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CHAPTER 6

Beyond 3G: 4G IP-Based Mobhile
Networks

Donal O’Mahony and Linda Doyle

6.1 Introduction
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The architecture of both the PSTN and also the first three generations of
mobile telephone networks [1] were shaped by two main considerations.
First, the networks were required to effectively provide a single serv-
ice—circuit switched voice communications—across a network with low-
capability edge nodes and a large amount of intelligence within the net-
work. Any additional services that could be deployed on this infrastructure
were looked upon as a bonus. Second, they required the operators to be able
to charge for network usage based on the destination and duration of the
call. Mobility between network operators was only worth doing if the home
network operator stood to gain financially from this possibility.

The evolution of the Internet took a different path. In the early years, it
was assumed that communities of users collaborated for the benefit of all.
Since no organization wanted to act as a central network operator, the inte-
rior of the network was kept as simple as possible while allowing users to
offer such services as they wished at the edges. The possibility of users mov-
ing around was catered for at the edges by Mobile IP and was implemented
by agents external to the network itself, or at least located within edge
routers.

In recent years, we have seen the beginning of convergence between
the telecommunications and Internet communities. The PSTN has become
the main Internet access network for residential users, and there is a huge
industry focus on reengineering the channel structure of wireless telephony
networks to accommodate data streams. In the other camp, the Internet
telephony industry has proved that it is possible to build a production voice
service on a packet-switched Internet-based network infrastructure, and the
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88 BEYOND 3G: 4G IP-BASED MOBILE NETWORKS

makers of large circuit switches have conceded that there are huge eco-
nomic advantages to shifting over to packet switching.

The rapid adoption of mobile telephony, most notably in the Scandina-
vian countries, demonstrates another major trend that shows a demand on
behalf of users to avail of the same communications on the move as were
available through fixed lines.

In the midst of the great changes being brought about by the trends out-
lined above, the research community is considering what form the next
(fourth) generation of fixed and mobile communications systems will take.
A popular view in the telecommunications industry is that the 4G should
evolve naturally from the 2G and 3G with incremental improvements being
brought about without any fundamental architectural changes being neces-
sary. We do not believe that this is the correct approach. In the following
sections, we set out what we believe are the main drivers shaping the design
of 4G systems. We briefly survey related work and then describe the prog-
ress we are making with our 4G testbed.

6.2 Drivers for the 4G Architecture
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We adopt the view that the forthcoming 4G mobile systems offer us an
opportunity to take a fresh approach in designing a network driven by serv-
ices that people want now and in the future with less emphasis on the
services that they wanted in the past. In the following sections, we examine
five fundamental requirements underlying our concept of 4G mobile
systems.

6.2.1 Support for IP-Based Traffic

It is clear from the rapid growth of the Internet in the late 1990s that IP
forms an eftective delivery mechanism for the kinds of network services that
users are interested in availing of. The advent of VoIP has shown that
person-to-person audio communication can easily be carried out across a
packet-based IP network in spite of some difficulties in delivering consis-
tently low end-to-end delays across the current infrastructure. This fact,
when taken together with very low forecast growth rates for voice as com-
pared with data, point to a future where voice makes up a very small pro-
portion of total traffic. It is imperative, then, that the architecture of 4G
networks is determined primarily by the need to deliver a quality IP service.
The ability to handle voice and other streams with real-time constraints is a
secondary (but essential) goal. The problem of delivering a predictable
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6.2 Drivers for the 4G Architecture 89

quality of service over wireless networks is a significant challenge in its own
right and is fully addressed in the chapters of Part IT of this book.

6.2.2 Excellent Mobility Support

The adoption of mobile telephony services oftered by 1G and 2G voice sys-
tems has surpassed many people’s expectations. In many countries, most
notably in the Scandinavian region, more than 60% of the overall popula-
tion makes use of mobile telephones, and the trend elsewhere is to follow
the same path. It is forecast that there will be almost 1 billion subscribers to
GSM, the most successful 2G system, by 2005.

The mobility facilitated by cellular telephones is often referred to as ter-
minal mobility. An additional form of mobility envisaged for both the fixed
and mobile phone networks is personal mobility, which allows a person to
move from one terminal to another and have his calls and environment fol-
low him as he registers on different mobile or fixed terminals. The Universal
Personal Telephony service allows a user to be contactable via one personal
number. Intelligence within the network, coupled with information on the
users preferences and likely movement patterns can forward the call to the
appropriate terminal or to an automated response system.

