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Optimal Huffman Coding of DCT Blocks

Gopal Lakhani, Senior Member, IEEE

Abstract—It is a well-observed characteristic that, when a dis-
crete cosine transform block is traversed in the zigzag order, ac co-
efficients generally decrease in size and the runs of zero coefficients
increase in length. This paper presents a minor modification to the
Huffman coding of the JPEG baseline compression algorithm to
exploit this characteristic. During the run-length coding, instead
of pairing a nonzero ac coefficient with the run-length of the pre-
ceding zero coefficients, our encoder pairs it with the run-length of
subsequent zeros. This small change makes it possible for our codec
to code a pair using a separate Huffman code table optimized for
the position of the nonzero coefficient denoted by the pair. These
position-dependent code tables can be encoded efficiently without
incurring a sizable overhead. Experimental results show that our
encoder produces a further reduction in the ac coefficient Huffman
code size by about 10%-15%.

Index Terms—Discrete cosine transform (DCT), Huffman
coding, JPEG image compression.

1. INTRODUCTION

ISCRETE cosine transform (DCT)-based compression al-

gorithms have been proposed for image and video com-
pression and conferencing systems such as JPEG, MPEG, and
H.263. The JPEG baseline compression system [1] is perhaps
the most widely used DCT-based system. In this system, the
input image is partitioned into blocks of 8 x 8 pixels first and
then each block is transformed using the forward DCT. Next,
DCT coefficients are normalized using a preset quantization
table and, finally, the normalized coefficients are entropy en-
coded. JPEG provides two entropy coding methods—arithmetic
and Huffman coding. This paper deals with the Huffman coding
of ac coefficients. A complete description of the baseline algo-
rithm is given in [2] and details of the Huffman coding are given
in [3, Sect. F.1.2].

The biggest advantage of using the DCT is that it packs
the image data of a block into an almost optimal number of
decorrelated coefficients, resulting in significant compression.
Nonzero DCT coefficients are generally located close to the
top/left corner of the transformed block. Further, the nonzero
ac coefficients along the zigzag order [4, Fig. 9.3] decrease in
size and runs of zero coefficients increase in length. Thus, DCT
blocks possess a different kind of statistical redundancy not
present in image blocks. The purpose of this paper is to exploit
this redundancy for further compression by modifying the
Huffman coding of the JPEG baseline algorithm. Our goal is to
use multiple code tables, possibly one for each ac coefficient
position.
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A. Adaptive Huffman Coding

There are several ways to develop adaptive coding to improve
the compression efficiency of JPEG Huffman coding and still
use a single, fixed code table for all ac coefficients. Clearly, the
easiest choice is to first develop a custom code table for the given
image and then use it to code the image; JPEG provides this
as an option. Table I presents experimental results, which show
that use of the custom code table reduces! the code size further,
but only by 1.38%. If the size of the custom table is taken into
account, because the encoder must include the code table with
the image code, there may not be any reduction. Another choice
is to follow dynamic Huffman coding, [5], proposed for gen-
eral file compression. In this method, the encoder updates the
code table after coding each symbol to model any changes in
the distribution of source symbols. Table I also contains exper-
imental results, which show that this method obtains a further
reduction of about 1% only; it is hardly appealing knowing that
dynamic Huffman coding is highly computational. The reason
for dynamic Huffman coding not achieving any further com-
pression in our experiments is that there is hardly any change in
the global distribution of ac coefficients; all changes are local
and confined within each DCT block.

Literature on adaptive Huffman coding of image and/or video
data is limited. An interesting variation of Huffman coding is
given in [6]; it assigns code words dynamically, i.e., given the
code table, symbols are assigned different codes from the same
table as their frequency change; however, the table remains the
same. A study to resolve mismatches between statistical charac-
teristics and variable-length code tables for H.263L is given in
[7]. JPEG, MPEG, and H.263 also allow some sort of adaptive
coding. For example, the JPEG sequential-mode encoder can
use up to four ac code tables, but only one table can be used for
ablock. MPEG and H.263 provide separate tables for intramode
and intermode coding.

