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Abstract—In this paper, we propose a method that can identify
challenging music samples for beat tracking without ground truth.
Our method, motivated by the machine learning method “selec-
tive sampling,” is based on the measurement of mutual agreement
between beat sequences. In calculating this mutual agreement we
show the critical influence of different evaluation measures. Using
our approach we demonstrate how to compile a new evaluation
dataset comprised of difficult excerpts for beat tracking and ex-
amine this difficulty in the context of perceptual and musical prop-
erties. Based on tag analysis we indicate the musical properties
where future advances in beat tracking research would be most
profitable and where beat tracking is too difficult to be attempted.
Finally, we demonstrate how our mutual agreement method can be
used to improve beat tracking accuracy on large music collections.

Index Terms—Beat tracking, evaluation, ground truth annota-
tion, selective sampling.

I. INTRODUCTION

T HE task of automatic extraction of beat times from
music signals is a mature research topic within music

information retrieval (MIR). The aim of a beat tracking system
is to recover a sequence of time instants consistent with how a
human might tap their foot in time to music. Used in this way
beat trackers have become standard tools within other MIR
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problems (e.g., structural segmentation [1], chord detection
[2], music similarity [3]) by enabling “beat-synchronous”
analysis of music. While many different techniques have been
presented for beat tracking, in particular over the last five years
(e.g., [4]–[9]), analysis of beat tracking accuracy reveals there
has been little significant improvement over the method of
Klapuri et al. [10] from 2006 which is still widely considered
to represent the state of the art. One reason for this apparent
stagnation might be that beat tracking has simply reached the
upper limit of performance (the so-called “glass-ceiling” effect)
and no further gains in performance are possible. Perhaps a
more likely explanation lies in the data used to evaluate beat
trackers. We believe the continual re-use of existing datasets
(e.g.,[6], [10], [11]) has led to a (somewhat) inevitable over-fit-
ting of beat tracking algorithms to the limited data which is
available. Furthermore, within these existing databases, there
is a bias towards musical styles considered easier for beat
tracking, including: rock, pop and electronic dance—genres
typically characterized by clear percussive content and steady
tempi. This imbalance towards easier musical styles means that
challenging excerpts, where beat tracking algorithms fail, are
typically treated as outliers and little effort is made to determine
how to process them.

Given the hypothesis that a glass ceiling in beat tracking ex-
ists due to a lack of diversity in annotated data, an appropriate
strategy would be to annotate more musical examples. However
the manual annotation of beat locations can be extremely dif-
ficult and time-consuming. Therefore it makes sense to restrict
annotation to music examples which are in some way informa-
tive for the beat tracking problem. To this end our approach is to
focus on the selection of musical pieces that are shown to be dif-
ficult for current state of the art systems. Since the goal is to sub-
sequently derive ground truth annotations, this estimation of dif-
ficulty must be achieved without any ground truth annotations.

While some effort has been made to estimate rhythmic diffi-
culty, this has typically been limited in scope focusing on mea-
sures of beat strength [12], [13]. Furthermore these methods
have not been used for the selection of music samples to anno-
tate. A related study of difficulty in beat tracking by Grosche et
al. [14] considered local properties of compositions that cause
beat trackers to stumble, whereas our interest is in the global
properties of musical excerpts.

In machine learning research, selective sampling approaches
have been proposed to select informative samples in absence of
ground truth [15]. In this paper, we follow the Query by Com-
mittee concept [16] and assign a degree of difficulty to a given
piece by measuring the mean mutual (dis-)agreement (MMA)
between a set of state of the art beat tracking approaches. In
effect, when there is no consensus among the beat tracking al-
gorithms we consider that the music example in question might

1558-7916/$31.00 © 2012 IEEE
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be difficult. When assembling our committee of beat trackers,
we take into account that the committee should be character-
ized both by high accuracy and diversity [17]. Similar concepts
have been evaluated in the domain of speech processing [15],
and Mandel et al. [18] presented an approach which includes
user interaction to identify informative samples for training a
music retrieval system. However, to our knowledge, selective
sampling has not yet been applied in the evaluation of music
signal processing tasks like beat tracking.

While the basic concept of selective sampling for beat
tracking evaluation was introduced in [19], an important aspect
we consider in this paper is to what extent the musical prop-
erties that make beat trackers fail coincide with the properties
that make tapping to a piece difficult for human listeners. To
this end we used the proposed MMA method to build a dataset
of samples that are problematic for beat trackers. Listeners
were then asked to tap the beat of those pieces in a spontaneous
manner, to describe the signal properties, and eventually to
determine ground truth beat annotations. This data was used to
investigate similarities and differences between human listeners
and automatic beat tracking. Results demonstrate that among
the files shown to be difficult for beat trackers some were
perceptually easy for human tappers, while those files charac-
terized by expressive timing and/or quiet accompaniment were
considered just as difficult. We believe that the highest potential
for improving beat tracking technology lies in determining
methods to address those files that cause beat trackers to fail
but which contain a perceivable beat, rather than attempting to
address those for which human tappers also struggle to infer
the beat.

The remainder of the paper is structured as follows. In
Section II, we motivate the usage of mutual agreement for
detecting difficult samples and address issues of evaluation
measures and the choice of beat tracking algorithms for mutual
agreement computation. In Section III, we use an existing
beat tracking database to determine system parameters for
the MMA computation, and demonstrate the validity of our
approach. In Section IV, we give details about a new dataset
compiled for this publication and the annotation process. In
Section V, we investigate the difficulty of the new dataset both
for automatic beat tracking and human listeners. In Section VI,
we describe the application of our MMA method to identify
and reject musical pieces where beat tracking will fail, and
furthermore demonstrate how beat tracking performance can
be improved directly by inspecting the properties of the beat
tracking committee. Finally, in Section VII we give a summary
of the principal findings and an outlook towards future work.

II. MUTUAL SEQUENCE AGREEMENT

Our approach is motivated by the Query by Committee
concept [16], and provides a method for selecting informative
data samples to add to existing training data. While most beat
tracking systems are optimized manually, we can compare this
optimization process with a learning process, and the current
state of the art can be considered a committee of learners that
can profit from selecting informative new training samples.

A graphical representation for estimating the difficulty of a
music sample for beat tracking when ground truth is given is

Fig. 1. Setups for determining difficulty of a sample for � � � beat trackers,
(a) With and, (b) Without ground truth (a) Ground truth given (b) No ground
truth.

shown in Fig. 1(a). Here, a set of beat sequences is calculated
for a given sample using different beat trackers. These beat
sequences are then compared with the given ground truth of
the piece using an evaluation measure, and the mean ground
truth performance of all beat trackers, MGP , on this piece can
serve as an estimate of its difficulty. Note that this is different
from calculating the mean performance of a single beat tracker
over an entire data set, which can serve as an indicator of its
individual performance.

However, when no ground truth is given, an unknown sample
might be labeled as “interesting” for beat tracking if a committee
of beat trackers disagree in their estimates of the beat. Hence,
the beat sequences of the beat trackers are compared with
each other, creating a complete graph with mu-
tual agreement values on its edges, as shown in Fig. 1(b). The
mean weight of the edges is equal to the mean mutual agreement
between the beat sequences, MMA , which we investigate as a
method for estimating the beat tracking difficulty. When specif-
ically referring to beat tracking outputs we will use the notation
BT-MGP and BT-MMA.

To use this technique for beat tracking we must address two
important decisions: first, which evaluation method to use to
compute the mutual agreements between committee members
and second which beat trackers to include in the committee.

A. Evaluation Measures

Our mutual agreement measure relies on the use of an
objective beat tracking evaluation method to determine the
relationship between pairs of beat sequences. The selection
of this evaluation method poses an immediate problem since
there is no commonly accepted technique for measuring beat
tracking performance. This lack of consensus has led to many
approaches being developed, each with differing parameters
and/or methodologies. For a review and further discussion, see
[20]. The variations among evaluation methods arise due to
differing hypotheses on how to address the localization between
beat times and annotations (e.g., by the use of tolerance win-
dows), and how to contend with ambiguity over the validity of
metrically related sequences. The eventual choice of a specific
evaluation method is usually made in the context of a particular
application. For example, when evaluating a real-time beat
tracking system, a continuous relationship between beats and
annotations may be an important criterion [21]. Or, for chord
recognition, permitting many different interpretations of the
beat may be detrimental to chord detection accuracy [22] hence
it may be advisable to restrict the range of alternate interpreta-
tions of the beat.



IE
EE

 P
ro

of

W
eb

 V
er

sio
n

HOLZAPFEL et al.: SELECTIVE SAMPLING FOR BEAT TRACKING EVALUATION 3

Our motivation for using a beat tracking evaluation method
is somewhat different, since our primary interest is not in iden-
tifying where beat sequences agree with each other per se, but
rather in finding cases where they disagree. While this disagree-
ment could be measured in terms of ambiguity in metrical level
or beat phase, this is of limited use since these beat sequences
could be considered “somehow” related. Of greater importance
for our application is finding when the beat sequences are com-
pletely unrelated. This is based on our intuition that beat trackers
are usually built out of similar components, and therefore a sig-
nificant lack of consensus in their outputs should be indica-
tive of something interesting in the input signal. Based on this
reasoning, the choice of evaluation method may appear trivial,
since we could simply look for cases where the evaluation score
was close to 0% for any evaluation method. To explore this hy-
pothesis further we briefly address the properties of three eval-
uation methods which cover the main types of techniques cur-
rently used. For each we describe its basic functionality and in-
dicate the conditions under which a minimal accuracy score can
occur.

