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Roadmap

 Motivation

 Supervised Learning

 Algorithms

◦ Artificial Neural Networks

◦ Naïve Bayes Classifier

◦ Decision Trees

 Application on VoIP in Wireless Networks



Landscape in Telecommunications

 Dramatic growth of mobile data, streaming services, telepresence

 By 2019 mobile data traffic over 24 exabytes/month worldwide 

 Growth in video delivery segment

 Robust growth opportunity for networking, server, and specialized

hardware providers, due to:

– mobile device capacity growth

– advances in networked home

– cloud services

– user-generated content 

 Existing & emerging large access markets & services 



Motivation

 Need to analyze a large amount of heterogeneous data

 Detect trends and patterns

 Characterize the Quality of Experience of various 

services

 Analyze the performance of various services, providers, 

and networks



Objectives: QoE Modeling & Analysis 

How does the network performance affect the perceived quality of

experience (QoE) of a user ?

 To predict the QoE based on network performance, apply machine 

learning and data mining algorithms, such as:

Decision Trees, Support Vector Regression, Artificial Neural 

Networks, Gaussian Naïve Bayes

 Train the models based on network measurements and opinion 

scores collected in the context of a service

 Demonstrate this methodology for VoIP and video services



Machine Learning

 The study of algorithms and systems that improve their 

performance with experience (Mitchell book)

 Experience = data / measurements / observations



Where to Use Machine Learning

 You have past data, you want to predict the future

 You have data, you want to make sense out of them (find patterns)

 You have a problem which is hard to be modeled

◦ Gather input-output pairs to learn the mapping

 Measurements + intelligent behavior usually lead to some form of 

Machine Learning



Supervised Learning

 Learn from examples

 Would like to be able to predict an outcome of interest y for an object x

 Learn function y = f(x)

 For example, x is a VoIP call, y is an indicator of QoE

 Given data {<xi, yi> : i=1, ..., n}, 

◦ xi the representation of an object, i.e., predictors

◦ yi the representation of a known outcome, i.e., class labels

 Learn the function y = f(x) that generalizes from the data the “best” (has 

minimum average error)



Classification vs. Regression

 Classification

o Constructs decision surfaces

o Predicts categorical class labels (discrete or nominal)

o Classifies (assigns a label) to new data

 Regression

o Constructs a regression line

o Predicts continuous values along the line



Algorithms:

Artificial Neural Networks 



Binary Classification Example 



Possible Decision Areas 



Binary Classification Example 

 The simplest non-trivial 

decision function is the 

straight line

 One decision surface 

 Decision surface partitions 

space into two subspaces 

 In the case of high 

dimensional space, a 

hyperplane is the decision 

function



Specifying a Line (1) 

Line equation: 

Classifier model: 

If 

 Output 1 

Else 

 Output -1 



Specifying a Line (2) 

 Classifier becomes 



The simplest neural network:  the Perceptron

Example X

The Perceptron is a 2-layer neural network



The simpler Neural:  The Perceptron



The simpler Neural:  The Perceptron



Training Perceptrons

 Start with random weights 

 Update in an intelligent way to improve them using the data 

 Intuitively: 

◦ Decrease the weights that increase the sum 

◦ Increase the weights that decrease the sum 

 Repeat for all training instances until convergence 



Perceptron Training Rule 

 η: arbitrary learning rate 
(e.g. 0.5) 

 td : (true) label of the d-
th example 

 od: output of the 
perceptron on the dth
example 

 xi,d: value of predictor 
variable i of example d 

 td = od : No change (for 
correctly classified 
examples) 



Analysis of the Perceptron Training Rule 

 Algorithm will always converge within finite number of iterations if 

the data are linearly separable

 Otherwise, it may oscillate (no convergence)



Gradient Descent

 A first-order optimization algorithm

 Finds a local minimum

 Steps proportional to the negative of the gradient of the function at 

the current point



Training by Gradient Descent 

Idea: 

◦ Define an error function 

◦ Search for weights that minimize the error, i.e., find weights that 

zero the error gradient 

Similar with the Perceptron training rule, but it the gradient descent: 

