coding options. We believe however that for our problem, we

need a code that satisfies the following:

• (a) Systematic Code: Many codes turn the original data into some



Symbol

Size

Block Size SER/BER Worst SER /

Average SER

4 15 1.11 35.1
6 63 1.21 7.4
8 255 1.25 2.5
11 2047 1.46 1.0
16 65535 1.67 1.0

Figure 13: Trade-off associated with the choice of a symbol size: Decreasing the
symbol size decreases the average symbol error rate (SER) for a given bit error rate
(BER), but increases the symbol error rate in the worst block in a packet.
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Figure 14: Percent of redundancy needed to correct a partial packet: This figure
shows the CDF of the redundancy required to correct the worst block in a packet for
different symbol sizes, i.e., the redundancy required to fully correct the packet. The
figure shows that a symbol size of 11 bits minimizes the necessary redundancy, but also
shows that any choice above 8 bits is effectively equally good.

garbled set of bits, which is meaningless without decoding. Sys-

tematic codes, on the other hand, contain a copy of the original data

as the first bits in the codeword. This allows us to send the native

data with no parity information in the first transmission, and avoid

any error correction overhead if no errors are introduced. Avoiding

this overhead is important, because as we have seen in §4.1(a), a

significant fraction of packets are received correctly.

• (b) Incremental Redundancy: Existing error correcting codes at

the physical layer have course granularity, i.e., the auto-rate can

choose from only a few bit-rates. This results in a loss of efficiency

when the channel is between two rates. Additionally, these FEC

codes choose the amount of redundancy before the packet is trans-

mitted, hence all packets incur the same overhead regardless of

how many errors they actually have. In contrast, we would like

our code to support incremental redundancy, allowing matching

of the redundancy to the channel quality at a fine granularity, and

sending less redundancy for packets with fewer errors.

• (c) Efficient Implementation: Error correcting codes are usually

implemented in hardware since the Galois fields typically used in

their implementation are far more efficient in specialized hardware

than in software implementations on top of general purpose com-

puters. Thus it is important to choose a code that we can efficiently

implement in software.

The preceding three principles lead us to choose the Reed-Solomon

family of codes, as they are systematic codes that support incremental

redundancy, and due to their popularity, have many high performance

software implementations.

(b) Setting the parameters of Reed-Solomon: Reed Solomon

codes are implemented by breaking the packet into symbols of s

bits and then into chunks of c symbols. Each chunk is then coded

into a block of size b = c + r where r is the number of redundancy

symbols in each block. Blocks are correctly decodable if less than

r/2 symbols are in error.

Hence Reed-Solomon codes have three parameters: the number

of redundancy symbols, r , the symbol size, s , and the block size,

b. How should we set these parameters? A block with e errors

requires at least 2e redundancy symbols to be correctly decoded.

However, when a packet does not pass the checksum test, the receiver

only knows that at least one block has at least one error; it does not

know how many errors there are, or in which blocks they lie. Thus,

the transmitter cannot do better than sending the same amount of

redundancy for each block. Since the packet can be delivered to

higher layers only when all blocks are correct, one should pick the

redundancy, r , to accommodate the observable error rate in the worst

block in a packet.

How about the choice of symbol and block size? The choice of

symbol size implicitly dictates a block size choice of 2
s [26]. Smaller

symbols are desirable because a single incorrect bit in the symbol

makes the whole symbol incorrect. However, smaller symbols lead

to smaller blocks and hence many blocks per packet. Since the driver

delivers only full packets to higher layer, it requires all blocks in the

packet to be correct, an event whose probability decreases with the

number of blocks in the packet. Hence there is a tension between

large and small symbols. In Figure 13, we use measurements from

the indoor channels to illustrates this tension for various symbol

sizes. The figure shows that, as the symbol size increases the ratio

of symbol errors to bit errors also increases. Hence, for the same

underlying set of bit errors a higher fraction of symbols will be in

error as the symbol size increases, arguing for choosing a smaller

symbol size. On the other hand, increasing the symbol size increases

the block size and and thus decreases the number of blocks per packet,

reducing the symbol error rate in the worst block down closer to the

average symbol error rate. Since we must pick the redundancy to

accommodate the worst block, this argues for a larger block size and

hence a larger symbol size. While Figure 13 illustrates the tension,

the actual numbers show that the effect of the change in worst block

to average block is much larger than the effect of the change in the

ratio of symbol error rate to bit error rate, and hence larger symbols

are likely to work better.