F-measure [6]: Beats are considered accurate if they fall
within a ms tolerance window around annotations. Accu-
racy in the range 0% to 100% is measured as a function of the
number of true positives, false positives and false negatives. If
the beat sequences are tapped at metrical levels related by a
factor of two (but otherwise well aligned), this causes the score
to drop from 100% to 66.7%. A score of 0% can only occur
if no beat times fall within any tolerance windows. The most
likely scenario for this score is if the beat sequences tapped
in anti-phase (i.e., on the “off-beat”). Completely unrelated
beat sequences typically score around 25% by virtue of beats
arbitrarily falling within the range of tolerance windows [20].

AMLt [11]: A continuity-based method, where beats are ac-
curate when consecutive beats fall within tempo-dependent tol-
erance windows around successive annotations. Beat sequences
are also accurate if the beats occur on the off-beat, or are tapped
at double or half the annotated tempo. The range of values for
AMLt is 0% to 100%. A score of 0% can only occur if no two
consecutive beats fall within the specified tolerance windows.
This is most likely the result of the beat sequences being related
by an unspecified metrical relationship, e.g., “2 against 3” [23].
As with F-measure, unrelated sequences do not score 0%, being
closer to 18% [20].

Information Gain [23]: Accuracy is determined by calcu-
lating the timing errors between an annotation and all beat esti-
mations within a one-beat length window around the annotation.
Then, a beat error histogram is formed from the resulting timing
error sequence. A numerical score is derived by measuring the
K-L divergence between the observed error histogram and the
uniform case. This method gives a measure of how much in-
formation the beats provide about the annotations. The range
of values for the Information Gain is 0 bits to approximately
5.3 bits, where the upper limit is for histogram
bins. Maximal Information Gain is the result of all beat error
measurements falling within a single histogram bin, hence the
choice of is important and should be neither too large nor too
small; histogram bins is an appropriate choice [23].
An Information Gain of 0 bits is obtained, in the limit, when the

Fig. 2. Ground truth annotations for two songs shown as dotted vertical lines.
Beat estimations for five algorithms are superimposed as crosses. The tables list
the ground truth performance according to the three evaluation methods for each
songs, and their mean.� and � are measured in� while� is measured in bits
(a) Example for an easy song (busta rhymes) (b) Example for a difficult song
(tom waits).

beat error histogram is uniform, i.e., where the beat sequences
are totally unrelated.

Based on properties of these evaluation methods, the Infor-
mation Gain approach would appear most suited to our purpose
since it is the only method guaranteed to be close to 0 only in
the condition where the beat sequences have no meaningful rela-
tionship. However, to confirm this empirically we retain all three
evaluation methods throughout the subsequent analysis. In our
notation, we will add a subscript for F-measure,
AMLt and Information Gain, respectively, whenever a distinc-
tion is of importance (e.g., for BT-MMA using In-
formation Gain).

To illustrate the differences in beat tracking outputs and the
effect of different evaluation methods we examine two exam-
ples. The first, in Fig. 2(a), shows beat estimations that strongly
agree with one other. The third sequence tapped at twice the
tempo, causes an expected drop in F-measure but the mean per-
formance of all algorithms against the ground truth is very high.
However in Fig. 2(b), there is much less agreement between the
beat sequences and this is reflected in the performance against
the ground truth. Despite this mutual disagreement, the mean
performance of the algorithms for F-measure and AMLt is still
around 35%. While the Information Gain is measured on a
different scale, it is much closer to its theoretical lower limit.

B. Choice of Committee Members

In the first phase of this research project, implementations of
various beat tracking algorithms were collected including those
freely available online and others kindly provided by the authors
of the systems on request. In total we compiled an initial com-
mittee of 16 beat trackers listed in Table I.

In practice, this required considerable effort to install appro-
priate system components and operating systems necessary to
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TABLE I
GROUND TRUTH PERFORMANCE OF EACH INDIVIDUAL BT ON DATASET1.

BOLD NUMBERS INDICATE BEST PERFORMANCES.

make all of the algorithms run. Furthermore there was both con-
siderable variability in the computational complexity of the al-
gorithms, with some algorithms slower than the fastest by up
to two orders of magnitude, and large variation in beat tracking
performance (see Section III). Towards making the results of
this paper more easily reproducible we propose a method to se-
lect a subset of these algorithms. The selected algorithms should
be characterized by good performance, but at the same time
care should be taken to include approaches that complement
each other. The goal is to obtain a small but diverse committee,
where each implementation is publicly available and not too de-
manding in terms of execution time.

To find a subset of the beat tracking algorithms we
make use of an oracle method. The first stage in this method is to
run all beat tracking algorithms on an existing annotated dataset
recording the per track performance of each algorithm. The first
member of the committee is the algorithm which performs best
in the mean across the entire dataset. The next member to enter
to the committee is determined by an iterative method. Each
remaining algorithm is taken in turn and it is combined with
those currently in the committee—in this case just the first al-
gorithm. The oracle performance is recorded by selecting the
most accurate algorithm per track in the dataset. Whichever
of the remaining algorithms gives the greatest improvement in
oracle performance is the next to enter the committee. This
procedure is iteratively continued until all beat trackers have
been included. We can then look at the order in which the al-
gorithms entered the committee and the improvement in perfor-
mance achieved by their inclusion. We can determine a subset
by fixing the number of committee members at the point where
improvements offered by additional members is small. A choice
of beat trackers guided by this strategy takes into account both
accuracy and diversity.

III. APPLYING MMA TO AN EXISTING DATASET

The largest dataset for beat tracking evaluation to date was
introduced by Gouyon [24]. It contains a total of 1360 excerpts

from different styles of music and will be referred to as Dataset1
throughout this paper. We use Dataset1 to investigate the accu-
racy and diversity of the available 16 beat trackers. Based on
these results we will i) select our committee of beat trackers ii)
give a proof of concept for our MMA method to assess difficulty
for automatic beat tracking and iii) determine the most appro-
priate evaluation method.

A. Accuracies of Potential Committee Members

In Table I the individual ground truth performance of each of
the 16 beat trackers is given for Dataset1. In order to compare the
beat trackers, a one-way ANOVA followed by a series of t-tests
with level of significance of was performed. Tukey’s
HSD adjustment was used to account for the effect of multiple
comparisons. The most accurate beat tracking results without
statistically significant differences are depicted in boldface.

It can be seen from Table I that a subset of beat trackers per-
form significantly better than most of the others. The set of best
beat trackers varies slightly depending on the evaluation mea-
sure which is applied. Comparing the individual accuracy values
of the approaches with the mean of all beat trackers shown in
the last row of Table I we can see that some approaches perform
worse than the mean for all evaluation measures. When looking
towards finding a subset of committee members we recall the
need for accuracy in beat tracking, since poorly performing beat
trackers can lead to an over-estimation of difficulty—where all
files appear difficult.

B. Selecting the Committee

While in previous work [19] the way we chose the committee
members was not documented, we now illustrate the effect of
choosing the committee members based on oracle performances
as described in Section II-B. The development of the oracle
scores are depicted in Fig. 3. A saturation effect can be observed
when the number of beat trackers in the subset increases, and we
decided to limit the number of beat trackers to five (as shown by
the vertical dotted line). The order in which algorithms entered
the oracle slightly varied between the evaluation measures. We
initially decided to choose the five beat trackers based on their
average ranking obtained from the three evaluation measures.
This gave . This ranking re-
sults in a higher diversity of approaches than by ordering ac-
cording to ground truth performance. For example, the DAV1

algorithm is not among the best five methods in the oracle. This
is caused by similarity between the DAV and DEG algorithms
which share the same input feature and tempo detection method.
Therefore, once DEG has entered the committee DAV offers
little additional improvement. However the fundamentally dif-
ferent methods of HAI and the BOE, which are less accurate
overall, are able to increase the diversity of the committee.

Despite the improvement offered by HAI and BOE, we chose
to exclude these approaches from the committee on the grounds
of portability, computation time and public availability. Instead,
we use the widely available approaches of Dixon (DIX) [6]
and Ellis (ELL) [4]. Their inclusion leads to non-significant
decrease in oracle performance (marked by a cross in Fig. 3)

1Note, we use an improved version of the original algorithm [5] which is
implemented as a Sonic Visualiser plugin.
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Fig. 3. Development of the oracle scores for the three evaluation measures. The performance of the chosen committee is depicted by a cross and the vertical line
marks the point with 5 BT in the oracle (a) Information gain (b) AMLt (c) F-measure.

by 0.63%, 0.13% and 1.15% for Information Gain, AMLt, and
F-measure, respectively. We hope that the chosen committee:

will enable other researchers
to most easily reproduce results presented in this paper.