B. Using Multiple Code Tables

Use of multiple code tables for DCT coding has been sug-
gested in the past. For example, the author of [8] categorizes
DCT blocks on the basis of their ac coefficients and then uses
a different code table for each category, but still uses one table
per block. Our objective is different; we want to code each
block using multiple ac code tables, because an adaptive coding
strategy alone cannot exploit the redundancy confined within
each DCT block. We present the reason for using multiple
tables using a figure (Fig. 1). This figure plots the probability
of occurrences of pairs (1,1) at different positions of a DCT
block; (1,1) denotes an ac coefficient of magnitude 1 that

IThroughout this paper, reduction is measured in terms of the ac Huffman
code size.
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TABLE I
COMPARING JPEG CODING WITH PROPOSED CODING
1 2 3 4 5 6 7 8
Image JPEG JPEG  Dpyna. Arith. Our Table Our
name Table K.5 [ Custom Huff. Code tables code Saving
code code code code cost
bits % % % bits bits %
Sailboat | 213173 0.29 0.14 0.81 184787 6278 10.97
Tiffany 150839 3.04 2.28 3.49 127740 7404 11.25
Pepper 162930 1.77 1.26 2.63 140232 6543 10.70
Lena 154984 1.15 0.69 2.12 134406 5977 10.25
Baboon | 335662 0.73 0.53 0.66 281520 7101 14.38
Airplane | 161470 0.63 0.31 1.43 141893 5901 9.27
Girl 249953 0.71 0.46 1.46 210357 5410 14.17
Gold 303798 0.90 0.67 1.93 259976 6251 12.78
Zelda 193689 3.46 2.79 1.43 162538 4684 14.30
Barbara | 333950 1.15 1.00 1.33 286465 8201 12.14
Average | 226045 1.38 1.01 1.93 192991 6376  12.02
0%51) (o T Tiplt' ' o ' 0.04. The binary logarithm of the two numbers differ by
008F 50 o i about 1/3; it means that use of table 9 in place of table 10
0.07 - may increase the code size by 1/3 bit. This suboptimality
8'82 o O ] can be avoided using the following solution.
004 b O o© . 2) Change the order of Z and X, i.e., pair a nonzero ac co-
0.03 %O Ooé)o = efficient with the run-length of subsequent zero coeffi-
ggf " cients. For example, for the above sequence, the encoder
Y N . will code pairs (0,1), (2,2), (1, %), .. .. Clearly, after de-
0 10 20 coding (0,1), the decoder would have no difficulty using

AC positions in zigzag order

Fig. 1. Distribution of the ac coefficient (1,1).

precedes exactly one zero coefficient. This pair is assigned a
code of length four in the default JPEG ac code table. Assuming
optimality of Huffman code tables, the probability of this pair
should be 1/2%, i.e., 0.0625. Fig. 1 shows that the probability
of (1,1) varies widely and, hence, use of a single code table for
all ac positions is suboptimal.

Fig. 1 suggests that we should use a separate code table for
each position to realize optimal coding. However, it creates a
problem for the decoder, because a nonzero ac coefficient X
is paired first with Z, a run of zero coefficients and then the
pair (Z, X) is coded as a unit. The problem is that, without any
knowledge of Z and hence, the position % of the coefficient X
in the DCT block, the decoder would be unable to select the
k't code table to decode the pair correctly. To make this point
clear, let 0,2,0,0, 1, ... denote ac coefficients of a block in the
zigzag order or let {(1,2), (2,1), ...} be the sequence of (Z, X)
pairs. If the pair (1,2) is coded using code table 2, the position
of coefficient 2 in the DCT sequence, the decoder would fail to
select code table 2. There are two solutions to this problem:

1) Code a pair using the table that corresponds to the posi-
tion of the first zero coefficient represented by the pair.
If this solution is followed, the encoder will code the two
nonzero coefficients occurring in positions 2 and 5 in the
above sequence using the tables for positions 1 and 3, re-
spectively, i.e., it will use nearby tables. While this solu-
tion may be satisfactory, it is clearly suboptimal. To illus-
trate this point, consider positions 9 and 10 in Fig. 1; the
corresponding probabilities are approximately 0.05 and

the correct table for the pair (2,2).