◦ Always converges 

◦ Generalizes to training networks of perceptrons (neural networks) 

and training networks for multicategory classification or regression 



Setting Up the Gradient Descent 



The Sign Function is not Differentiable 



Use Differentiable Transfer Functions 

 Replace with the sigmoid 



Updating the Weights with Gradient Descent 

 Each weight update goes through all training instances 

 Each weight update more expensive but more accurate 

 Always converges to a local minimum regardless of the data 

 When using the sigmoid: output is a real number between 0 &1 

 Thus, labels (desired outputs) have to be represented with 

numbers from 0 to 1 



Feed-Forward Neural Networks 



Increased Expressiveness Example: Exclusive 

OR 



From the Viewpoint of the Output Layer 

 Each hidden layer maps to a 

new feature space 

 Each hidden node is a new 

constructed feature 

 Original Problem may become 

separable (or easier) 



How to Train Multi-Layered Networks 

 Select a network structure (number of hidden layers, 

hidden nodes, and connectivity)

 Select transfer functions that are differentiable 

 Define a (differentiable) error function

 Search for weights that minimize the error function, using 

gradient descent or other optimization method

 Backpropagation



Back-Propagating the Error 
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Back-Propagating the Error 
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Back-Propagation 



Back-Propagation Algorithm 

 Propagate the input forward through the network 

 Calculate the outputs of all nodes (hidden and output) 

 Propagate the error backward 

 Update the weights: 



Training with Back-Propagation 

 Go once through all training examples & update the weights (1epoch) 

 Iterate until a stopping criterion is satisfied 

 The hidden layers learn new features and map to new spaces 

 Training reaches a local minimum of the error surface 



Overfitting with Neural Networks 

 If number of hidden units (and weights) is large, it is easy to 

“memorize” the training set (or parts of it) and not generalize 

 Typically, the optimal number of hidden units is much smaller than the 

input units 

 Each hidden layer maps to a space of smaller dimension 



Representational Power 

 Perceptron: Can learn only linearly separable functions 

 Functions learnable by a neural network

◦ Boolean Functions: one hidden layer 

◦ Continuous Functions: one hidden layer and sigmoid units 

◦ Arbitrary Functions: two hidden layers and sigmoid units 

 Number of hidden units in all cases unknown 



ANN in Matlab

 Create an ANN 

net =feedforwardnet(hiddenSizes)

 [net] = train(net,X,T) takes a network net, input data X and target 
data T and returns the network after training it.

 sim(net, X) takes a network net and inputs X and returns the estimated 
outputsY generated by the network.

 Example

layers = [2 4]; % 2 hidden layers with size 2 and 4, respectively

net = feedforwardnet([2 4]); 

net = init(net); % initialize

% traindata is a struct that contains the training set

net = train(net,  traindata.examples, traindata.labels);

% testdata is a struct that contains the testing set

predictions = sim(net,  testdata.examples);



Conclusions 

 Can deal with both real and discrete domains 

 Can also perform density or probability estimation 

 Very fast classification time 

 Relatively slow training time (does not easily scale to thousands of 

inputs) 

 One of the most successful classifiers yet 

 Successful design choices still a black art 

 Easy to overfit or underfit if care is not applied 



Algorithms:

Naïve Bayes Classifier



Bayes Rule



Bayes Rule



Bayes Rule



Bayes Classifier

 Training data:

 Learning = estimating P(X|Y), P(Y)

 Classification = using Bayes rule to calculate P(Y | Xnew)

 Xnew is a new example

Sky Temp Humid Wind Water Enjoy

Sunny Warm Normal Strong Warm Yes

Sunny Warm High Strong Warm Yes

Rain Cold High Strong Warm No

Sunny Warm High Strong Cool Yes

X Y



Naïve Bayes Assumption

X= <X1, …, Xn >,  n: dimensions of X 

Y discrete-valued

 Xi and Xj are conditionally independent given Y, for all i≠j



Naïve Bayes classification

 Bayes rule:

 Assuming conditional independence:

 So,  the classification rule for a new example Xnew = <Xi, …, Xn >



Naïve Bayes Algorithm

 Train Naïve Bayes (examples)

for each label yk

estimate P(Y = yk)

for each value xij of each predictor Xi

estimate P(Xi = xij| Y = yk)

end

end

 Classify a new example Xnew



Estimating Parameters: Y, Xi discrete-valued

 Parameter estimation:



What if we have continuous Xi ?