C. MMA Computation

After the selection of committee members, mutual agree-
ment between the sequences obtained from the 5 beat trackers
were computed using the three evaluation measures described
in Section II-A. Then, for each evaluation measure, mutual
agreements for a particular piece were summarized in a mutual
agreement histogram with 11 bins spanning the whole range
of values of the particular evaluation measure (e.g., 0% to
100% for AMLt). In the left column of Fig. 4 these histograms
are depicted for Dataset1. The histograms are sorted by their
BT-MMA value for each evaluation method. Dark colors in
the histogram plots indicate a high population of the specific
histogram bin. In the right column of Fig. 4, scatter plots of
BT-MMA against mean ground truth performance BT-MGP are
shown. For our application, BT-MMA should predict BT-MGP
at least for difficult pieces. These are located at low BT-MGP
values, while easier pieces are found at higher BT-MGP values,
i.e., in the region where the beat trackers perform well in the
mean for a specific sample.

Comparing the scatter plots for the three evaluation measures
we can observe that the in Fig. 4(b) is character-
ized by the highest correlation with the BT-MGP. This corre-
lation is particularly strong for low values, which
indicates that low can reliably predict low ground
truth performance. The other two scatter plots (Figs. 4(d) and
4(f)) show an increased correlation only for high ground truth
performance, i.e., in the upper right corner of these scatter plots.
Based on this evidence it is apparent that F-measure in particular
cannot be used to predict poor performance. This differing be-
havior of Information Gain on the one side and F-measure and
AMLt on the other can be attributed to Information Gain having
an unambiguous zero value, as shown in Section II-A.

By observing the histogram plots in the left column of Fig. 4,
it is apparent that only the Information Gain has a continuous
transition from histograms centered at low values to histograms
centered at high values. The other two measures are charac-
terized by generally flatter histograms, and the F-measure his-
tograms are often characterized by simultaneous high values for

Fig. 4. Left side: Each column of the image depicts a histogram obtained from
�����mutual agreements of the 5 beat sequences for each song in Dataset1. The
histograms are sorted by their mean values (BT-MMA). Dark colors indicate
high histogram values. Right side: MMA versus MGP scatter plots for each
evaluation method (a) Information gain (b) Information gain (c) AMLt (d) AMLt
(e) F-measure (f) F-measure.

100% and 66.7%. This can be ascribed to beat sequences at met-
rical levels related by a factor of two (see Section II-A) which
score an F-measure of 66.7%. These characteristics imply that
the computation of mean mutual agreement is most reliable for
the Information Gain. Hence, we conclude that using Informa-
tion Gain for the MMA computation is superior to either F-mea-
sure or AMLt.

IV. BUILDING A CHALLENGING DATASET

We start from the assumption that adding diversity to existing
collections is necessary to facilitate future improvement in beat
tracking systems. To this end we now describe a new dataset and
compare its properties to those of Dataset1. The new dataset was
compiled by choosing a set of CDs and extracting 40 s of each
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song. We chose music with the goal of obtaining a sufficient
number of files that could be considered difficult in terms of
their rhythmic properties. We concentrated on styles of Western
music, because it is not always apparent how the notion of beat
is used in music of other cultures. The CDs contained a va-
riety of styles including classical music, Romantic music, film
soundtracks, blues, chanson, and solo guitar compositions. We
extracted a total of 678 excerpts.

A subset of the 678 pieces was chosen for manual annotation
with the goal of selecting pieces that cause the largest problems
to the beat tracking approaches. We decided to choose samples
with values bit, which resulted in 270 samples.
The choice of this threshold was motivated by observing that for
values bit, the histograms in Fig. 4(a) have a clear peak and
the correlation with in Fig. 4(b) is strong. We do not
intend for this threshold to be interpreted as a globally valid di-
vision between easy and difficult files, rather it was chosen em-
pirically to maximize the probability of obtaining only difficult
files. In order to cross-check the assumption of these files being
difficult, we added 19 samples with the highest
value which should be characterized by a high BT-MGP. This
set of 289 pieces chosen for annotation will be referred to as
Dataset2 throughout the remainder of the paper.

The annotation process followed a detailed protocol, which is
available on the paper’s website [32]. The first step consists of
recording spontaneous taps from all authors of this paper for all
289 pieces. The taps enable us to examine the ability of listeners
to follow the beat in a possibly difficult piece of music without
any entrainment. The MMA of these taps is used to assess the
perceptual difficulty, and will be compared to the MMA of the
automatic beat trackers. It should be stated that while all five
authors come from an engineering background, four have many
years experience as practicing musicians in different styles and
instruments. Before tapping, each subject was not permitted to
listen to the piece, instead they tapped the beat while listening
to it for the first time. In addition, no subsequent correction of
the taps was allowed.

In the next step, the files in Dataset2 were equally distributed
among the authors of the paper for ground truth annotation. The
annotations were performed using Sonic Visualiser [33]. To as-
sist with the annotation, each annotator was allowed to use mul-
tiple visualizations such as the waveform or spectrogram. The
use of automatic beat tracking or onset detection algorithms
was not permitted, however the spontaneous taps could be used.
Wherever available, scores of the pieces were used as a guide-
line to arrive at a valid annotation, especially for classical and
Romantic music. Each annotator was given the possibility to re-
ject a file if the annotation process appeared intractable. This
happened in 72 cases, resulting in 217 valid beat annotations
for Dataset2.

Finally, the annotator had to compile a tag file for each an-
notated sample. The tags specified which signal characteristics
made the annotation difficult. An arbitrary number of tags could
be assigned to a song, however if the file was not considered
difficult for annotation, the tag “none” was used. The full list of
tags is presented in Section V-B.

Each annotation was subsequently evaluated by a second sub-
ject. In the annotation process all annotators expressed insecu-

Fig. 5. Left side: Each column of the image depicts a histogram obtained from
� � ��� mutual agreements of the 5 beat sequences for each song in the 678
samples used to derive Dataset2. The histograms are sorted by their mean values
(BT-MMA). Dark colors indicate high histogram values. Files excluded from
annotation lie between the vertical blue lines. Right side: MMA versus MGP
scatter plots for the annotated 217 files in Dataset2. Pieces assumed to be easy
according to their BT-MMA are depicted by gray circles with the remainder
shown as black triangles (a) Information gain (b) Information gain (c) AMLt
(d) AMLt (e) F-measure (f) F-measure.

rity about some of their annotations due to the high level of dif-
ficulty of some of the files. To address this issue we consulted
experts with conservatory degrees in music and composition,
and with their assistance we obtained a more reliable ground
truth especially for the most difficult samples. The comments
and changes that were performed in this revision process were
documented and are available on the paper’s website [32].

V. ANALYSIS OF NEW DATABASE

A. Automatic Beat Tracking on the New Dataset

For Dataset2, BT-MMA histograms and scatter plots of
BT-MMA over BT-MGP are depicted in Fig. 5. Computations
were performed in the same way as for Dataset1, enabling a
comparison between Figs. 4 and 5. A common characteristic
of the plots for Dataset1 and Dataset2 is the high correlation
between BT-MGP and BT-MMA for small values when using
Information Gain (see Figs. 4(b) and 5(b)), respectively. Again,
for F-measure and AMLt such a correlation cannot be observed.
This provides strong evidence for using to detect
difficult files in the context of the newly annotated Dataset2.

Differences between Dataset1 and Dataset2 are evident for
all three evaluation measures: the mutual agreement histograms
in the left columns are strongly biased towards the upper
right corner for Dataset1 and towards the lower left corner for
Dataset2. Again, the histograms for in Fig. 5(a)
show a more accentuated concentration and a continuous de-
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TABLE II
GROUND TRUTH PERFORMANCE OF EACH INDIVIDUAL BT

ON THE 217 ANNOTATED FILES IN DATASET2. BOLD

NUMBERS INDICATE BEST PERFORMANCES.

velopment from concentration in low to high histogram bins.
However, in Fig. 5(a) a higher proportion of histograms is
characterized by a concentration in bins of 1 bit or less. This
indicates that Dataset2 contains a larger relative percentage of
difficult samples than Dataset1. The super-imposed vertical
lines in the histogram plots in Fig. 5 indicate the borders for
the initial choice of files to be annotated, i.e., the first 270 files
and the last 19 files sorted by (see Section IV).
Samples on the left of the first line were chosen because they
were assumed to be difficult (low ), while the 19
files on the right of the second line in the histogram plots were
included because they were supposed to be the easiest in the
dataset (high ). In Fig. 5(b) a clear separation can
be observed between those files, where the difficult files are
marked by black triangles and the easy files by gray circles.
This separation is not evident for the other evaluation measures
in Figs. 5(d) and 5(f), and the difficult files form wider spread
clusters.

The individual accuracy values for Dataset2 are depicted in
Table II where bold numbers indicate the best beat tracking re-
sults without statistically significant differences. Note that the
files in Dataset2 were selected based on and are
supposed to be difficult, with the exception of the included 19
files with high . For Dataset2 the overall perfor-
mance is much lower than for Dataset1 (see Table I), and there
are fewer significant differences among the best beat trackers.
Moreover, there is no consistent subset of best beat trackers, as
all except four beat trackers are among the best performers for
at least one evaluation method. The performance of some beat
trackers is close to the mean performance of an entirely deter-
ministic (baseline) beat sequence, fixed at 120 bpm and gener-
ated as in [20]. In general, this proves that the compiled dataset
is more difficult for automatic beat tracking than Dataset1, and
again supports the validity of our proposed BT-MMA method.