In 4G systems, we must assume that all users of the network are poten-
tially mobile with a sizeable proportion of them communicating via wireless
terminals. Users must be contactable via a single (albeit multifaceted) iden-
tity. A means must be found to map from this identity to an address to which
packets can be routed. Control of this mapping must lie firmly with the user
who can modity the destination of the mapping and regulate the access that
callers may have to it. In an environment where the path from source to des-
tination may cross many different network domains, it would be unwise to
associate this mapping with a single network operator. It is imperative that
4G networks provide a single consistent means of identifying users and
allow this identity to be controlled by the user and efficiently mapped to a
mutable destination.

Where 4G nodes are in motion, they may need to change their point of
attachment to the network while a flow of packets is in progress. The degree
to which this changes the path from source to destination depends on the
topology of the network and the route chosen. The 2G and 3G cellular sys-
tems allow handoft where a mobile node shifts its point of attachment but
stays within the same network domain. Typically, a change in domain is
referred to as roaming, and active connections cannot be maintained under
these circumstances. This implicit two-level tracking of a user’s location
(i.e., current domain and current position with that domain) can be general-
ized into an N-level mobility tracking scheme that can allow handoff in any
circumstances where the network topology renders it possible.
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90 BEYOND 3G: 4G IP-BASED MOBILE NETWORKS

6.2.3 Support for Many Different Wireless Technologies

The 1G, 2G, and 3G mobile systems relied on the use of spectrum reserved
for public land mobile use and licensed by a very small number of network
operators in each country. Differences in allocation timing and strategy of
the spectrum have led to the need for multimode phones capable of adapt-
ing to use the spectrum available in a particular region.

In 4G systems, it 1s likely that a large number of different radio tech-
nologies may be used for network access. One trend that is very apparent is
the use of radio spectrum in the less regulated Industrial Scientific and Medical
(ISM) band. We have seen the emergence of Bluetooth [2] radio offering
very short-range radio links of below 1 Mbps. Although this radio was origi-
nally developed as an easy way to replace cables interconnecting adjacent
equipment, it has recently been standardized by the IEEE as standard
number 802.15.1 as a more general purpose wireless personal area network
(WPAN) technology. Also operating in the same band is the IEEE 802.11b
WLAN radio system. This offers a throughput of 11 Mbps with a range of
around 100 feet and lesser speeds over longer distances. This technology has
been embraced by the market and is being used to provide high-bandwidth
services to private users in buildings and campuses and also to public users in
built-up areas and in airports. More advanced versions [3] of the standard are
in preparation, including 802.11a operating in the 5-GHz band (which will
deliver higher speeds of 54 Mbps) and 802.11g (which uses the same fre-
quency band as 802.11b, but allows the data rate to be increased to 34 Mbps
and higher).

At the other end of the spectrum, areas of very low population density
or users at sea or in the air may be better served by satellite systems using a
completely different set of radio technologies.

Existing 2G and 3G cellular may be useful in between these two
extremes. A 4G node should be capable of adapting its radio capabilities to
take maximum advantage of available spectrum.

6.2.4 Free from Unnecessary Operator Linkage

The GSM system was developed by European telecommunications compa-
nies in the mid- to late 1980s primarily as a mobile extension to the PSTN.
The GSM model envisaged that users would subscribe to an operator who
would build a cellular network infrastructure that would track the user as he
moved from one location to another, making every eftort to maximize the
availability of service. In common with the dominant PSTN billing model
in Europe at the time, all usage of GSM services was to be metered, and
since the only way to pay for this was via the home operator, every action
carried out by the mobile handset is with reference to the home network
operator. Even when a user roams into a new domain, contact is made with
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6.2 Drivers for the 4G Architecture 91

the home network to establish a link with a billable entity before any calls
can be made.

Two GSM handsets cannot communicate with each other directly;
rather, they must each first authenticate themselves to the network, be
linked with their billing details, and thereafter, operator mediated commu-
nication can take place. This mode of operation is consistent with the fact
that the operator in effect owns the spectrum and is entitled to individually
regulate and meter each access to it.