So, what is the best symbol size? The best symbol size is the one

that requires the minimum amount of redundancy to recover the same

fraction of packets and hence maximizes throughput. Figure 14 plots

the CDF of the required redundancy to correct the packets in the

indoor traces. The same analysis applies to the outdoor traces. Note

that, as discussed earlier, the required redundancy is equal to twice the

symbol error rate in the worst block. The figure shows that a choice of

symbol size of 8 or higher is equally good with 11 being the optimal

choice. Though 11 is slightly better, software implementations on

modern day byte oriented computers are far simpler and more efficient

when byte boundaries are conserved, leading us to choose a symbol

size of 8.

(c) Coding in Rounds We said earlier that we need enough redun-

dancy to correct the worst block in the packet. But how much is

enough? The answer depends on how we send the redundancy. In

its simplest form, we could send all the redundancy in one shot, i.e.,

if the transmitter does not receive an 802.11 synchronous ack, it

sends all available redundancy for that packet. For such a one-round

scheme, the only question is: how much total redundancy to send?

The optimal amount of redundancy to send should maximize the

ratio of what gets delivered to higher layers to how much we transmit.

We can compute this ratio for indoor scenarios from Figure 15(a)

which uses the indoor traces to plot the total redundancy required

to correctly deliver a packet to the higher layers, r as a CDF, p(r).



(a) One-Round Scheme

(b) Two-Round Scheme

Figure 15: Sending redundancy in rounds: The top graph shows that if all redun-
dancy is sent in one round, the transmitter incurs the same overhead for all partial packets.
The bottom graph shows that if redundancy is sent in two rounds, the transmitter incurs
only r1 on low error packets and the savings allows it to send even more redundancy in
the second round to correct more partial packets than if it used one round.

Again, a similar analysis can be done for the outdoor scenarios using

the corresponding empirical distribution. The figure shows that if

you transmit redundancy, r1, in addition to the native packet then you

can deliver p(r1) fraction of packets. Thus, we want to choose the r1
that maximizes

max
r

p(r1)

1+ r1
(1)

We solve this optimization numerically for the empirical CDF of

the amount of redundancy required to recover a partial packet using

a symbol size of 8 bits, i.e., the graph in Figure 15(a). Our solution

shows that if one was to send all redundancy in one round, then the

optimal amount of redundancy to send is 18% of the block size. This

does not allow us to recover all partial packets. Further, it requires

us to send much more redundancy than necessary for many packets.

One can address these problems by increasing the number of rounds,

although such a scenario will increase the delay.

In particular, let us compute the performance of a scheme that

sends the redundancy over two rounds instead of one, as in Fig-

ure 15(b). In this scenario the sender will transmit a smaller amount

of redundancy in the first round, r1 trying to recover as many pack-

ets as possible with a low overhead. It then waits to hear from the

receiver about which packets are still undecodable, and transmits

additional redundancy, for only those undecodable packets such that

the sum of the redundancy for those packets over round one and two

becomes r2. Similarly to above, we can find optimal values for r1
and r2 by maximizing the ratio of what is delivered to what is sent.3

3A similar argument to the one-round case shows that the actual maximization in the
two-round case is:

max
r1,r2

p(r2)

1+r1 +(r2 −r1)(1−p(r1))
,
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Figure 16: Efficacy of a coding scheme at harnessing partial packets: This shows
that a coding-based scheme can harness most of the potential gain of partial packets.
Further, it can do so with just two rounds of redundancy.