Fig. 6. ������� and ������� for annotated 217 files in dataset2.
Pieces which are considered easy according to their ������ are depicted
by gray circles (a) Scatter plot of ������� versus ������ , dotted
lines indicate the chosen border for difficult files for beat tracking (vertical line)
and human tappers (horizontal line) (b) Scatter plot of ������� versus
������� .

B. Perceptual vs. Automatic Beat Tracking Difficulty

1) Assessing Perceptual Difficulty: To better understand the
difficulty of beat tracking, subjective aspects should be taken
into account as well. In Dataset2, we can gain insight into these
subjective aspects by using the spontaneous taps collected in the
annotation process.

During the annotation of Dataset2, we found that sponta-
neously tapping to an unknown piece is a very demanding
process for music without a clear and simple beat. Thus, we
assume that perceptually easier files result in tap sequences that
show higher mutual agreement, analogous to the beat tracker
outputs. In order to differentiate these agreements from the
MMA obtained from beat trackers (i.e., BT-MMA) we will
refer to them as TAP-MMA , and to the mean performance of
the taps compared to ground truth as TAP-MGP (in contrast
to BT-MGP). The TAP-MMA values between the five sponta-
neous taps that are available for each sample were computed
using Information Gain. Fig. 6(a) shows a scatter plot of these

values against the values of the five
beat tracking algorithms. While the sparse cluster in the upper
right corner indicates that high agreement of beat sequences
implies high agreement of spontaneous taps, such a relation
does not exist for low . In this case, we can observe
the existence of a wide range of values. This
implies that among files that are difficult for automatic beat
tracking, there were both difficult and easy files for the human
tappers. In Fig. 6(b) a high correlation between
and the mean performance of the taps against the ground truth
annotations can be observed. This correlation
supports the assumption that high agreement between subjects
implies perceptually easier pieces. Comparing Figs. 5(b) and
6(b), we can see that in Fig. 6(b) there are no separate clusters
of data for very low and values.
This indicates that, for the difficult samples, the human taps
tended to be more accurate compared to the ground truth, and
that the spontaneous taps were characterized by higher mutual
agreement than the beat tracker outputs.

In conclusion, we can state that, even without ground truth
available, it is possible to reliably detect samples where auto-
matic beat tracking will fail. Among these files there will be
both files that are perceptually difficult and files that are easy. As
our aim is to facilitate improvement in beat tracking, we want
to focus on those pieces that have a perceivable beat but that
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Fig. 7. Frequency of tags for all annotated files in Dataset2. Tags indicate which
signal properties made a sample appear difficult during the manual annotation.

make beat trackers fail. These pieces are located in the top-left
rectangle of Fig. 6(a), and we will now focus on the signal prop-
erties that differentiate them from perceptually difficult pieces
which are located in the lower-left rectangle of Fig. 6(a).

2) Signal Properties: The general signal properties encoun-
tered in Dataset2 are summarized in the tags assigned during the
annotation process Fig. 7 shows the number of occurrences of
all tags for the 217 annotated pieces. The most prominent tag
is expressive timing , which applies when a sample changes in
tempo in correlation with its melodic phrase or segment bound-
aries [34] as often happens in Romantic music. Other prominent
tags related to tempo were slow tempo, gradual tempo change
(i.e., one stable tempo changes gradually to a different stable
tempo) and tempo discontinuity (i.e., a sudden tempo change).
This indicates that any kind of tempo changes cause trouble for
beat tracking approaches, and adds the characteristic of having
a slow tempo to the list of problematic tempo-related features.
Furthermore, ternary meter also led the beat trackers to fail,
which suggests that many approaches may be tailored to track
music mainly in a time signature. Characteristics related to
the instrumental timbres, such as lack of transient sounds and
quiet accompaniment complete the picture of the problematic
signal properties that make beat trackers fail. They can be sum-
marized in three groups: i) timing/tempo related, ii) time signa-
tures and iii) lack of clear rhythmic onsets. The tag none was
applied when none of the other tags fit to the properties of the
signal, and its appearance is always related to the files with high

, i.e., the 19 easy files in Dataset2.
Having obtained an overview of the signal properties that

make automatic beat tracking difficult, we would like to know
which of these properties makes tapping the beat difficult for
human listeners. We want to address the question of whether
the files in the upper and lower left rectangles of Fig. 6(a) differ
according to their signal properties. If we can identify some sig-
nificant differences, this can give valuable insight into how to
discriminate between perceptually difficult pieces and those that
are difficult only for automatic beat tracking. To this end, fea-
tures describing those discriminant signal properties might be
used in a machine learning approach to automatically classify
samples into one of the two classes. A threshold was set to a

value of 1 bit (dotted horizontal line in Fig. 6(a)),
i.e., the same threshold that was applied to when
choosing difficult files for annotation. Then, a set of t-tests was

TABLE III
TAGS WITH DIFFERENT MEAN ACCORDING TO T-TEST, SORTED

BY INCREASING P-VALUE, FROM TOP TO BOTTOM. THE

PRESENCE OF A TAG IMPLIES THAT IT APPEARS SIGNIFICANTLY

MORE FREQUENTLY FOR LOW ������� .

applied in order to investigate if the beat-annotated samples in
the lower and upper left rectangles differed regarding their given
tags. In this way, we can infer which signal properties led to in-
accurate tappings.

The results of the t-tests are listed in Table III. The appear-
ance of a tag in the list means that it is significantly more present
in files with low . We can see that a change in
time signature was the most important factor that led to low
tapping agreement. However, this tag is quite sparse among
the dataset as shown in Fig. 7. The most prominent factors,
taking into account their frequency of appearance, are expres-
sive timing and quiet accompaniment. Hence, these factors
apparently cause problems both for beat trackers and for human
tappers. The list of properties given in Table III can serve as a
guideline to which signal descriptors might be applied when
trying to exclude signals from automatic beat tracking because
of their high complexity even for human listeners. It is apparent
that processing music with highly expressive timing should
be postponed, as its beat is too complex to be spontaneously
tracked even by human listeners. We consider that demanding
an accurate beat tracking on such music resembles demanding
high word recognition rates from an automatic speech recog-
nizer in signals that cannot be perceived by a human listener.
However, a profitable first step may be to concentrate on music
characterized by ternary meters, slow tempo or soft onsets,
among other characteristics that do not impose drastically
increased difficulty to human beat perception.

VI. SAMPLE APPLICATION

In this section, we demonstrate a sample application for the
mutual agreement technique that is different from sample selec-
tion in compiling datasets. We assume a large collection of audio
files without any beat annotations and we would like to perform
a task that relies on beat tracking, e.g., cover song detection or
a chord transcription. As a first step, we seek to reject any files
considered impossible for current beat tracking systems. Then
for the remainder, we would like to choose a reliable beat tracker
to provide the beats. Traditionally this would be done by se-
lecting an algorithm which is considered superior to the others
based on some beat tracking evaluation process. We now show
how our mutual agreement measure with five beat tracking al-
gorithms can be applied for this purpose as well.

In this experiment we ran our committee of beat trackers
on Dataset1 and calculated for each sample. We
then excluded those samples with below a spec-
ified threshold. The threshold was incremented in steps of 0.3
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Fig. 8. Result of automatic beat tracker selection (MaxMA), compared with single best beat tracker choice (Best mean) and oracle scores (Oracle) on Dataset1
using our committee of 5 BT. For the thresholds 0 to 3 bits on������ , the percentage of the 1360 files kept for evaluation is shown on the x-axis. The vertical
line shows the point up to which differences between MaxMa and Beat mean are significant (a) Information gain (b) AMLt (c) F-measure.

bits from 0 to 3 bits. Since we have shown that disagreement
between the committee harms beat tracking performance, we
now try the opposite approach and select the beat sequence
with maximum mutual agreement with the committee, which
we denote, MaxMA . For each sample (at a given threshold),
we simply select the beat sequence with the maximum mutual
agreement (MaxMA) with the other four sequences as the most
reliable beat estimation. In effect we assume that the beat tracker
that best agrees with the rest of the committee is the most reli-
able algorithm. In Fig. 8, we compare the MaxMA approach
to another viable option, that of picking the beat tracker [10]
with the best mean overall performance from our experiments
in Sections IIIV. We denote this option Best mean . To illustrate
the upper limit on performance we also include the theoretical
optimum Oracle , that picks the most accurate beat tracker for
each individual sample.

Fig. 8 shows that applying the MaxMA method to choose a
beat tracker leads to significant improvements when evaluated
against ground truth for both Information Gain and AMLt over
a wide range of thresholds. T-tests with a level of significance
of were performed to compare the MaxMA with the
Best mean at each threshold, and all differences on the left of
the vertical lines in Figs. 8(a) and 8(b) are significant. This im-
provement in performance occurs even when no samples are
discarded and remains when retaining up to 41% for of sam-
ples AMLt and 27% for Information Gain. Beyond this point
only the samples with high mutual agreement remain, which are
among the easiest in the dataset, hence the choosing MaxMA
over the the Best mean may offer less improvement. Indeed both
the MaxMa and Best Mean performance approach the Oracle
when only very few (easy) samples remain.