This paper presents an implementation of the second solution.
This solution requires developing a coding procedure, which
should also handle the following two special situations not en-
countered in JPEG coding: 1) coding of initial run-length of
zeros without pairing it with any nonzero coefficient, in case
the block begins with zeros, and 2) coding of the last nonzero
coefficient of a block without pairing it with trailing zeros. The
next section describes this procedure. There are two advantages
of the second solution: 1) a major advantage is that the codec
can use a custom code table for each coefficient position and 2)
a minor advantage, which is not immediately obvious, is that no
end-of-block (EOB) marker is needed to separate the code of a
DCT block from the next block.

To put the prospect of savings due to use of multiple ac code
tables in perspective, we estimated sizes of different segments
of the Huffman code by compressing several continuous-toned,
photographic images of different characteristics at the default
quality level. As per these experiments, on the average, 10.5%
of the image code represents dc coefficients and 89.5% repre-
sent ac coefficients and EOB marker. Furthermore: 1) 34.8% of
the ac code represents the sign/offset component and 2) 65.2%
represents the Huffman table code. Since there is no correlation
between the sign/offset of any two coefficients, there is no scope
of reduction in portion 1), and any further reduction in 2) can be
obtained only by revising the ac code tables or by improving the
coding procedure; both are objectives of this paper. This is also
the reason that we report only the ac Huffman table code bits
and not the total image code bits in this paper.

This paper is organized as follows. Section II presents our
DCT coding algorithm; it gives a detailed description of our
code tables and how they are different from the JPEG code table.
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Section III presents our method of coding position-dependent
code tables, which is very different from the JPEG method. To
reduce the table coding cost, it is possible not to code all tables;
Section III also explores this possibility. Section IV presents the
results of several experiments to compare the proposed coding
method with JPEG Huffman coding.

II. DCT COEFFICIENT CODING ALGORITHM
A. Code Table Organization

We follow the Huffman coding algorithm of ac coefficients
[3, Annex F.1.2.2]. This algorithm can be divided in two phases:
1) run-length coding and 2) code bit generation. We present here
only the differences in the run-length coding phase. We repre-
sent a nonzero ac coefficient A followed by Z zeros by a pair
(Z, X) directly, where X is the ac level of A.

For 8-b images, ac coefficients are confined to [—1023, 1023]
and, hence, 0 < X < 10.If Z > 15, we split a pair into
multiple pairs. The net result is that our ac code tables as well
as the JPEG ac code table [3, Table K.5] can be expressed as
two-dimensional (2-D) matrices with Z representing the rows
and X representing the columns, 0 < Z < 15and 0 < X < 10.
However, there are 162 entries, {(Z,X) : 0 < Z < 15,1 <
X < 10;(15,0),(0,0)} in Table K.5, whereas our code tables
contain 176 entries, {(Z,X) : 0 < Z < 15,0 < X < 10}. If
X is nonzero, all tables are used the same way. All differences
exist in the use of column 0 entries. These are as follows:

1) (0,0) is a frequently used entry in Table K.5, since JPEG
uses it as the EOB marker at the end of each block; we do
not need any EOB marker. In our code table for position
1, (0,0) is an infrequently used entry, and it is not an entry
in other tables.

2) JPEG uses (15,0) to indicate a run of 16 zeros; we use the
same to denote a run of 15 zeros.

3) There are no other entries of the form (Z,0) in Table K.5,
where 0 < Z < 15; we use them to code either the
run-length of beginning zeros, or the last nonzero ac co-
efficient of a block.