Where spectrum ownership is much more open, such as is the case in
the ISM band, such restrictions are completely unnecessary and highly inef-
ficient. Much of the dynamism that has taken place in wireless communica-
tions in recent years is the result of the easy access to such spectrum, and it is
likely that this trend will continue in the future.

Where access to spectrum is not an issue, pairs or groups of nodes can
form ad hoc networks to allow direct communication between nodes, and if
appropriate, nodes can collaborate, relaying each other’s traffic. Naturally,
issues such as the need for user authentication occur in this kind of any-to-
any direct communication, but arguably, these need to be solved in an
operator-independent way.

Once the special position of the operator is removed, there remains the
problem that a wireless node wishing to communicate with a node outside
its range cannot do so unless an intermediate node relays their packets to
either another wireless node or on to the fixed network. If we could find a
means of making real-time payments across a link, this would relieve us of
the need to be associated with a billable entity and also allow us to motive
individual nodes to cooperate with us to relay traffic.

This motivation (financial or otherwise) could be used in a sparsely
populated area to allow an individual wireless node to act as a packet relay
between two out-of-range nodes. The payment method would allow the
relay to be compensated for the battery drain and the usage of bandwidth
that might otherwise be available to it.

In a heavily populated area, the same motivation could be used to
encourage organizations to erect networks of wireless network access points
in places like university campuses and shopping malls. Organizations that
undertook this effort to any great scale would become the network opera-
tors of the 4G, but the fact that no special status is required to become an
operator should ensure healthy competition.

6.2.5 Support for End-to-End Security

The security features inherent in 2G and 3G mobile systems are focused on
two main services. First, the mobile users must be authenticated to the net-
work operator. This authentication is generally limited to associating the
user with a billing relationship that is operating satisfactorily. Where
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92 BEYOND 3G: 4G IP-BASED MOBILE NETWORKS

accounts are prepaid, this billing relationship often has no stored details on
the identity of the user. There is no end-to-end exchange of credentials
between a mobile user and their peer at the other end of the link.

The second service supported by 2G and 3G mobiles is content encryp-
tion. While this does deter attacks using simple scanning devices, it is no
substitute for genuine end-to-end confidentiality.

In the 4G, mobile and fixed nodes will interact with each other without
reference to their relationship to an operator. It is imperative that protocols
and procedures are devised to allow the users of these nodes to authenticate
one or more facets of each other’s identity to a degree necessary to achieve
the communication they desire.

6.3 4G Architecture and Research Issues

We envisage that the fourth-generation mobile networks of the future will
be based around an IP core network, which will, over time, completely dis-
place both the fixed PSTN and also the 2G and 3G mobile voice networks.
The architecture, as shown in Figure 6.1, will be based on delivering an IP
transport service to a population where every user is potentially mobile and
a large proportion of them make frequent use of wireless nodes to interact
with people and services on the network.

Untethered users will gain access to the fixed network using a variety of
different radio technologies. These will include short-range wireless systems
such as Bluetooth and 802.11 as well as perhaps new access methods made
available on the spectrum currently in use by 2G or 3G mobile voice sys-
tems. Individuals and organizations will install and operate wireless access
points making use of a real-time payment system to provide such quasi-
network operators with their financial incentive.

High-capability nodes will be equipped with software radios, which
carry out as many radio functions as possible by executing signal processing

gol

FIGURE 6.1
Components of a
4G network.
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6.3 4G Architecture and Research Issues 93

software on general purpose processors. Thus, the nodes will be able to
communicate using whichever radio technology is expedient given its loca-
tion and financial resources.

Ad hoc network protocols will be used to bind together groups of nodes
for local communication and also to provide a link between each node and a
range of geographically close fixed network access points. The motivation
for this collaborative behavior may derive from the fact that the users have
authenticated each other as belonging to the same group (e.g., workers in
the same office or paramedics at the scene of an accident), or some kind of
micro-payment method may be used to allow relaying nodes and network
access points to profit from their activities.

Interactive links to other users will be established based on a user iden-
tity. In order to support both terminal and personal mobility, a directory
service will be required to map between an identity or identity facet and an
address to which packets can be routed. This service should be standalone
and independent of any particular network infrastructure. The mapping
may also be quite complex, allowing a user to build a profile of when and to
whom he is available. In cases where confidentiality of location may be an
issue, artificial relay points may be used to disguise the position of a node
from the caller.