While there is still a consistent improvement for the F-mea-
sure (Fig. 8(c)), this improvement is not significant for any
threshold value. This is likely the result of the discontinuity of
the F-measure, which assigns 0% to beat sequences misaligned
in phase and values of 66% for tempo halving/doubling. These
properties of the F-measure increase its variance even for sets
of beat sequences that can be acceptable in terms of perceptual
criteria. This supports the observation that significant differ-
ences in beat tracking performance can vary dependent on the
evaluation measure [20].

On the basis of this sample application, we infer that mu-
tual agreement can be successfully applied both for choosing

“beat-trackable” files and for improving beat tracking perfor-
mance on these files by selecting the beat tracker that has the
maximum mutual agreement with the other beat trackers. Since
all beat sequences must be estimated for the file selection/rejec-
tion process, the improvement given by the MaxMA beat tracker
choice adds negligible additional complexity.

VII. CONCLUSIONS

In this paper, we presented a method based on mutual agree-
ment of beat sequences to detect informative samples in non-
annotated data collections. We compiled and annotated a new
dataset that consists mainly of pieces with low mutual agree-
ment, and showed that this dataset is significantly more difficult
for state of the art beat tracking algorithms than the largest ex-
isting collection. Using the new difficult dataset, we analyzed
the signal characteristics that make beat trackers fail, and inves-
tigated the extent to which these characteristics coincide with
the properties that make tapping difficult for humans. Based on
our informal analysis of human tapping it appears that expres-
sive timing contributes strongly to making music difficult to tap
to. Furthermore it may not be musically appropriate to attempt
to precisely follow large expressive changes. The musical ex-
perts who assisted in the annotation process demonstrated more
musically meaningful annotations could be obtained by tapping
a stable pulse around which the timing changes deviate. How-
ever this level of tapping required extensive musical training
(beyond the level of the authors) and provides strong evidence
towards rejecting beat tracking for musical pieces of this nature.
Towards more realistic advances in beat tracking, we propose
investigating techniques for music with properties that do not
pose such considerable difficulties for humans, including pieces
characterized by ternary meter, slow tempo, or soft instrument
onsets.

In order to reliably detect difficult samples using mutual
(dis-)agreement, we demonstrated that the choice of the evalu-
ation measure is crucial, and that Information Gain was better
suited to this task than both the F-measure and AMLt evaluation
methods. However, Information Gain appears less effective in
highlighting where beat tracking algorithms strongly agree with
each other. Hence, in future work, we will explore methods to
combine different evaluation methods.

The proposed MMA method represents an efficient approach
to improve diversity in existing datasets, as well as a simple
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technique to improve beat tracking in large non-annotated
datasets. Our method can also be applied in other contexts by
detecting problematic files for chord recognition where it may
be valuable to reject the use of beat tracking as a temporal
analysis component. Furthermore, outside of beat tracking,
we believe that there is considerable scope to apply mutual
agreement to other MIR research tasks through the use of
context specific evaluation methods.

The audio files of the newly compiled beat tracking dataset
will be made available on request, and all of the accompanying
meta-data is available on the paper’s web-page [32]. We en-
courage the research community to contribute to this resource by
adding further annotated difficult samples along with meta-data.
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Selective Sampling for Beat Tracking Evaluation
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Abstract—In this paper, we propose a method that can identify
challenging music samples for beat tracking without ground truth.
Our method, motivated by the machine learning method “selec-
tive sampling,” is based on the measurement of mutual agreement
between beat sequences. In calculating this mutual agreement we
show the critical influence of different evaluation measures. Using
our approach we demonstrate how to compile a new evaluation
dataset comprised of difficult excerpts for beat tracking and ex-
amine this difficulty in the context of perceptual and musical prop-
erties. Based on tag analysis we indicate the musical properties
where future advances in beat tracking research would be most
profitable and where beat tracking is too difficult to be attempted.
Finally, we demonstrate how our mutual agreement method can be
used to improve beat tracking accuracy on large music collections.

Index Terms—Beat tracking, evaluation, ground truth annota-
tion, selective sampling.

I. INTRODUCTION

T HE task of automatic extraction of beat times from
music signals is a mature research topic within music

information retrieval (MIR). The aim of a beat tracking system
is to recover a sequence of time instants consistent with how a
human might tap their foot in time to music. Used in this way
beat trackers have become standard tools within other MIR
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problems (e.g., structural segmentation [1], chord detection
[2], music similarity [3]) by enabling “beat-synchronous”
analysis of music. While many different techniques have been
presented for beat tracking, in particular over the last five years
(e.g., [4]–[9]), analysis of beat tracking accuracy reveals there
has been little significant improvement over the method of
Klapuri et al. [10] from 2006 which is still widely considered
to represent the state of the art. One reason for this apparent
stagnation might be that beat tracking has simply reached the
upper limit of performance (the so-called “glass-ceiling” effect)
and no further gains in performance are possible. Perhaps a
more likely explanation lies in the data used to evaluate beat
trackers. We believe the continual re-use of existing datasets
(e.g.,[6], [10], [11]) has led to a (somewhat) inevitable over-fit-
ting of beat tracking algorithms to the limited data which is
available. Furthermore, within these existing databases, there
is a bias towards musical styles considered easier for beat
tracking, including: rock, pop and electronic dance—genres
typically characterized by clear percussive content and steady
tempi. This imbalance towards easier musical styles means that
challenging excerpts, where beat tracking algorithms fail, are
typically treated as outliers and little effort is made to determine
how to process them.

Given the hypothesis that a glass ceiling in beat tracking ex-
ists due to a lack of diversity in annotated data, an appropriate
strategy would be to annotate more musical examples. However
the manual annotation of beat locations can be extremely dif-
ficult and time-consuming. Therefore it makes sense to restrict
annotation to music examples which are in some way informa-
tive for the beat tracking problem. To this end our approach is to
focus on the selection of musical pieces that are shown to be dif-
ficult for current state of the art systems. Since the goal is to sub-
sequently derive ground truth annotations, this estimation of dif-
ficulty must be achieved without any ground truth annotations.

While some effort has been made to estimate rhythmic diffi-
culty, this has typically been limited in scope focusing on mea-
sures of beat strength [12], [13]. Furthermore these methods
have not been used for the selection of music samples to anno-
tate. A related study of difficulty in beat tracking by Grosche et
al. [14] considered local properties of compositions that cause
beat trackers to stumble, whereas our interest is in the global
properties of musical excerpts.

In machine learning research, selective sampling approaches
have been proposed to select informative samples in absence of
ground truth [15]. In this paper, we follow the Query by Com-
mittee concept [16] and assign a degree of difficulty to a given
piece by measuring the mean mutual (dis-)agreement (MMA)
between a set of state of the art beat tracking approaches. In
effect, when there is no consensus among the beat tracking al-
gorithms we consider that the music example in question might

1558-7916/$31.00 © 2012 IEEE
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be difficult. When assembling our committee of beat trackers,
we take into account that the committee should be character-
ized both by high accuracy and diversity [17]. Similar concepts
have been evaluated in the domain of speech processing [15],
and Mandel et al. [18] presented an approach which includes
user interaction to identify informative samples for training a
music retrieval system. However, to our knowledge, selective
sampling has not yet been applied in the evaluation of music
signal processing tasks like beat tracking.

While the basic concept of selective sampling for beat
tracking evaluation was introduced in [19], an important aspect
we consider in this paper is to what extent the musical prop-
erties that make beat trackers fail coincide with the properties
that make tapping to a piece difficult for human listeners. To
this end we used the proposed MMA method to build a dataset
of samples that are problematic for beat trackers. Listeners
were then asked to tap the beat of those pieces in a spontaneous
manner, to describe the signal properties, and eventually to
determine ground truth beat annotations. This data was used to
investigate similarities and differences between human listeners
and automatic beat tracking. Results demonstrate that among
the files shown to be difficult for beat trackers some were
perceptually easy for human tappers, while those files charac-
terized by expressive timing and/or quiet accompaniment were
considered just as difficult. We believe that the highest potential
for improving beat tracking technology lies in determining
methods to address those files that cause beat trackers to fail
but which contain a perceivable beat, rather than attempting to
address those for which human tappers also struggle to infer
the beat.

The remainder of the paper is structured as follows. In
Section II, we motivate the usage of mutual agreement for
detecting difficult samples and address issues of evaluation
measures and the choice of beat tracking algorithms for mutual
agreement computation. In Section III, we use an existing
beat tracking database to determine system parameters for
the MMA computation, and demonstrate the validity of our
approach. In Section IV, we give details about a new dataset
compiled for this publication and the annotation process. In
Section V, we investigate the difficulty of the new dataset both
for automatic beat tracking and human listeners. In Section VI,
we describe the application of our MMA method to identify
and reject musical pieces where beat tracking will fail, and
furthermore demonstrate how beat tracking performance can
be improved directly by inspecting the properties of the beat
tracking committee. Finally, in Section VII we give a summary
of the principal findings and an outlook towards future work.