The examples given at the end of the next subsection show use
of these entries; they are also sufficient to develop our encoder.

B. Run-Length Coding

Let {a1,a2,...,a¢3} denote the ac coefficient sequence of
a block in the zigzag order. For simplicity, let a; denote the
ac level of the it" coefficient; therefore, 0 < a; < 10. Let
{e1,ca,...,cn} denote the positions of nonzero ac coefficients
in the sequence. Our run-length encoder considers various cases
and generates one or more pairs per nonzero ac coefficient as
follows.

1) If N is0,i.e., the block contains no nonzero ac coefficient,
it generates {(0,0), (0,0)}.

2) If N = 1and ¢; = 1, i.e., the only nonzero ac coefficient
is at position 1, it generates {(0,0), (a1, 0)}.

3) In general, it generates

It generates (c¢; — 1,0) only if ¢; > 1 to denote the initial
zero run-length. If ¢; > 16, this pair is split into two or
more pairs such as (¢ — 16, 0) (15, 0). Likewise, if ¢; 41—
¢i > 16, (civ1 — ¢; — 1, a.,) is split into multiple pairs
such as (¢;+1 — ¢; — 16, a., )(15, 0). The last pair (a., , 0)
denotes the last nonzero coefficient and all trailing zeros
of the block.

Example 1: Let {2,0,2,0,0,1,1,0,...,0} be the ac
sequence of a block. For this block, the JPEG encoder will
generate pairs {(0,2) (1,2) (2,1) (0,1) (0,0)}, and our encoder
will generate {(1,2) (2,2) (0,1) (1,0)}. Thus, we generate one
less pair if the block begins with a nonzero ac coefficient,
which is typical.

Example 2: Let {0,0,2,0,...,0} be the ac sequence. JPEG
will generate {(2, 2) (0, 0)}, and we will generate {(2,0) (2,0)}.
We generate the same number of pairs, if the first ac coefficient
is zero.

Example 3: Let {0'%,2,0%°,2,0%, 1,013 1} be the ac se-
quence, where 0" denotes a run of n zeros. JPEG will output
{(15,2) (15,2) (15,0) (0,1) (13,1)}, and we will output {(15,0)
(15,2) (1,2) (15,0) (13,1) (1,0) }. Here, we generate an extra pair,
but this happens only when a block contains a run of exactly 15
Zeros, a rare situation.

C. Run-Length Decoder

This section presents pseudocode of our decoder program and
the JPEG decoder given as a flow chart in [3, Fig. F. 13]. The
intent is to show that: 1) our Huffman encoder also runs in one
pass like the JPEG encoder and 2) our decoder incurs no extra
run-time complexity. To follow the pseudocode, let CT denote
the index of the next code table and let Decode() decode the
next pair from the input code stream. If CT is 0, it decodes the
dc coefficient.

CT = 0.

while (not end of input)

{

Decode (CT) .

CT=1. DCT[1..63] =0. (Z,X) = Decode(CT).

if (Z,X) is (0,0) {(Z1,X1) = Decode(CT).
DCT[1]=Z1. CT=0.}

else
while
{

if X =0

if (CT=1o0or Z=15) CT=CT+~7.
else {DCT[CT]=Z. CT=0.}

(CT > 0)

else {DCTICT] = X. CT = (CT+ Z 4+ 1) (mod
64) .}

if (CT >0) (Z,X) = Decode(CT).

}

}

The JPEG decoder program is as follows.