Before a call can be set up, each participant will need to authenticate
themselves to the other parties within the call. Typically, users will have a
multifaceted identity, and it may be inappropriate to make use of all of these
facets for any given call. Facets may also depend on one another and pro-
gressive authentication may take place. For example, to gain entry to an
office building, it may only be necessary to authenticate the fact that one is
an employee. If an individual wants to open a safe containing financial
documents, it may be necessary to also authenticate the fact that the indi-
vidual’s organizational role is financial director. Such identity facets would
be inappropriate for use in a coffee shop where the same user wished to
traverse a high-speed fixed network access point.

Once the parties have authenticated each other, end-to-end communi-
cation can take place with appropriate authentication and confidentiality
measures being applied to the data traffic.

Where prebuilt access infrastructure does not exist, or where communi-
cation is taking place in a local region, nodes may resort to the formation of
ad hoc networks. While this greatly enhances a node’s ability to communi-
cate, it also raises a number of additional research issues. Collaboration is the
essence of ad hoc networking and will naturally take place where the mem-
bers of the network belong to the same organization or have some other
preestablished motivation to work together. In a public context—for
instance, a number of wireless nodes encountering each other in a shopping
mall—the motivation may be less obvious. There is a need for security pro-
tocols to allow nodes to selectively reveal information about different facets
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of their identity with an aim of maximizing the level of cooperation that is
possible. If nodes are to offer relaying services to others, there will be a need
for some kind of real-time payment method to allow a node to be compen-
sated for the use of its resources (battery power and more).

Once an ad hoc network grows beyond a small number of nodes, there
is a need to develop sophisticated routing protocols to allow nodes to relay
for each other, thus maximizing their interconnectivity. It should also be
possible for a wireless node that is within range of a fixed network access
point to relay for other nodes within its ad hoc network.

Applications and services in the 4G will be built outside the network in
keeping with the Internet tradition of keeping the core simple, fast, and effi-
cient. Today, many of the Internet applications rely on entities contacting
each other based on a network address. This is problematic for a number of
reasons. First, it leads to a demand by end entities for the fixed assignment of
addresses. If the address space is finite or inefficiently allocated (as is the ease
with IP version 4), this leads to address shortages and also causes problems
when these end entities move with respect to the network. We envisage
that in the future, applications will evolve to where addresses are deempha-
sized in favor of the use of more abstract names. Mobile users will be con-
tacted by name, with appropriate servers to perform the mapping between
address and the necessary routing information. Clearly such a mapping must
be done in such a way that the user has control over what kind of routing
information is held and who may gain access to it. Where a user is in
motion, appropriate mechanisms must be devised to maintain a connection
to a “name” as the route to the node is changing.

6.4 4G Research Efforts
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Broadly speaking, research into the form of 4G mobile systems is being car-
ried out by two somewhat overlapping communities. The first of these is
the mainstream mobile telecommunications industry. The second commu-
nity has come from a data networking background and is driven by techno-
logical progress in the area of wireless data networks leading to quite a
different perspective on the path ahead. We will outline the direction being
taken by both communities before elaborating further on our own thoughts
on the fourth generation.

At the time of this writing, the telecommunications community’s main
source of revenue is based on a huge population of users of 2G mobile tele-
phones. Now they are faced with the impending launch of third-generation
mobile systems. Most of the architectural decisions underlying the 3G were
made with an eye to preserving the large investment in building the 2G net-
work and retaining the customer relationship with the user population. It
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6.4 4G Research Efforts 95

was thought that if the core network architecture was preserved, then new
radio access methods (such as UTR AN) could be progressively introduced,
and gradually, more support for data traffic and Internet access would be
made available.

At the time of writing, prospects for the 3G look bleak. The mobile
telephone market appears to be near saturation point, and the introduction
of highe-rspeed data services has failed to produce the anticipated excite-
ment and surge in user demand. Looking ahead to the data capabilities of 3G
systems, it seems unlikely that these will match user expectations. In
Europe, the auctioning off of spectrum at very high prices has placed a huge
debt burden on aspiring 3G network operators that may be difficult to
service.

Against this background, there is a reticence to contemplate revolution-
ary technologies that would divert attention away from the 3G, and conse-
quently, new innovations are being discussed as add-ons to mature 3G
networks rather than as technologies that would render it obsolete.

