

May 2011

DySPAN Conference, Aachen, Germany

Spectrum Management

Why This Tutorial?

- Timely and relevant
 - New policies are needed for spectrum allocation.
 - Markets are natural policy candidates.
- Markets for spectrum pose unique challenges/questions.
 - Definition of property rights, interference externalities
 - Efficiency, incentives, wireless system design
- Interplay between economics and engineering issues

Limited Supply of Spectrum

Spectrum "Crunch"

12

Sources: Cisco, from Operators' network data and Analysts, 2008; Informa, 2008; and Pyramid, "Mobile data revenue will double by 2012," Dan Locke, Analyst Insight, 4/2008.

Regulation Prior to 1927: Open to All

Earliest uses of wireless for ship-to-ship, ship-to-shore communications.

Broadcast radio begins in 1921.

Licenses issued by the Department of Commerce.

Regulation since 1927: "Command and Control"

Federal Radio Commission (FRC) established in 1927.

- Federal Communications Commission (FCC) established in 1934.
- Maintains authority to
 - Grant / renew / deny licenses for spectrum use.
 - Assign applications to particular frequencies.
 - Police content and use

An Economist's Proposal

R. Coase, "The federal communications commission," *J. Law and Economics*, pp. 1–40, 1959.

Introduce spectrum property rights, sell to highest bidders, do not restrict use.

Coase's "Theorem": In the absence of transaction costs, spectrum owners will trade rights so that the outcome allocates spectrum to best use.

Ronald Coase, 1991 Nobel Laureate in Economics

> Spectrum auctions finally introduced in the 1990s. Restrictions on use remain.

Engineering Approach to Spectrum Crunch

Cognitive Radio Mitola and Maguire (1999)

- Add intelligence to mobile devices
 - Frequency agility
 - Wideband sensing
 - Interference avoidance
 - Adaptive quality of service (context aware)
- Enables spectrum scavenging

Spectrum Sharing Models

Exclusive use
 Commons
 Hierarchical

Exclusive Use

- Spectrum owned by government
 - Licensed to particular application, service provider
 - Rigid use rules
- Spectrum is private property
 - Applications, technical constraints decided by markets

"Liberal" licenses

- Spectrum publicly owned, but licenses can be transferred, liberal use rules
- Secondary markets (2003)

Spectrum Commons

Unlicensed

- Requires etiquette rules for sharing
- State-regulated
 - Spectrum owned by government
 - Etiquette rules part of industry standard (802.11)
- Privately owned
 - Owner sets rules, polices band
 - Revenue from selling approved equipment

Hierarchical

- Primary and secondary users
- Secondary users must not disrupt primary users
- Relies on cognitive radio

- State-regulated
 - Spectrum owned by government
 - Use rules for secondary users part of standard (802.22)
- Private contracts with "spectrum scavengers"
 Interference levels/payments set by mutual agreement

⁵⁹ Market Design

Asset Design

Market Mechanisms

Examples

Focus

Designing a dynamic market for spectrum.
 "Short-term" allocations done in "real-time"
 "Small" spatial-scale

Consider one entity responsible for leasing/selling spectrum to multiple agents.

Does Market Design Matter?

- Coase's theorem states that given no transaction costs and well-defined property rights, owners will bargain and reach an Pareto efficient outcome.
- Do we need to worry about designing a market?

Caveats

- Non-zero transaction costs
- Multilateral externalities
- Private information

Private Information

\$2 \$4 \$4 \$4 \$4

□ If Lucy knows Charlie's value \Rightarrow can make an offer to sell at \$4 - ϵ .

Private Information

□ If Lucy knows Charlie's value \Rightarrow can make an offer to sell at \$4 - ϵ .

□ Efficient outcome.

Private Information

- Suppose Lucy only knows that Charlie's value is uniformly distributed on [0,10].
- □ Then she would expect to get \$5 from any transaction \Rightarrow no trade.

Pathological Example?

🗆 No.

- Myerson-Satterthwaite theorem shows that with private information, under very general conditions there is no way for two parties to trade that is efficient and individually rational.
- Suggests market design matters.