CT=1. DCT[1..63] = 0. (Z,X) = Decode().
while (CT > 0)
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TABLE 1I
CODE WORD SIZE TABLES FOR TWO SUCCESSIVE AC POSITIONS
0 1 2 3 4 10| 0 1 2 3 4 10
0 16 2 3 4 16 615 3 3 5 16 16
1 5 4 5 16 16 65 3 5 16 16 16
2 |7 16 16 16 16 16 | 6 16 16 16 16 16
3 16 16 16 16 16 16 (16 16 16 16 16 16
15116 16 16 16 16 16 |16 16 16 16 16 16
{ TABLE III
ifF X =0 DIFFERENCE OF CODE WORDS SIZES
if (Z=15) CT =CT+16. ZJo 1 2 3 4 10
else CT = 0. 011 0 1 * *
1 0 _1 * * * %
else {DCTICT+Z]=X. CT=(CT+Z+1) (mod o | *+ * % = .
64) .} 3 | *x * * x % *
if (CT >0) (Z,X) = Decode(). B
} slx x x % *

III. CODING OF HUFFMAN AC CODE TABLES
A. Differential Coding

Our encoder should attach 63 code tables, one for each ac po-
sition, as a part of the input to the decoder. The problem is that,
if we code each table individually using the JPEG table coding
method [3, Sect. K.3.3.2], it will cause a big overhead. There-
fore, we developed a new method which exploits characteristics
of ac code tables for 8-b images and relationship that exists be-
tween the code tables for two successive ac positions.

We divide the Huffman code table generation procedure into
two phases: 1) computation of the code word size and 2) assign-
ment of bit sequences so that the code words form a prefix set.
We assume that the encoder and decoder follow the same pro-
cedure for phase 2 and therefore, our encoder needs to provide
only the output of the phase 1 to the decoder, i.e., the tables of
code word sizes of pairs (Z, X).

For each ac position, given the frequency of pairs (Z, X) as
input, our encoder runs the Huffman code tree algorithm and
computes the set of code word size of all pairs; the set satis-
fies Kraft’s inequality [4]. It stores this set as a matrix of size
16 x 11. Since the maximum code word size in Table K.5 is
16, we also impose this restriction and modify the code word
size set so that all words of size greater than 16 are set to 16
and Kraft’s inequality is still satisfied. In practice, this modifi-
cation has virtually no effect on the optimality of the Huffman
code tables. The code word size matrices posses certain charac-
teristics, which are very useful for table coding. These are: 1)
each entry is less than or equal to 16; 2) Since the frequency of
(4, X) is higher for smaller Z and X, smaller entries (i.e., more
significant code words) are located in the top/left part of each
matrix; 3) the frequency of (Z, X') changes very gradually with
the ac position, which means that entry (Z, X)) in the matrix for
the (i + 1)*® position can be specified by coding the difference
with the same entry of the matrix for the i*" position, where
1 =1,2,...,63.

To illustrate above, Table II shows sample matrices for some
two successive ac positions. Table III is the difference matrix;
most of its entries are zeros, which are denoted using *.

To code a difference matrix, we code its columns in order
with the 0t column first. For each column, we code first the
number of entries to be encoded from the column and then code
the entries. Since most nonzero entries are located in the top/left
part of a difference matrix, not all columns need to be coded. The
position of the last coded column is specified by coding a 0. For
this reason, we encode at least one entry from each previous
column, even if they contain no nonzero entry.

Thus, for Table III, our encoder will generate the following:

h(3)R(2)h(1)h(1)h(0)h(-1)R(0)h(-1)h(+1)A(-1)h(0)R(+1)

where h() denotes the Huffman code of its argument. The first
four items denote that the number of entries coded from the first
four columns are 3, 2, 1, and 1, respectively. The next item A(0)
denotes that no entries are coded from the remaining columns.
The remaining items denote column entries. The argument to
h() is actually an unsigned integer; a signed argument simply
denotes that the code is followed by a sign bit, e.g., h(+1) is
h(1) followed by bit 0. The encoder provides the code table A/()
to the decoder by encoding the corresponding code word set.
Since the maximum number of entries in a column is 16 and an
entry of a difference matrix is an integer between —15 and 15,
we can realize the code word set of h() using an array of size
17. Therefore, 17 bytes is also added to the overhead cost of our
tables.

B. Reduction of the Number of Code Tables

Since there is an overhead cost associated with each ac code
table, a goal of our encoder should be to not use a separate table
for each ac position. We formulate next a minimization problem
to address this issue.