The two major proponents of 3G mobile systems—namely, the Euro-
pean UMTS Community and the U.S.-dominated cdma2000—have
formed consortia (3GPP and 3GPP2, respectively) that are developing com-
mon standards for the provision of data services to users. In the case of
3GPP, the core network architecture is very much shaped by GSM with
special purpose network entities added to support the transfer of IP data-
grams between network endpoints or to the Internet. The 3GPP2, on the
other hand, is much more Internet-like.

The Wireless World Research Forum, a consortium of many leading
mobile telecommunications companies, has produced a “Book of Visions”
[4], which summarizes the thinking of their member companies on what are
important research topics for the future. This recognizes the need for greater
support of the IP protocols and the importance of new radio access tech-
nologies. While there is recognition of the potential of ad hoc networking
technology there is no mention of any architectural changes being made to
accommodate this.

The rapid uptake of commodity WLAN products based on the IEEE
802.11b standard has given rise to many popular public wireless services that
promise to deliver far superior data services to any currently envisaged in the
3G. In order to combat this threat, a number of organizations are attempting
to integrate WLAN into 2.5G and 3G networks as simply a new radio access
technique without any changes to architecture of the core network. This
has led to a proposal to the 3GPP standardization effort, made in late 2001,
that a study be commissioned to determine how WLAN technology such as
IEEE 802.11 and HiperWLAN2 could be integrated into UMTS. Atten-
tion to date has focused on a loose coupling where access to the WLAN is
regulated with reference to the UMTS subscriber database. End-to-end
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traftic would pass from the WLAN to the Internet without going
through the UMTS network entities.

The research community has been more daring [5] and has proposed an
architecture where many heterogeneous networks, among them WLAN
and UMTS, form subnetworks of a larger 4G system whose architecture is
very Internet-like with mobility being handled at the IP level.

The second community of researchers that is interested in this area
come from a wireless Internet perspective and have focused on the efficient
transport of IP traffic over wireless channels with provision of varying quali-
ties of service. These themes are elaborated on in other chapters of this
book. In terms of mobility handling, there appears to be broad support for
the idea that Mobile IP can be used to handle user movement between
domains (roaming), while some alternative system such as Cellular IP,
HAWALII, or TIMIP be used to deal with movements within a wireless
domain. While the concept of handover is very much a part of these efforts,
this community does not appear to be attempting to build a system that
could aspire to displace the current global fixed and mobile telephony infra-
structure. In a similar way, their efforts in the security arena do not appear to
be targeted towards replacing telephone numbers by a single globally
acceptable identity that could be cryptographically asserted.

6.0 The NTRG 4G Testhed

At Trinity College in Dublin, Ireland, the Networks and Telecommunications
Research Group (NTRG) has been investigating the form of 4G mobile sys-
tems since 1998. We have ongoing projects investigating many different
aspects of 4G technology from applications though to physical layer issues.
The individual projects are bound together by virtue of their individual
contributions towards our 4G testbed.

Since we envisage that the 4G mobile nodes of the future will be con-
structed using commodity computing platforms, our target nodes are gen-
eral purpose PC workstations, and where portability is important, laptop
and palmtop variations of these. In order to keep a consistent operating
environment across all platforms and to allow our work to integrate with
popularly available applications, we have chosen to develop the Microsoft
Win32 environment as supported by Windows 2000 on PC and laptop and
make use of Windows CE on handheld and palmtop environment.

6.5.1 The Layered Architecture

Components of our 4G environment are implemented as standalone layers
each realized by a single main thread. The interlayer interface is very simple,
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FIGURE 6.2
The layered structure
of the 4G testbed.
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consisting of primitives to send information upwards or downwards
through the stack and to attach a blackboard of parameters to each request
that can be used by any layer through which the data passes. A sample layer
stack is depicted in Figure 6.2.

6.5.2 Wireless Alternatives

Different radio hardware can be accommodated by writing a layer that
interacts directly with the hardware and presents the simple interlayer trans-
fer interface to whatever is above it. In this way, we have been able to per-
form our wireless experiments with links as diverse as Infra-Red (IRDA),
Bluetooth, IEEE 802.11, and also a very simple half-duplex radio we con-
structed in-house, which uses amateur R Fs and allows us to experiment at a
very low level.