Markets

77

Market design has a long history in economics.
 Intellectual foundations are mechanism design/game theory.

Mechanisms

78

Mechanism Design Problem

Need to design

- 1. Rules for soliciting information
- 2. Allocation/payment rule
- Objectives:
 - Social welfare
 - Revenue

Example: 2nd Price Auction

- Mechanism:
 - User's submit bids.
 - Mechanism allocates good to highest bidder
 - User's pay 2nd highest bid.
- User's can be viewed as playing a non-cooperative game.
 - Use equilibrium concepts from game theory to study performance.

Optimal Bids?

81

Outcome

82

Multiple Goods

For a single indivisible good, 2nd price auction gives efficient outcome.

Unless we are allocating all spectrum to one user, we need to deal with multiple goods.

Vickrey-Clarke-Groves (VCG)

VCG mechanisms generalize 2nd price auction to arbitrary "goods."

Incentive compatible, direct revelation mechanism with the efficient outcome.

VCG Mechanism

- \Box Let A = set of alternative allocations.
- \Box Each agent *i* submits valuation $v_i(a)$ for each $a \in A$.
- \square Mechanism chooses alternative to maximize $\sum v_i(a)$.
- Charge user *i* the marginal cost they impose on other players:

 $\max_{b} \sum_{j \neq i} (v_{j}(b) - v_{j}(a))$

Can modify payments by adding terms that only depend on other player's valuations.

Issues with VCG

- Complexity: VCG requires solving N+1 optimization problems for allocating goods to N agents.
- Overhead: Required bids may have a high communication costs.
- Requires agents to know values for all alternatives.
- □ May be susceptible to collusion.

Market Design

Asset Design

Market Mechanisms

Examples

90

Basic Model

- 91
- Consider the allocation of C spectrum assets to A agents.
 - Each asset is right to transmit in given spatial region over a given frequency band for fixed time period.
 - Model Interference among assets via an interference graph.

Pick a fixed set of non-interfering assets.

- Only allocate these.
- If agents valuations of different assets are additive \Rightarrow can allocate each using second price auctions.

Overhead: linear in number of assets.
Complexity: O(CA log(A))
Issues?

- Let agents bid on every asset.
- Allocate an interference free set of assets with the highest bids.

- Let agents bid on every asset.
- Allocate an interference free set of assets with the highest bids.

- Let agents bid on every asset.
- Allocate an interference free set of assets with the highest bids.
 - \Rightarrow Maximum weight independent set.

VCG payments

□ Consider Agent 1?

VCG Payments

- Consider Agent 1
- Remove Agent's bids

VCG Payments

Consider Agent 1
Remove Agent 1's bids
Re-calculate allocation
Payment = (6-2) + (2-0) = \$6

- Overhead: linear in number of assets.
- Complexity: NP-hard!
 - Need to find multiple maximum weight independent sets.

Approximations

- 102
- Consider a greedy approximation:
 - Order assets by bids and assign from highest to lowest if possible.

Greedy Approximation

- No longer Truthful!
 - Truthful bids \Rightarrow Agent 1 gets Assets 2
 - Suppose Agent 2 increases bid on 1 to \$4
 - Agent 2 gets Assets 1 and 3 and pays \$3
 - Pay-off = \$4- \$3.

127

Market Organization

Market structures

Competitive Behavior

Owning vs Leasing

Owned spectrum asset has unlimited time duration; traded as property (e.g., land). Leased spectrum asset has limited time duration; available through local spot market

Owners can deploy services or rent / lease spectrum assets.
→ Service providers need not be spectrum owners!

Two-Tier Spectrum Market

Lower-Tier Spot Market

Managed by spectrum broker

- Sets prices, attempts to clear market
- Auction mechanism: collects bids; determines allocation

Can be automated ("spectrum server")

Local Transactions

Routers use the same channel, cause little interference

Local Transactions

Deterence Price

Usage Price

150

Pricing and Efficiency

- Deployment game: each user decides whether or not to setup an access point given a fixed deterrence price from neighbors.
- Deterrence pricing can substantially increase efficiency, mitigate interference [Bae et al, DySPAN `09].