The solution to the optimization reveals that r1 =7%, while r2 =25%.

This amount of redundancy allows us to recover 98.3% of all partial

packets, which is higher than what we could have recovered with

only one round. Clearly, one can continue increasing the number of

rounds to increase the number of decodable partial packets, and hence

the overall throughput. Such a large number of rounds significantly

increases the delay and the overhead of receiver feedback, making

it impractical. However, it serves as a useful benchmark to compare

against the idealized CRC scheme in §5.1, and to determine how

much of the performance gains from coding can be captured with

only a small number of rounds. Such an infinite round scheme will

send for each packet exactly the amount of needed redundancy, i.e.,

it follows the p(r) curve.

How effective is a coding scheme at harnessing the throughput

gains of partial packets? Figure 16 plots the throughput gains with

one round, two rounds, and an idealized scheme of infinite rounds of

redundancy, and compare these graphs to the ideal gains obtainable

from partial packets. We can see from this that a coding based scheme

can harness the vast majority of the partial packet gains. Additionally,

much of this gain can be achieved with only two rounds without

making impractical assumptions about infinite receiver feedback.

Since this is better than what is achieved with a CRC-based approach,

ZipTx’s design employs a coding-based approach.

(d) Computational Efficiency We want to ensure that coding can

be done at line speed for high bit-rate 802.11 channels. In Reed-

Solomon codes, most of the computational complexity comes at the

decoder. Thus, we would like to check that our decoder can run at

line speed, particularly for the case of typical indoor channels where

the bit-rate can be as high as 54 Mb/s. To do so, we run the decoder

on a 3Ghz Pentium machine and feed it with our indoor traces. We

compare the output rate of the decoder to its input rate. If this ratio is

one, then the decoder can always keep up with the line speed. If less

than one, than the decoder starts lagging behind the speed at which

packets are arriving, overflowing queues, and causing partial packets

to be dropped. Figure 17 shows that all bit rates can be decoded at line

speeds up until at least 25% redundancy. Such redundancy is more

than sufficient for the high bit-rate indoor channels, where almost all

partial packets have less than 5% byte error rates. Additionally, line

speed for the low bit-rates of the outdoor channel can be maintained

for almost any coding rate.

which we also solve numerically.
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Figure 17: Software Decoding Performance:The figure shows that at all bit-rates,
the decoder can keep up with the rate at which packets arrive as long as the redundancy
is less than 25%. Since almost all partial packets on high-speed indoor channels have
less than 5% byte error rate, this redundancy is sufficient for recovery.

6 ZipTx

ZipTx is a modification to the Madwifi driver [1] that allows it to

harness the gains of partial packets. It runs the Madwifi hardware

abstraction layer (HAL) in monitor mode, which directs it to pass all

packets to the driver regardless of whether they pass the checksum test.

Thus, ZipTx requires no modifications to the kernel or applications,

nor does it require changes to the HAL or the hardware.

ZipTx recovers erroneous packets using the two-round coding

scheme in §5.2. At a high level, the transmitter first sends the original

data packet, called the native packet without any parity bits. If the

packet is received with errors, the receiver buffers it in the hope

that the errors can be corrected later using parity bits. Every few

packets, the receiver asynchronously responds back indicating for

each packet whether it was received correctly, received with some

errors, or not received at all. If a given packet was not received at

all, then ZipTx retransmits the packet. If the packet was received

correctly, the transmitter marks the packet as completed and moves

on to the next packet. If the packet was received with errors, however,

the transmitter sends a coded packet consisting of parity bits to allow

the receiver to recover the original packet. Upon reception of the

coded packet, the receiver attempts to decode using the combination

of the original erroneous packet and the parity bits. Along with the

next asynchronous response, it communicates back indicating to the

transmitter whether the decoding was successful. This triggers one

additional round of transmitting additional parity bits and the receiver

trying to decode using all parity bits. If the second round also fails,

the transmitter transmits the original packet again, repeating the entire

process for a configured number of attempts.