II. MUTUAL SEQUENCE AGREEMENT

Our approach is motivated by the Query by Committee
concept [16], and provides a method for selecting informative
data samples to add to existing training data. While most beat
tracking systems are optimized manually, we can compare this
optimization process with a learning process, and the current
state of the art can be considered a committee of learners that
can profit from selecting informative new training samples.

A graphical representation for estimating the difficulty of a
music sample for beat tracking when ground truth is given is

Fig. 1. Setups for determining difficulty of a sample for � � � beat trackers,
(a) With and, (b) Without ground truth (a) Ground truth given (b) No ground
truth.

shown in Fig. 1(a). Here, a set of beat sequences is calculated
for a given sample using different beat trackers. These beat
sequences are then compared with the given ground truth of
the piece using an evaluation measure, and the mean ground
truth performance of all beat trackers, MGP , on this piece can
serve as an estimate of its difficulty. Note that this is different
from calculating the mean performance of a single beat tracker
over an entire data set, which can serve as an indicator of its
individual performance.

However, when no ground truth is given, an unknown sample
might be labeled as “interesting” for beat tracking if a committee
of beat trackers disagree in their estimates of the beat. Hence,
the beat sequences of the beat trackers are compared with
each other, creating a complete graph with mu-
tual agreement values on its edges, as shown in Fig. 1(b). The
mean weight of the edges is equal to the mean mutual agreement
between the beat sequences, MMA , which we investigate as a
method for estimating the beat tracking difficulty. When specif-
ically referring to beat tracking outputs we will use the notation
BT-MGP and BT-MMA.

To use this technique for beat tracking we must address two
important decisions: first, which evaluation method to use to
compute the mutual agreements between committee members
and second which beat trackers to include in the committee.

A. Evaluation Measures

Our mutual agreement measure relies on the use of an
objective beat tracking evaluation method to determine the
relationship between pairs of beat sequences. The selection
of this evaluation method poses an immediate problem since
there is no commonly accepted technique for measuring beat
tracking performance. This lack of consensus has led to many
approaches being developed, each with differing parameters
and/or methodologies. For a review and further discussion, see
[20]. The variations among evaluation methods arise due to
differing hypotheses on how to address the localization between
beat times and annotations (e.g., by the use of tolerance win-
dows), and how to contend with ambiguity over the validity of
metrically related sequences. The eventual choice of a specific
evaluation method is usually made in the context of a particular
application. For example, when evaluating a real-time beat
tracking system, a continuous relationship between beats and
annotations may be an important criterion [21]. Or, for chord
recognition, permitting many different interpretations of the
beat may be detrimental to chord detection accuracy [22] hence
it may be advisable to restrict the range of alternate interpreta-
tions of the beat.
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Our motivation for using a beat tracking evaluation method
is somewhat different, since our primary interest is not in iden-
tifying where beat sequences agree with each other per se, but
rather in finding cases where they disagree. While this disagree-
ment could be measured in terms of ambiguity in metrical level
or beat phase, this is of limited use since these beat sequences
could be considered “somehow” related. Of greater importance
for our application is finding when the beat sequences are com-
pletely unrelated. This is based on our intuition that beat trackers
are usually built out of similar components, and therefore a sig-
nificant lack of consensus in their outputs should be indica-
tive of something interesting in the input signal. Based on this
reasoning, the choice of evaluation method may appear trivial,
since we could simply look for cases where the evaluation score
was close to 0% for any evaluation method. To explore this hy-
pothesis further we briefly address the properties of three eval-
uation methods which cover the main types of techniques cur-
rently used. For each we describe its basic functionality and in-
dicate the conditions under which a minimal accuracy score can
occur.

F-measure [6]: Beats are considered accurate if they fall
within a ms tolerance window around annotations. Accu-
racy in the range 0% to 100% is measured as a function of the
number of true positives, false positives and false negatives. If
the beat sequences are tapped at metrical levels related by a
factor of two (but otherwise well aligned), this causes the score
to drop from 100% to 66.7%. A score of 0% can only occur
if no beat times fall within any tolerance windows. The most
likely scenario for this score is if the beat sequences tapped
in anti-phase (i.e., on the “off-beat”). Completely unrelated
beat sequences typically score around 25% by virtue of beats
arbitrarily falling within the range of tolerance windows [20].

AMLt [11]: A continuity-based method, where beats are ac-
curate when consecutive beats fall within tempo-dependent tol-
erance windows around successive annotations. Beat sequences
are also accurate if the beats occur on the off-beat, or are tapped
at double or half the annotated tempo. The range of values for
AMLt is 0% to 100%. A score of 0% can only occur if no two
consecutive beats fall within the specified tolerance windows.
This is most likely the result of the beat sequences being related
by an unspecified metrical relationship, e.g., “2 against 3” [23].
As with F-measure, unrelated sequences do not score 0%, being
closer to 18% [20].

Information Gain [23]: Accuracy is determined by calcu-
lating the timing errors between an annotation and all beat esti-
mations within a one-beat length window around the annotation.
Then, a beat error histogram is formed from the resulting timing
error sequence. A numerical score is derived by measuring the
K-L divergence between the observed error histogram and the
uniform case. This method gives a measure of how much in-
formation the beats provide about the annotations. The range
of values for the Information Gain is 0 bits to approximately
5.3 bits, where the upper limit is for histogram
bins. Maximal Information Gain is the result of all beat error
measurements falling within a single histogram bin, hence the
choice of is important and should be neither too large nor too
small; histogram bins is an appropriate choice [23].
An Information Gain of 0 bits is obtained, in the limit, when the

Fig. 2. Ground truth annotations for two songs shown as dotted vertical lines.
Beat estimations for five algorithms are superimposed as crosses. The tables list
the ground truth performance according to the three evaluation methods for each
songs, and their mean.� and � are measured in� while� is measured in bits
(a) Example for an easy song (busta rhymes) (b) Example for a difficult song
(tom waits).

beat error histogram is uniform, i.e., where the beat sequences
are totally unrelated.

Based on properties of these evaluation methods, the Infor-
mation Gain approach would appear most suited to our purpose
since it is the only method guaranteed to be close to 0 only in
the condition where the beat sequences have no meaningful rela-
tionship. However, to confirm this empirically we retain all three
evaluation methods throughout the subsequent analysis. In our
notation, we will add a subscript for F-measure,
AMLt and Information Gain, respectively, whenever a distinc-
tion is of importance (e.g., for BT-MMA using In-
formation Gain).

To illustrate the differences in beat tracking outputs and the
effect of different evaluation methods we examine two exam-
ples. The first, in Fig. 2(a), shows beat estimations that strongly
agree with one other. The third sequence tapped at twice the
tempo, causes an expected drop in F-measure but the mean per-
formance of all algorithms against the ground truth is very high.
However in Fig. 2(b), there is much less agreement between the
beat sequences and this is reflected in the performance against
the ground truth. Despite this mutual disagreement, the mean
performance of the algorithms for F-measure and AMLt is still
around 35%. While the Information Gain is measured on a
different scale, it is much closer to its theoretical lower limit.

B. Choice of Committee Members

In the first phase of this research project, implementations of
various beat tracking algorithms were collected including those
freely available online and others kindly provided by the authors
of the systems on request. In total we compiled an initial com-
mittee of 16 beat trackers listed in Table I.

In practice, this required considerable effort to install appro-
priate system components and operating systems necessary to
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TABLE I
GROUND TRUTH PERFORMANCE OF EACH INDIVIDUAL BT ON DATASET1.

BOLD NUMBERS INDICATE BEST PERFORMANCES.

make all of the algorithms run. Furthermore there was both con-
siderable variability in the computational complexity of the al-
gorithms, with some algorithms slower than the fastest by up
to two orders of magnitude, and large variation in beat tracking
performance (see Section III). Towards making the results of
this paper more easily reproducible we propose a method to se-
lect a subset of these algorithms. The selected algorithms should
be characterized by good performance, but at the same time
care should be taken to include approaches that complement
each other. The goal is to obtain a small but diverse committee,
where each implementation is publicly available and not too de-
manding in terms of execution time.

To find a subset of the beat tracking algorithms we
make use of an oracle method. The first stage in this method is to
run all beat tracking algorithms on an existing annotated dataset
recording the per track performance of each algorithm. The first
member of the committee is the algorithm which performs best
in the mean across the entire dataset. The next member to enter
to the committee is determined by an iterative method. Each
remaining algorithm is taken in turn and it is combined with
those currently in the committee—in this case just the first al-
gorithm. The oracle performance is recorded by selecting the
most accurate algorithm per track in the dataset. Whichever
of the remaining algorithms gives the greatest improvement in
oracle performance is the next to enter the committee. This
procedure is iteratively continued until all beat trackers have
been included. We can then look at the order in which the al-
gorithms entered the committee and the improvement in perfor-
mance achieved by their inclusion. We can determine a subset
by fixing the number of committee members at the point where
improvements offered by additional members is small. A choice
of beat trackers guided by this strategy takes into account both
accuracy and diversity.

III. APPLYING MMA TO AN EXISTING DATASET

The largest dataset for beat tracking evaluation to date was
introduced by Gouyon [24]. It contains a total of 1360 excerpts

from different styles of music and will be referred to as Dataset1
throughout this paper. We use Dataset1 to investigate the accu-
racy and diversity of the available 16 beat trackers. Based on
these results we will i) select our committee of beat trackers ii)
give a proof of concept for our MMA method to assess difficulty
for automatic beat tracking and iii) determine the most appro-
priate evaluation method.