 Gaussian Naïve Bayes (GNB) assume

Sometimes assume variance

 is independent of Y (i.e., σi),

 or independent of Xi (i.e., σk)

 or both (i.e., σ)



Estimating Parameters: Y discrete, Xi continuous

 Maximum likelihood estimates:



Naïve Bayes in Matlab

 Create a new Naïve object:

nb = NaiveBayes.fit(X, Y), X is a 

matrix of predictor values, Y is a vector 

of n class labels

 post = posterior(nb, test) returns the posterior 

probability of the observations in test

 Predict a value

predictedValue = predict(nb, test)



Algorithms:

Decision Trees



A small dataset: Miles Per Gallon

 Suppose we want to predict MPG

 From the UCI repository



A Decision Stump



Recursion Step

Take the

Original

Dataset..

And partition it

according

to the value of

the attribute

we split on

Records

in which

cylinders

= 4

Records

in which

cylinders

= 5

Records

in which

cylinders

= 6

Records

in which

cylinders

= 8
Build Tree from these Records



Second level of tree

Recursively build a tree from the seven

records in which there are four cylinders and

the maker was based in Asia

(Similar recursion in the

other cases)



The final tree



Classification of a new example

 Classifying a test example

 Traverse tree

 Report leaf label



Learning decision trees is hard!!!

 Learning the simplest (smallest) decision tree is an NP-

complete problem [Hyafil & Rivest ’76]

 Resort to a greedy heuristic:

◦ Start from empty decision tree

◦ Split on next best attribute (feature)

◦ Recurse

 How to choose the best attribute and the value for a 

split?



Entropy

 Entropy characterizes our uncertainty about our source of 

information

 More uncertainty, more entropy!

◦ Information Theory interpretation: H(Y) is the expected number of bits 

needed to encode a randomly drawn value of Y (under most 

efficient code)



Information gain

 Advantage of attribute – decrease in uncertainty

◦ Entropy of Y before you split

◦ Entropy after split

 Weight by probability of following each branch, i.e., normalized 

number of records

 Information gain is difference



Learning decision trees

 Start from empty decision tree

 Split on next best attribute (feature)

◦ Use, for example, information gain to select attribute

◦ Split on

 Recurse



A Decision Stump



Base Cases

 Base Case One: If all records in current data subset 

have the same output then don’t recurse

 Base Case Two: If all records have exactly the same set 

of input attributes then don’t recurse



Base Case 1 Don’t split a

node if all

matching

records have

the same

output value



Base Case 2

Don’t split a

node if all records

have exactly the 

same set of input 

attributes 



Basic Decision Tree Building

Summarized

 BuildTree(DataSet,Output)

 If all output values are the same in DataSet, return a leaf 
node that says “predict this unique output”

 If all input values are the same, return a leaf node that 
says “predict the majority output”

 Else find attribute X with highest Info Gain

 Suppose X has nX distinct values (i.e. X has arity nX).

◦ Create and return a non-leaf node with nX children.

◦ The i’th child should be built by calling 
BuildTree(DSi,Output)

Where DSi built consists of all those records in DataSet
for which X = ith distinct value of X.



Decision trees will overfit

 Standard decision trees are have no learning biased

◦ Training set error is always zero!

 (If there is no label noise)

◦ Lots of variance

◦ Will definitely overfit!!!

◦ Must bias towards simpler trees

 Many strategies for picking simpler trees:

◦ Fixed depth

◦ Fixed number of leaves

◦ Or something smarter…



Consider this

split



A statistical test

•Suppose that mpg was completely uncorrelated 

with maker.

•What is the chance we’d have seen data of at least 

this apparent level of association anyway?