6.1 Making Error Correction Work in Practice

The design of ZipTx addresses the following three practical issues.

(a) Packets with many errors As discussed in §4.2 many packets

sent on the outdoor channel have a relatively high percentage of errors.

Because it is so expensive to correct the errors in these packets, we

are better off treating these packets as if they were never received at

all, and just retransmitting them. Unfortunately however, the receiver

does not know the bit error rate (BER) of a transmitted packet until

after it is decoded.

ZipTx solves this problem through the use of pilot bits. In par-

ticular, the transmitter inserts a known pilot bit into the transmitted

packet once every 15 bytes, resulting in 100 pilot bits in a 1500 byte

packet. The known pilot bits allow the receiver to fairly accurately es-

timate the overall BER of the packet with less than 1% overhead. The

receiver then uses this estimate of bit and treats as erasures packets

with a BER above a configurable threshold.

(b) How much coded data per packet? In §5.2, we showed how

to pick the optimal amount of parity to send in each coded packet.

This selection, while useful for bounding the gains of partial packets,

is hard to apply in practice because it assumes that the driver knows

the error distribution for the hardware and the environment in which

it is operating, and that this distribution is static. In practice, we

need a more dynamic decision process based on observed channel

conditions. Doing so however requires fast feedback of an accurate

metric of channel quality. A naive solution might use the RSSI metric

typically available from 802.11 hardware for each packet. RSSI

values are well known to be noisy, and unless averaged over long

intervals, produce a poor estimate of channel quality. So, instead,

ZipTx directly feeds back the metric that most matters: an estimate

of the BER in the native packet. It does this by feeding back to the

transmitter a BER estimate gathered by combining information from

both the pilot bits discussed above and the observed BER of earlier

packets which have already been successfully decoded.

(c) Countering coded packet overhead 802.11 is a CSMA protocol,

and so every packet transmission requires the transmitter to spend

time contending for the channel, an overhead that can account for

40% or more of channel time at high bit-rates, even with no other

transmitters. Hence, sending parity bits in separate packets can create

an excessive amount of overhead that negates any opportunity for

throughput gain.

To handle this, ZipTx takes advantage of the fact that typical

Internet packets are at most 1500 bytes while the maximum 802.11

frame size is 4095. Specifically, it opportunistically piggybacks the

coded packets on top of native packets. If no native packet is sent for

a configurable period of time however, the coded packet is sent as its

own packet without piggybacking. In these cases the application has

no new data to send, and hence throughput is not an issue.

6.2 Sending Receiver Feedback

A ZipTx receiver needs to inform the sender whether a packet was

decodable, and whether it was even received at all. However, acquir-

ing the medium to send separate packets is expensive. To counter

the overhead of sending asynchronous acknowledgments, ZipTx uses

two techniques. When packets are received with errors ZipTx sends

asynchronous acknowledgments in batches, and when packets are

received correctly ZipTx avoids sending acknowledgments altogether.

Specifically, during periods with no packet errors, ZipTx can rely on

the synchronous acks to convey data reception, and hence abstain

from sending asynchronous acks. When errors or erasures occur,

ZipTx waits until either it receives 8 more packets, or a timeout is

reached.

The ack contains information about multiple recent erasures or

partial packets. Erasures are detected using packet sequence num-

bers. For each packet, two bits encode what the receiver wants the

transmitter to send – native, first coded packet, second coded packet,

or no packet at all. Note that unlike standard 802.11, the receiver

is actually in control of retries. Thus, if the receiver still cannot

decode a particular native packet after receiving the two associated

coded packets, the receiver moves back to re-requesting the native

packet, effectively starting over again. Given that we picked the code

redundancy to ensure that the vast majority of partial packets are

decodable, such retrials should be infrequent.



6.3 Flow Control

In order to ensure that queue sizes and packet latencies do not grow

unbounded, ZipTx implements a TCP-like flow control algorithm.