A. Accuracies of Potential Committee Members

In Table I the individual ground truth performance of each of
the 16 beat trackers is given for Dataset1. In order to compare the
beat trackers, a one-way ANOVA followed by a series of t-tests
with level of significance of was performed. Tukey’s
HSD adjustment was used to account for the effect of multiple
comparisons. The most accurate beat tracking results without
statistically significant differences are depicted in boldface.

It can be seen from Table I that a subset of beat trackers per-
form significantly better than most of the others. The set of best
beat trackers varies slightly depending on the evaluation mea-
sure which is applied. Comparing the individual accuracy values
of the approaches with the mean of all beat trackers shown in
the last row of Table I we can see that some approaches perform
worse than the mean for all evaluation measures. When looking
towards finding a subset of committee members we recall the
need for accuracy in beat tracking, since poorly performing beat
trackers can lead to an over-estimation of difficulty—where all
files appear difficult.

B. Selecting the Committee

While in previous work [19] the way we chose the committee
members was not documented, we now illustrate the effect of
choosing the committee members based on oracle performances
as described in Section II-B. The development of the oracle
scores are depicted in Fig. 3. A saturation effect can be observed
when the number of beat trackers in the subset increases, and we
decided to limit the number of beat trackers to five (as shown by
the vertical dotted line). The order in which algorithms entered
the oracle slightly varied between the evaluation measures. We
initially decided to choose the five beat trackers based on their
average ranking obtained from the three evaluation measures.
This gave . This ranking re-
sults in a higher diversity of approaches than by ordering ac-
cording to ground truth performance. For example, the DAV1

algorithm is not among the best five methods in the oracle. This
is caused by similarity between the DAV and DEG algorithms
which share the same input feature and tempo detection method.
Therefore, once DEG has entered the committee DAV offers
little additional improvement. However the fundamentally dif-
ferent methods of HAI and the BOE, which are less accurate
overall, are able to increase the diversity of the committee.

Despite the improvement offered by HAI and BOE, we chose
to exclude these approaches from the committee on the grounds
of portability, computation time and public availability. Instead,
we use the widely available approaches of Dixon (DIX) [6]
and Ellis (ELL) [4]. Their inclusion leads to non-significant
decrease in oracle performance (marked by a cross in Fig. 3)

1Note, we use an improved version of the original algorithm [5] which is
implemented as a Sonic Visualiser plugin.
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Fig. 3. Development of the oracle scores for the three evaluation measures. The performance of the chosen committee is depicted by a cross and the vertical line
marks the point with 5 BT in the oracle (a) Information gain (b) AMLt (c) F-measure.

by 0.63%, 0.13% and 1.15% for Information Gain, AMLt, and
F-measure, respectively. We hope that the chosen committee:

will enable other researchers
to most easily reproduce results presented in this paper.

C. MMA Computation

After the selection of committee members, mutual agree-
ment between the sequences obtained from the 5 beat trackers
were computed using the three evaluation measures described
in Section II-A. Then, for each evaluation measure, mutual
agreements for a particular piece were summarized in a mutual
agreement histogram with 11 bins spanning the whole range
of values of the particular evaluation measure (e.g., 0% to
100% for AMLt). In the left column of Fig. 4 these histograms
are depicted for Dataset1. The histograms are sorted by their
BT-MMA value for each evaluation method. Dark colors in
the histogram plots indicate a high population of the specific
histogram bin. In the right column of Fig. 4, scatter plots of
BT-MMA against mean ground truth performance BT-MGP are
shown. For our application, BT-MMA should predict BT-MGP
at least for difficult pieces. These are located at low BT-MGP
values, while easier pieces are found at higher BT-MGP values,
i.e., in the region where the beat trackers perform well in the
mean for a specific sample.

Comparing the scatter plots for the three evaluation measures
we can observe that the in Fig. 4(b) is character-
ized by the highest correlation with the BT-MGP. This corre-
lation is particularly strong for low values, which
indicates that low can reliably predict low ground
truth performance. The other two scatter plots (Figs. 4(d) and
4(f)) show an increased correlation only for high ground truth
performance, i.e., in the upper right corner of these scatter plots.
Based on this evidence it is apparent that F-measure in particular
cannot be used to predict poor performance. This differing be-
havior of Information Gain on the one side and F-measure and
AMLt on the other can be attributed to Information Gain having
an unambiguous zero value, as shown in Section II-A.

By observing the histogram plots in the left column of Fig. 4,
it is apparent that only the Information Gain has a continuous
transition from histograms centered at low values to histograms
centered at high values. The other two measures are charac-
terized by generally flatter histograms, and the F-measure his-
tograms are often characterized by simultaneous high values for

Fig. 4. Left side: Each column of the image depicts a histogram obtained from
�����mutual agreements of the 5 beat sequences for each song in Dataset1. The
histograms are sorted by their mean values (BT-MMA). Dark colors indicate
high histogram values. Right side: MMA versus MGP scatter plots for each
evaluation method (a) Information gain (b) Information gain (c) AMLt (d) AMLt
(e) F-measure (f) F-measure.

100% and 66.7%. This can be ascribed to beat sequences at met-
rical levels related by a factor of two (see Section II-A) which
score an F-measure of 66.7%. These characteristics imply that
the computation of mean mutual agreement is most reliable for
the Information Gain. Hence, we conclude that using Informa-
tion Gain for the MMA computation is superior to either F-mea-
sure or AMLt.

IV. BUILDING A CHALLENGING DATASET

We start from the assumption that adding diversity to existing
collections is necessary to facilitate future improvement in beat
tracking systems. To this end we now describe a new dataset and
compare its properties to those of Dataset1. The new dataset was
compiled by choosing a set of CDs and extracting 40 s of each
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song. We chose music with the goal of obtaining a sufficient
number of files that could be considered difficult in terms of
their rhythmic properties. We concentrated on styles of Western
music, because it is not always apparent how the notion of beat
is used in music of other cultures. The CDs contained a va-
riety of styles including classical music, Romantic music, film
soundtracks, blues, chanson, and solo guitar compositions. We
extracted a total of 678 excerpts.

A subset of the 678 pieces was chosen for manual annotation
with the goal of selecting pieces that cause the largest problems
to the beat tracking approaches. We decided to choose samples
with values bit, which resulted in 270 samples.
The choice of this threshold was motivated by observing that for
values bit, the histograms in Fig. 4(a) have a clear peak and
the correlation with in Fig. 4(b) is strong. We do not
intend for this threshold to be interpreted as a globally valid di-
vision between easy and difficult files, rather it was chosen em-
pirically to maximize the probability of obtaining only difficult
files. In order to cross-check the assumption of these files being
difficult, we added 19 samples with the highest
value which should be characterized by a high BT-MGP. This
set of 289 pieces chosen for annotation will be referred to as
Dataset2 throughout the remainder of the paper.

The annotation process followed a detailed protocol, which is
available on the paper’s website [32]. The first step consists of
recording spontaneous taps from all authors of this paper for all
289 pieces. The taps enable us to examine the ability of listeners
to follow the beat in a possibly difficult piece of music without
any entrainment. The MMA of these taps is used to assess the
perceptual difficulty, and will be compared to the MMA of the
automatic beat trackers. It should be stated that while all five
authors come from an engineering background, four have many
years experience as practicing musicians in different styles and
instruments. Before tapping, each subject was not permitted to
listen to the piece, instead they tapped the beat while listening
to it for the first time. In addition, no subsequent correction of
the taps was allowed.

In the next step, the files in Dataset2 were equally distributed
among the authors of the paper for ground truth annotation. The
annotations were performed using Sonic Visualiser [33]. To as-
sist with the annotation, each annotator was allowed to use mul-
tiple visualizations such as the waveform or spectrogram. The
use of automatic beat tracking or onset detection algorithms
was not permitted, however the spontaneous taps could be used.
Wherever available, scores of the pieces were used as a guide-
line to arrive at a valid annotation, especially for classical and
Romantic music. Each annotator was given the possibility to re-
ject a file if the annotation process appeared intractable. This
happened in 72 cases, resulting in 217 valid beat annotations
for Dataset2.

Finally, the annotator had to compile a tag file for each an-
notated sample. The tags specified which signal characteristics
made the annotation difficult. An arbitrary number of tags could
be assigned to a song, however if the file was not considered
difficult for annotation, the tag “none” was used. The full list of
tags is presented in Section V-B.

Each annotation was subsequently evaluated by a second sub-
ject. In the annotation process all annotators expressed insecu-

Fig. 5. Left side: Each column of the image depicts a histogram obtained from
� � ��� mutual agreements of the 5 beat sequences for each song in the 678
samples used to derive Dataset2. The histograms are sorted by their mean values
(BT-MMA). Dark colors indicate high histogram values. Files excluded from
annotation lie between the vertical blue lines. Right side: MMA versus MGP
scatter plots for the annotated 217 files in Dataset2. Pieces assumed to be easy
according to their BT-MMA are depicted by gray circles with the remainder
shown as black triangles (a) Information gain (b) Information gain (c) AMLt
(d) AMLt (e) F-measure (f) F-measure.

rity about some of their annotations due to the high level of dif-
ficulty of some of the files. To address this issue we consulted
experts with conservatory degrees in music and composition,
and with their assistance we obtained a more reliable ground
truth especially for the most difficult samples. The comments
and changes that were performed in this revision process were
documented and are available on the paper’s website [32].