6.5.3 Software Radio

Ultimately, we expect to be able to replace the real radios at the bottom of
this protocol stack with a software radio operating in conjunction with a
wideband front end, which would allow operation across a wide frequency
band with the chosen form of modulation being performed in software. The
individual building blocks of the software radio (such as channelization,
coding, modulation, and demodulation) will be realized by individual layers
with an appropriate stack being assembled to deliver the desired radio wave-
torm. Thus far, we have receiver-only systems that implement a variety of
forms of amplitude and frequency demodulation and can rapidly switch
between the two if necessary.

Application

To hardware
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6.5.4 Routing Protocols

The subject of routing protocols enabling the formation of ad hoc networks
of nodes has been under active study by the research community for some
time now [6]. Although many different protocols have been simulated, very
few implementations exist that can test these protocols across a real radio
channel under different mobility scenarios.

Using our layered architecture, we initially implemented the Dynamic
Source Routing (DSR) Protocol. This simple reactive protocol only begins to
try to establish a route to a destination when there is data to be sent. This is
in contrast to a proactive protocol, which attempts to maintain knowledge
of the state of the network so that it is already in possession of sufficient rout-
ing routine information when data needs to be sent. We have also imple-
mented a hybrid Zone Routine Protocol (ZRP), which is proactive for nodes
that are in a nearby zone and reactive for those that are farther away. We
anticipate that the use of these protocols across real wireless channels will
give us a unique insight into their properties.

6.5.5 Emulation Facilities

When routing protocols or mobility aware applications are being developed
and tested, one of the major problems is to expose the evolving software to
particular mobility scenarios without conducting all debugging on the move
and out of doors. Our initial approach to this challenge was to develop a
layer (which we call the datagram layer) that emulates the radio broadcast
environment across a collection of Internet links on the local area network.

Each of the emulated nodes is assigned an IP address, and the emulation
layer in each node is told what other nodes are visible to it in radio terms.
When a packet arrives to be sent on the emulated radio interface, it is encap-
sulated in an IP datagram and sent to each of the visible nodes.

This effectively allows us to construct ad hoc networks made up of
processes running on any Internet-connected host. By constructing a relay
layer that moves packets from one protocol stack to another, we can freely
intermix nodes that are running on real wireless nodes and others that are
sitting on the emulated radio layers. An example of this is shown in
Figure 6.3.

While the above is an effective debug and test tool, emulated wireless
nodes either see each other or they do not, and transmissions always get
through without transmission errors. The ability of nodes to see each other
or not is also statically configured.

In an attempt to improve our radio emulation environment, we have
devised a system that we refer to as a reality emulator. In place of the radio
layer in each node’s protocol stack, we place a reality emulator client layer.
Each of these clients connects via sockets to a server, as shown in Figure 6.4,

WirReELESS IP AND BUILDING THE MOBILE INTERNET

C:\Data\BOOKS\Dixit-Pr\dixit3.vp

Tue Oct 08 13:58:27 2002



Color profile: Disabled
Composite Default screen

FIGURE 6.3

An ad hoc network
emulated wireless
nodes of genuine and
emulated wireless
nodes.

FIGURE 6.4
The reality emulator.
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which emulates the way in which a radio channel will behave as nodes
move with respect to one another and also encounter collisions in
transmission.

When a node initializes itself, it connects to the emulation server where
it is given an initial geographic position. By interacting with a graphical user
interface on the server, a designer can control the transmission range of each
radio and their movement with respect to one another. Figure 6.5 shows the
server’s view of a collection of emulated nodes moving around the Trinity
College campus.

From the point of view of the client protocol stack, the behavior of the
link is identical to that experienced by the node when running across a real
radio link, and provided that the number of emulated nodes is kept reasona-
bly small, the emulator can support substantial amounts of traffic including
real-time voice streams. The system is particularly good at exposing the
routing software to particular node movement scenarios that might other-
wise be hard to achieve.
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FIGURE 6.5  The
emulation server show-
ing eight nodes and
their radio ranges.
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6.5.6 The Security Architecture

We envisage that all users in the fourth generation are potentially mobile,
and a large proportion of them will avail of wireless devices. This means that
nodes will typically be interacting with peer nodes with little information on
the identity represented by that peer.

Authentication in the physical world is typically achieved using a multi-
plicity of cards that people carry around in their purse or wallet. These may
contain basic information about a person, such as might be present on a
driving license. Other cards may contain information on an individual
affiliation with a bank or perhaps more personal information such as a card
detailing his or her blood type.