When the transmitter and receiver associate, they agree on the maxi-

mum number of outstanding native packets. Since both the transmit-

ter and the receiver must maintain state for each outstanding native

packet, this bounds the size of these buffers. Once the transmitter

reaches this bound, it stops accepting new native packets from the

kernel until it receives an acknowledgment that allows it to free a slot

in its buffer.

One important issue is to ensure that deadlock cannot occur. Say

that the channel is down for a relatively long interval, during which

both packets and acks are erased. During this time, the sender will

continue to send native packets until it reaches the maximum number

of outstanding native packets, at which time it stops transmitting until

it receives an ack from the receiver about the status of these packets.

However, given that all packets were erased, and acks are triggered

by packet arrivals, the receiver will also be waiting for the sender,

creating a deadlock.

These deadlocks have to be broken by the transmitter because the

receiver cannot distinguish this scenario from that when the trans-

mitter has no packets to send. Thus, after waiting for a configurable

timeout, the transmitter knows that either all of its outstanding pack-

ets were erased, or the resulting acks were erased. It assumes the

former, and begins to retransmit all outstanding packets. It continues

to cycle through the outstanding packets until it receives an acknowl-

edgment or one of the packets in the buffer times out leaving a slot for

another packet. If a much larger timeout is reached without receiving

any acks then the transmitter will clear all of its state and attempt to

re-associate with the receiver.

6.4 Auto-Rate

A key component of 802.11 is its use of multiple bit-rates allowing

an auto-rate algorithm to choose an optimal modulation and FEC

scheme for the given channel. ZipTx’s use of error correction codes

gives it a larger margin of error when choosing the bit-rate. However,

obtaining optimal performance still requires choosing the optimal

bit-rate because as the channel quality degrades, a given bit-rate

eventually produces lower correct byte throughput than the bit-rate

below it.

ZipTx bases its autorate algorithm on SampleRate, the default

autorate algorithm in the Madwifi driver [4]. SampleRate periodically

samples the throughput of various bit-rates by sending every 20th

packet at a randomly chosen bit-rate. It calculates the expected

throughput based on the number of retries required in order to get

the packet through, and moves to using the rate with the highest

throughput.

ZipTx can use all of the mechanisms of SampleRate, except for

its computation of the expected throughput. This is because ZipTx’s

primary mechanism for reliability is not retransmission, but error

correction codes. To calculate the expected throughput at a given

rate, ZipTx calculates the number of bytes delivered to higher layers

divided by the amount of channel time used to send those bytes.

This channel time includes the time to send the native packet and

each of its coded packets. Further, ZipTx uses retransmission as a

secondary reliability mechanism, so the time must also include all

failed attempts to retransmit the packet. Lastly, since the autorate

algorithm runs at the sender, the receiver needs to include in its acks

information about which packets were delivered to higher layers.
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Figure 18: ZipTx’s throughput gain in typical indoor channels: The figure plots
the ratio of the throughput of ZipTx to that of the unmodified driver. It shows that,
typically, ZipTx boosts the throughput by 10-20%, with some cases having gains as high
as 50%.

7 ZipTx Evaluation

Our evaluation compares the following two drivers:
• Unmodified Driver: This refers to the Madwifi v0.9.3 [1] driver.

On Linux, Madwifi is the current de facto driver for Atheros

chipsets and is a natural baseline.

• ZipTx: This is our implementation of ZipTx as an extension of

Madwifi v0.9.3. Our implementation works in conjunction with

auto-rate algorithms, in addition to all the standard 802.11 features,

including carrier-sense, CTS-to-self protection, etc.

We experiment with ZipTx in the environments described in §3.

For each link we run ZipTx three times and the unmodified driver

three times. All measurements are calculated by the drivers them-

selves as we have instrumented both the ZipTx driver and the unmod-

ified driver such that every second they output the average throughput

and RSSI values. Note that on hardware using the Atheros chipset,

the RSSI is defined as the SNR in dB. Additionally, all results are

taken with a continuous stream of UDP traffic generate by Click [21].