Let P;(Z,X) denote the count coded at position 4 for the
whole input image, where 0 < 7 < 63,0 < Z < 15,and 0 <
X < 10.Let C;(Z, X) denote the code word size of (Z, X ) in
the code table for position 7. Let T'cost(k, i) denote the number
of bits needed to code the difference matrix for position 7, where
the difference is taken with the code size matrix for position k&,
k < 1. Let {4;} be an increasing sequence of integers in the



526 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 4, APRIL 2004

16000
14000
12000
10000
8000
Code S'%%oo
4000 -
2000 |-

-2000 1 1 1 1 Il I
0 10 20 30 40 50 60 70

AC Positions

Fig. 2. AC code size and table cost.

interval [1,63], which also denotes the positions of code tables
used by the encoder. In this situation, given an ac coefficient at
position [ so that 7; <[ < 7441, the encoder would use the code
table for position 7;, 1 < ¢t < n. Clearly, 1 = 1, %, < 63, and
n < 63. Letip = 0 and i,41 = 64. Given the sequence {i;},
the total code size including the overhead cost of code tables can
be expressed as follows:

n f41—1 15 10

Z Z Z ZPI (Z,X)xC;,(Z,X) +ZTcost Qtyits1)-

=iy Z=0X=0

Since the purpose of reducing the number of code tables is to
reduce the overhead cost, perhaps at the expense of increased
ac code size, it is important that we compare the overhead cost
of the code tables with the ac code size generated at different
positions. For this purpose, in Fig. 2, we show three plots:

1) ac code size generated at posmon 1 by using the code table
for position 4; it is ZZ 0 \, o Pi(Z,X) x Ci(Z,X)
and it is labeled, CT (current table)

2) ac code size generated at position ¢ but by using the code
table for position ¢ — 1; in this case, the code table for
posmon 7 1s not coded, and the code size is computed as
ZZ 0 X o Pi(Z, X)xCi_1(Z,X)—Tcost(i—1,i);
this is labeled PT (previous table).

3) the overhead of the table for position ¢ coded by taking
the difference with the table for position (i — 1); it is
Tcost(i — 1,1).

These plots are given for the Lena image.

Fig. 2 shows that Tcost is very small for all ac positions. It
also shows that PT is above CT at most positions. Further, for
high-frequency coefficient positions, PT and CT are near zero,
i.e., any ac code reduction, which is obtained due to the use of
PT in the place of CT for a position, is miniscule, and it is likely
to happen for high-frequency positions only. Experimental re-
sults given in the next section show that the overhead cost of all
code tables constitutes only about 3.3% of the ac code size. For
this reason and the fact that if our encoder uses the same code
table for two consecutive ac positions, this information can be
provided to the decoder by using /(0) alone, we decided not to
develop any heuristics to solve the minimization problem stated
above.

IV. EXPERIMENTAL RESULTS

To compare results of our encoder with the JPEG Huffman
encoder, we present two sets of experimental results in this sec-

tion. The objective of the first set, given in columns 2-5 of
Table I, is to show that Table K.5 is indeed very efficient. Hence,
first we compare results of JPEG coding with some adaptive as
well as nonadaptive Huffman coding methods that also use only
one ac code table. Column 2 gives the ac table code size (in
bits) obtained by using Table K.5. Column 3 presents reduc-
tion in terms of percentage of the code size obtained by using
a custom ac code table for each image over column 2. Column
4 gives reductions obtained by dynamic Huffman coding pro-
gram of [10]. Column 5 presents results of a nonadaptive, char-
acter-mode arithmetic encoder [11], which encodes each pair
(Z,X) as a single source symbol.

The average of each column 3-5 is in the range of 1%—2%.
The closeness of these results are sufficient to conclude that
JPEG Table K.5 is quite efficient and that the column 2 numbers
are near minimum, provided that images are coded using only
one ac code table.