Using to avoid overfitting

 Build the full decision tree as before

 But when you can grow it no more, start to prune:

◦ Beginning at the bottom of the tree, delete splits in 

which have extreme low chance to appear//pchance > 

MaxPchance

◦ Continue working your way up until there are no 

more prunable nodes



What you need to know about

decision trees

 Decision trees are one of the most popular data mining tools

◦ Easy to understand

◦ Easy to implement

◦ Easy to use

◦ Computationally cheap (to solve heuristically)

 Information gain to select attributes (ID3, C4.5,…)

 Presented for classification, can be used for regression and 

density estimation too

 Decision trees will overfit!!!

◦ Zero bias classifier ! Lots of variance

◦ Must use tricks to find “simple trees”, e.g.,

 Fixed depth/Early stopping

 Pruning



Decision trees in Matlab

 Use classregtree class

 Create a new tree:

t=classregtree(X,Y), X is a matrix of 
predictor values, y is a vector of n 
response values

 Prune the tree:

tt = prune(t, alpha, pChance) alpha 
defines the level of the pruning

 Predict a value

y= eval(tt, X)



Performance Estimation

 Need to produce a single, final model

 But also estimate its performance

 Why estimate performance

◦ Know what to expect out of a model / system

◦ Select the best model out of all possible models 

◦ Compare different learning algorithms

 Probably the most underestimated problem in machine 

learning, data mining, pattern recognition



Ideal Performance Estimation

1. Learn a model from samples in S (train-set)

2. Install the model in its intended operational 

environment

3. Observe its operation for some time, for new cases S’

4. Label with a gold-standard the cases in S’ (test-set)

5. Estimate the performance of the model on S’



Ideal Performance Estimation

Golden Rule: 

Simulate: learn from S, make operational, test on new

samples S’



Simulating the Ideal

 Randomly split original data 

 Learn on Train 

 Test on Test 

 Called hold-out estimation 

 Can it go wrong? 

Train Test



K-Fold Cross-Validation

 Split to K-folds 

 Cross-Validation(Data D, number K) 

◦ Randomly split D to K folds 

◦ Returned Model: f(D)



Nested Cross Validation

 Different 

combinations of 

model 

parameters

 n = 5 folds

Input:    Dataset S, 

n, k, γ, ε, c 

Output:   

Mean(Errori) 



Application on VoIP in Wireless Networks



Motivation

 Wide use of wireless services for communication

 Quality of Service (QoS): 

◦ Objective network-based metrics (e.g., delay, packet 

loss)

 Quality of Experience (QoE):

◦ Objective and subjective performance metric (e.g., E-

model, PESQ)

◦ Objective factors: network, application related

◦ Subjective factors: users expectation (MOS) 



Problem Definition

 Users are not likely to provide QoE feedback

◦ unless bad QoE is witnessed

 Estimation of QoE

◦ difficult because of the many contributing factors 

using Opinion Models

 Use of machine learning algorithms for the estimation 

of the QoE

◦ based on QoS metrics



Proposed Method

 Nested Cross Validation training of

◦ ANN Models

◦ GNB Models

◦ Decision Trees models

 Preprocessing of data: normalization 



Dataset

 25 users

 18 samples (segments of VoIP calls)

 Each user evaluated all the 

segments with QoE score

 10 attributes as predictors



Dataset

 Predictors

◦ average delay, packet loss, average jitter, burst 

ratio, average burst interarrival, average burst 

size, burst size variance, delay variance, jitter 

variance, burst interarrival variance

 QoE score



Experiments and Results

 For ANN we tested different values of nodes at 

the first and the second hidden layer, with and 

no normalization of the data

 In this table we can see some statistics from the 

error which appears from the difference 

between the estimated QoE and the real QoE

ANN

Mean error 0.9018

Median error 0.6181

Std error 1.0525



Experiments and Results

GNB

Mean error 0.9018

Median error 0.6181

Std error 1.0525

 In order to train the GNB models we use the data with 

normalization or not.

 Statistics from the error of this model:



Experiments and Results

 For the Decision Trees we used different values of alpha 

(a) parameter which defines the pruning level of the 

tree. 

 Statistics:

DecisionTrees

Mean error 0.5475

Median error 0.3636

Std error 0.5395





Material 

Sources:

 Lectures from Machine Learning course CS577