7.1 Typical Indoor Channels

Indoor 802.11 networks typically offer a relatively high SNR as nodes

are densely deployed in order to ensure access in all locations. In

such networks, auto-rate algorithms can choose from a fine selection

of bit-rates and work quite well. As a result, ZipTx provides practical

throughput gains that are dependent on how close the max-packet

bit-rate is to the ideal rate sustainable by the channel.

We evaluate ZipTx on such channels using the indoor testbed

described in §3, which contains indoor links whose optimal bit-rate

varies between 6 Mb/s and 54 Mb/s. We compute ZipTx’s factor

throughput gain as the ratio of ZipTx’s throughput to that of the

unmodified driver. Figure 18 plots the average gain as a function

of the link’s RSSI. We see that ZipTx’s throughput gain follows a

similar pattern to the ideal throughput gain in indoor channels, shown

in Figure 5, though is a bit lower due to practical overheads. In

particular, the throughput gain is typically around 10-20%, with some

cases being as high as 50%.

7.2 Challenged Outdoor Channels

Outdoor 802.11 networks often suffer from long multi-path delays

and have much lower SNR. Such networks use 802.11b links since

they typically cannot sustain the higher rate modulation schemes
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Figure 19: ZipTx’s throughput gain in challenged outdoor channels: The figure
plots the ratio of the throughput of ZipTx to that of the unmodified driver. ZipTx provides
improvements ranging from 10% for the better quality links, to up to 3x for the lower
quality links.
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Figure 20: ZipTx’s throughput gain in mobile channels: As a result of autorate’s
difficulty in picking a good rate, ZipTx improves the throughput by up to 3x, when
moving at a walking pace.

utilized by 802.11g and 802.11a. As we discussed in §4.2, in such

scenarios, autorate algorithms often struggle because of the coarse

granularity of the available bit-rates and their high byte error rates.

We evaluate ZipTx on the outdoor channel using the testbed de-

scribed in §3 which contains links with channel qualities from just

below those in the indoor range, down to the lowest SNR for which

we were able to maintain an association between the nodes. From Fig-

ure 19 we see that, as expected from the analysis in §4.2, the through-

put gain ZipTx provides is much larger in the outdoor scenario. It

provides a 70% throughput improvement over the unmodified driver

on average, while at the low end of the RSSI range it provides more

than a 3x gain. For example, in these low RSSI scenarios, ZipTx

provides 1 Mb/s of throughput for a link that can only carry a couple

hundred of Kb/s with the unmodified driver.

7.3 Mobile Channels

The main draw of wireless networks is that they make it easy for the

user to move while still maintaining network connectivity. Thus in

most common 802.11 usage scenarios, the user is at least somewhat

mobile. Most of this movement is at relatively low speeds however,

with the user walking from one location to another. These mobile

channels run at high SNR, similar to our indoor channel. However,
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Figure 21: ZipTx’s impact on delay: The figure shows the CDF of the packet delay
across all indoor locations for both ZipTx and the unmodified driver. The figure shows
that 70% of the packets experience more or less the same delay, 20% of the packets
experience a delay increase of about 5 ms, and no packet sees an increase in delay that
exceeds 11 ms.

the autorate algorithm can be challenged by the movement, making

them potentially function more like the low SNR outdoor channel.

To evaluate the throughput gain provided by ZipTx in this scenario,

we set up a transmitter node in a conference room, and placed the

receiver node on a cart. We then walked from the conference room

down the hall to another conference room and back, repeating this

loop for 1 minute. For each driver we ran three of these tests. During

each test we output the throughput and RSSI once every second.

Figure 20 shows the results of this experiment. We see that, similar

to the outdoor experiments, ZipTx provides throughput gains of more

than 70% on average, and about 3x for some RSSIs.