The second set of results, given in columns 6-8, is to mea-
sure the performance of the proposed coding method. Column
6 gives the ac table code size, and column 7 gives the overhead
cost in bits of all ac code tables coded by our method. Column
8 gives the percentage reduction over column 2.

Before comparing the JPEG Huffman coding with our
method (i.e., columns 2 or 3 with columns 6-7), we should
point out that columns 2-3 do not include the overhead cost
of the code table. The number of bits needed to code the code
word size set of Table K.5 as per [3, Sect. K.3.3.2] is 1432.
We expect this number to be close to 1432 for a custom-code
table also. Therefore, first we compare column 6 with 2 and 3
directly; on average, column 6 is 14.62% smaller than column
2 and 13.0% smaller than column 3. To consider the overhead
cost as well, we add 1432 to column 2 and then compare
with columns 6 and 7 together. In this case, the average ac
code reduction due to use of position-dependent code tables is
12.02%.

Comparing columns 7 with 6, we find that the overhead of all
63 code tables is only 3.30% of the total ac table code size. This
means that, if we code larger images, say of size 2K x 2K, this
ratio should drop to one fourth.

Table I presents results of high bit-rate image coding (the
quality level ) of [9] was set to 75). To compute similar results
for medium and low bit-rate coding, we compressed images by
setting ) to 50 and 30, respectively. Since Table K.5 is known
to perform poorly at lower bit rates, it was not used. Instead,
a single custom code table and position-dependent tables were
derived for each image. Results are not given for individual im-
ages; only the average of JPEG custom code (column 3), code
using our tables (column 6), and the overhead cost (column 7)
are reported here. For Q = 50, these are 167423, 144359, and
5200, respectively, and for Q = 30, these are 104184, 91574,
and 3846. As before, we assume that it takes 1432 bits to code
a single JPEG ac table. Thus, the reduction due to use of posi-
tion-dependent code tables is 10.48% and 8.94% when Q) is set
to 50 and 30, respectively. Comparing the results for Q = 75
and @ = 30, we find that the overhead cost does not drop by
the same proportion as the drop in the ac code size. The reason
is that it takes more bits to code tables for low-frequency posi-
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tions and these tables are still coded even if the coding bit rate
is low.

Next, we compare savings of our method with the results
given in [12], but first we give a brief summary of its method,
which is an adaptation of Golomb—Rice coding for DCT co-
efficients. In [12], the context of a DCT block is computed
based on the difference of its dc coefficient with the dc of the
four neighboring blocks. Further, the dc range is quantized to a
number of levels, resulting in a large number of block contexts.
Within each context, the average of each of 63 ac coefficients is
kept as the image is coded and this information is used to code
DCT coefficients. Thus, this method also requires maintaining
a large number of tables. The advantage of [12] is that no ta-
bles need to be coded as a part of the image code, which we do,
but the overhead cost of our code tables is very small. On the
other hand, Golomb-Rice coding is much more complex than
Huffman coding. The work in [12] does not give reduction to
ac coefficients separately. For images compressed at () = 70,
it reports a reduction of about 10%. The reduction reported in
Table I is thus comparable with that in [12]

V. SUMMARY AND CONCLUSION

In this paper, we have focused on a statistical redundancy
present in the ac sequence of DCT blocks. It is confined within
DCT blocks and varies locally. As a result, adaptive coding
methods such as dynamic Huffman coding or arithmetic coding,
which consider global distribution of input symbols, do not ob-
tain much further reduction. To exploit this redundancy, we pro-
pose that instead of pairing a nonzero ac coefficient with the
run-length of preceding zeros, the run-length encoder should
pair it with the run-length of subsequent zeros. The major ad-
vantage of this change is that the encoder can now use a custom
code table optimized for each ac coefficient position. The pro-
posed modification does require that the encoder also include
position-dependent code tables with the image code. For this
reason, we also proposed an efficient method for encoding the

ac code tables. A minor advantage of our coding method is that
no EOB marker is needed to represent the end of a block.
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