Individuals produce cards detailing different facets of their identity only
as the need arises. For example, to make a cash withdrawal at a bank, they
may need to produce both a driving license and a bank card. They might
hand over details relating on their medical record only to someone who had
already proved he was a medical professional.

The above exchanges are characterized by individuals entering into a
negotiation dialog where credentials are exchanged in order of increasing
importance as trust is progressively built between the individuals. This
process concludes either when the shared trust has reached its highest level,
or it has exceeded that required by the communication exchange.

At present, we are designing a system to do this kind of credential
exchange between nodes in an ad hoc network. When a node wishes to
avail of a service on another system, this will cause the credential exchange
agents to enter into a dialog where details on different facets of a user’s iden-
tity are exchanged according to a credential release policy (CRP).
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Nodes may authenticate neighboring nodes up to a level at which they
are happy to relay traffic through them. A considerably higher level of
authentication may be needed before a pair of nodes may be willing to enter
into a specified application dialog. Figure 6.6 depicts the security agent that
carries out this authentication.

Based on the authenticated identity facets, which are shared between
the two nodes involved in the trust negotiation, groups can be formed to
share a common purpose. This will allow shared keys to be negotiated,
which can be given to all members of the group to allow shared access to
resources. Similar group formation systems have been developed for Inter-
net multicast environments that can serve as a model for this [7]. This can be
used for such applications as a walkie-talkie type system where all users hear
all traffic or, indeed, any other form of data-based group collaboration.

6.5.7 Real-Time Payment

Most of the flaws in 2G and 3g mobile systems can be traced to the fact that
the major technical decisions defining the architecture have been made
based on one overriding concern, namely that of generating revenue for the
network operators.

If the promise of the 4G is to be fulfilled, the focus must be on enabling
connectivity between network users without tying this connectivity to a
user-operator subscription. Clearly some other way needs to be found to
allow providers of network infrastructure (even if this is just a single relay
node) to be rewarded for making this available to the general population
of nodes.

Network Interaction
with services of the
other ad hoc node
Local credential store|
(LCS) ‘_\‘
‘“Credentlal exchange agent (CEA)||,< —>

Credential release policg—"

(CRP)
Network interaction
with CEA of the other
ad hoc node
Credential exchange history Service
(CEH) policy (SP)
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Figure 6.7 depicts a multiparty micro-payment system [8] developed
within our research group that allows a stream of cryptographic payment
tokens to be interspersed with the normal data packets that make up the
end-to-end flow. Before this can commence, a pricing phase was under-
taken where each party (or network operator) along the path offered their
services for a particular price. Once the contract is agreed to, the payment
tokens can be captured by nodes along the path and redeemed for an agreed
proportion of the overall payment for the traffic. We plan to adapt this sys-
tem to support ad hoc operation where the end-to-end route may change
over the lifetime of the communication.

6.5.8 Applications

The principle application we have used on our 4G network testbed has been
simple Web access, where pages containing HTML as well as complex mul-
timedia data have been delivered to handhelds moving in a wireless net-
work. We have also performed some experiments using the wireless link for
video image data. More recently, we have developed a simple point-to-
point telephony application using the Session Initiation Protocol for signal-
ing. In the future we will modify this to integrate elements of our security
architecture, in particular, to incorporate the notion of multifacetted user
identities. There are a whole host of issues to be resolved before we can sup-
port mobility thorough the mapping of this identity information to address-
ing information that works well with both fixed and ad hoc networks.

6.6 Concluding Remarks
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We have outlined above some of the problems inherent in the architectural
design of 2G and 3G mobile systems. Arising from this, we have enumer-
ated some of what we believe are imperatives for the design of a new 4G
architecture. These ideas are being progressed by the mobile Internet
research community and to a lesser extent, by researchers in mobile tele-
communications. In order to progress our ideas for 4G systems, our research
group has embarked on a number of distinct projects dealing with different
aspects of the overall system. Each of these projects contributes to the con-
struction of a testbed based on the use of commodity PC and PDA hardware
running common operating systems. The testbed supports wireless mobility
via a range of technologies from infrared to software radio and allows the
experimentation with real ad hoc networks that are engineered to integrate
with populations of fixed nodes. Security concerns are also catered for both
in terms of node authentication and also as a means of payment for resources
consumed. The utility of the 4G systems will be demonstrated with
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