This gain results from the auto-rate algorithm working poorly as a

result of the movement. The SampleRate algorithm only occasion-

ally updates its bit-rate selection since it must have time to gather

sufficient samples from each of the different bit-rates. When the

node is moving, however, the optimal bit-rate can change relatively

quickly. Our modified version of SampleRate has the same problem,

but ZipTx’s use of partial packets provides it a much larger margin

error in its bit-rate selection. This is because when standard 802.11

chooses too high a bit-rate, most of the packets are only partially

correct, resulting in lost packets and creating a catastrophic drop in

throughput. Since ZipTx is able to take advantage of the these par-

tially correct packets, its throughput drops off much more gracefully,

allowing it to provide reasonable throughput even when it chooses

too high a bit-rate.

7.4 Delay

Since ZipTx’s packet recovery employs two rounds of feedback and

is implemented in software, it is important to check that it does not

introduce unacceptable delay.

To measure the per packet delay, we sync up the CPU clock of

our transmitter and receiver nodes using an ntp server on our local

network. We use Ping tests to confirm that the clocks are sync-ed to

within a 1 ms tolerance. For each packet the transmitter inserts into

the body of the packet the time at which the packet is received from

the kernel. When the packet is delivered to the kernel on the receiver

side, it computes the end-to-end delay. We measure the delay for

both ZipTx and the unmodified driver by running them back-to-back

on the 35 indoor links in our testbed.

Figure 21 plots the per packet delay distributions for both ZipTx

and the unmodified driver. The figure shows that ZipTx’s delay stays
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Figure 22: ZipTx’s CPU usage: The figure plots the CDF of CPU usage across all
indoor locations, showing that it stays low.

within acceptable range. Specifically, 70% of the packets experience

about the same delay as in the unmodified driver. As for cases that

experience higher delays, the absolute increase is usually less than

5 ms, and in all cases stays bounded by 11 ms.

It should be noted that ZipTx has internal mechanisms to limit

the delay increase. In particular, (1) it is limited to two rounds of

feedback, (2) it sets small sizes on delay critical buffers, and (3) it

times out packets that take too long to deliver.

7.5 CPU Usage

We showed in §4 that ZipTx’s software decoder was able to decode

at line rate even for high bit-rates. A natural question however is

whether or not this decoding will load up the machine so much that it

cannot be used for other activities during network transmissions.

We answer this question by measuring the CPU usage while we are

running the indoor experiments from §7.1. To ensure that we account

for all CPU usage caused by ZipTx we use vmstat to measure the

average total CPU usage once every second. Our experiments run on

3.0 Ghz Intel Core2 Duo machines running Linux FC 6. The results

are shown in Figure 22.

From this figure, we can see that the CPU usage never gets above

10% and is typically only 1 or 2%. The reason for this is that the

decoding algorithm will only load the CPU when it has a packet

with many errors to decode. As we saw from Figure 3, even at the

max-byte bit-rate, more than 30% of the packets received are still

fully correct, and a much higher fraction have only a few errors

and are relatively fast to decode. Thus, high error rate packets are

interspersed with low error packets and correct packets, ensuring that

the average CPU load is relatively low.

8 Conclusion

This paper provides two major contributions. It characterizes the

gains of partial packets across the entire range of operation of 802.11

networks, examining typical indoor WLAN scenarios, as well as

challenged outdoor and mobile scenarios. Additionally, it presents

the design and implementation of a purely software solution for

leveraging the opportunity provided by partial packets. The ZipTx

driver runs on off-the-shelf 802.11 hardware and provides average

gains of 10-20% on typical indoor high SNR links and 2-3x on mobile

and challenged outdoor links.

The main conclusion of our paper is that the gains of partial packets

are highly dependent on the availability of rate adaptation and its

effectiveness. A solution that harnesses partial packets is of a limited

impact in scenarios where autorate is highly effective. However, when

autorate is non-existent or ineffective because of mobility or other

reasons, a solution that harnesses partial packets can compensate for

this inefficiency and deliver large throughput gains.
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