V. ANALYSIS OF NEW DATABASE

A. Automatic Beat Tracking on the New Dataset

For Dataset2, BT-MMA histograms and scatter plots of
BT-MMA over BT-MGP are depicted in Fig. 5. Computations
were performed in the same way as for Dataset1, enabling a
comparison between Figs. 4 and 5. A common characteristic
of the plots for Dataset1 and Dataset2 is the high correlation
between BT-MGP and BT-MMA for small values when using
Information Gain (see Figs. 4(b) and 5(b)), respectively. Again,
for F-measure and AMLt such a correlation cannot be observed.
This provides strong evidence for using to detect
difficult files in the context of the newly annotated Dataset2.

Differences between Dataset1 and Dataset2 are evident for
all three evaluation measures: the mutual agreement histograms
in the left columns are strongly biased towards the upper
right corner for Dataset1 and towards the lower left corner for
Dataset2. Again, the histograms for in Fig. 5(a)
show a more accentuated concentration and a continuous de-
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TABLE II
GROUND TRUTH PERFORMANCE OF EACH INDIVIDUAL BT

ON THE 217 ANNOTATED FILES IN DATASET2. BOLD

NUMBERS INDICATE BEST PERFORMANCES.

velopment from concentration in low to high histogram bins.
However, in Fig. 5(a) a higher proportion of histograms is
characterized by a concentration in bins of 1 bit or less. This
indicates that Dataset2 contains a larger relative percentage of
difficult samples than Dataset1. The super-imposed vertical
lines in the histogram plots in Fig. 5 indicate the borders for
the initial choice of files to be annotated, i.e., the first 270 files
and the last 19 files sorted by (see Section IV).
Samples on the left of the first line were chosen because they
were assumed to be difficult (low ), while the 19
files on the right of the second line in the histogram plots were
included because they were supposed to be the easiest in the
dataset (high ). In Fig. 5(b) a clear separation can
be observed between those files, where the difficult files are
marked by black triangles and the easy files by gray circles.
This separation is not evident for the other evaluation measures
in Figs. 5(d) and 5(f), and the difficult files form wider spread
clusters.

The individual accuracy values for Dataset2 are depicted in
Table II where bold numbers indicate the best beat tracking re-
sults without statistically significant differences. Note that the
files in Dataset2 were selected based on and are
supposed to be difficult, with the exception of the included 19
files with high . For Dataset2 the overall perfor-
mance is much lower than for Dataset1 (see Table I), and there
are fewer significant differences among the best beat trackers.
Moreover, there is no consistent subset of best beat trackers, as
all except four beat trackers are among the best performers for
at least one evaluation method. The performance of some beat
trackers is close to the mean performance of an entirely deter-
ministic (baseline) beat sequence, fixed at 120 bpm and gener-
ated as in [20]. In general, this proves that the compiled dataset
is more difficult for automatic beat tracking than Dataset1, and
again supports the validity of our proposed BT-MMA method.

Fig. 6. ������� and ������� for annotated 217 files in dataset2.
Pieces which are considered easy according to their ������ are depicted
by gray circles (a) Scatter plot of ������� versus ������ , dotted
lines indicate the chosen border for difficult files for beat tracking (vertical line)
and human tappers (horizontal line) (b) Scatter plot of ������� versus
������� .

B. Perceptual vs. Automatic Beat Tracking Difficulty

1) Assessing Perceptual Difficulty: To better understand the
difficulty of beat tracking, subjective aspects should be taken
into account as well. In Dataset2, we can gain insight into these
subjective aspects by using the spontaneous taps collected in the
annotation process.

During the annotation of Dataset2, we found that sponta-
neously tapping to an unknown piece is a very demanding
process for music without a clear and simple beat. Thus, we
assume that perceptually easier files result in tap sequences that
show higher mutual agreement, analogous to the beat tracker
outputs. In order to differentiate these agreements from the
MMA obtained from beat trackers (i.e., BT-MMA) we will
refer to them as TAP-MMA , and to the mean performance of
the taps compared to ground truth as TAP-MGP (in contrast
to BT-MGP). The TAP-MMA values between the five sponta-
neous taps that are available for each sample were computed
using Information Gain. Fig. 6(a) shows a scatter plot of these

values against the values of the five
beat tracking algorithms. While the sparse cluster in the upper
right corner indicates that high agreement of beat sequences
implies high agreement of spontaneous taps, such a relation
does not exist for low . In this case, we can observe
the existence of a wide range of values. This
implies that among files that are difficult for automatic beat
tracking, there were both difficult and easy files for the human
tappers. In Fig. 6(b) a high correlation between
and the mean performance of the taps against the ground truth
annotations can be observed. This correlation
supports the assumption that high agreement between subjects
implies perceptually easier pieces. Comparing Figs. 5(b) and
6(b), we can see that in Fig. 6(b) there are no separate clusters
of data for very low and values.
This indicates that, for the difficult samples, the human taps
tended to be more accurate compared to the ground truth, and
that the spontaneous taps were characterized by higher mutual
agreement than the beat tracker outputs.

In conclusion, we can state that, even without ground truth
available, it is possible to reliably detect samples where auto-
matic beat tracking will fail. Among these files there will be
both files that are perceptually difficult and files that are easy. As
our aim is to facilitate improvement in beat tracking, we want
to focus on those pieces that have a perceivable beat but that
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Fig. 7. Frequency of tags for all annotated files in Dataset2. Tags indicate which
signal properties made a sample appear difficult during the manual annotation.

make beat trackers fail. These pieces are located in the top-left
rectangle of Fig. 6(a), and we will now focus on the signal prop-
erties that differentiate them from perceptually difficult pieces
which are located in the lower-left rectangle of Fig. 6(a).

2) Signal Properties: The general signal properties encoun-
tered in Dataset2 are summarized in the tags assigned during the
annotation process Fig. 7 shows the number of occurrences of
all tags for the 217 annotated pieces. The most prominent tag
is expressive timing , which applies when a sample changes in
tempo in correlation with its melodic phrase or segment bound-
aries [34] as often happens in Romantic music. Other prominent
tags related to tempo were slow tempo, gradual tempo change
(i.e., one stable tempo changes gradually to a different stable
tempo) and tempo discontinuity (i.e., a sudden tempo change).
This indicates that any kind of tempo changes cause trouble for
beat tracking approaches, and adds the characteristic of having
a slow tempo to the list of problematic tempo-related features.
Furthermore, ternary meter also led the beat trackers to fail,
which suggests that many approaches may be tailored to track
music mainly in a time signature. Characteristics related to
the instrumental timbres, such as lack of transient sounds and
quiet accompaniment complete the picture of the problematic
signal properties that make beat trackers fail. They can be sum-
marized in three groups: i) timing/tempo related, ii) time signa-
tures and iii) lack of clear rhythmic onsets. The tag none was
applied when none of the other tags fit to the properties of the
signal, and its appearance is always related to the files with high

, i.e., the 19 easy files in Dataset2.
Having obtained an overview of the signal properties that

make automatic beat tracking difficult, we would like to know
which of these properties makes tapping the beat difficult for
human listeners. We want to address the question of whether
the files in the upper and lower left rectangles of Fig. 6(a) differ
according to their signal properties. If we can identify some sig-
nificant differences, this can give valuable insight into how to
discriminate between perceptually difficult pieces and those that
are difficult only for automatic beat tracking. To this end, fea-
tures describing those discriminant signal properties might be
used in a machine learning approach to automatically classify
samples into one of the two classes. A threshold was set to a

value of 1 bit (dotted horizontal line in Fig. 6(a)),
i.e., the same threshold that was applied to when
choosing difficult files for annotation. Then, a set of t-tests was

TABLE III
TAGS WITH DIFFERENT MEAN ACCORDING TO T-TEST, SORTED

BY INCREASING P-VALUE, FROM TOP TO BOTTOM. THE

PRESENCE OF A TAG IMPLIES THAT IT APPEARS SIGNIFICANTLY

MORE FREQUENTLY FOR LOW ������� .

applied in order to investigate if the beat-annotated samples in
the lower and upper left rectangles differed regarding their given
tags. In this way, we can infer which signal properties led to in-
accurate tappings.

The results of the t-tests are listed in Table III. The appear-
ance of a tag in the list means that it is significantly more present
in files with low . We can see that a change in
time signature was the most important factor that led to low
tapping agreement. However, this tag is quite sparse among
the dataset as shown in Fig. 7. The most prominent factors,
taking into account their frequency of appearance, are expres-
sive timing and quiet accompaniment. Hence, these factors
apparently cause problems both for beat trackers and for human
tappers. The list of properties given in Table III can serve as a
guideline to which signal descriptors might be applied when
trying to exclude signals from automatic beat tracking because
of their high complexity even for human listeners. It is apparent
that processing music with highly expressive timing should
be postponed, as its beat is too complex to be spontaneously
tracked even by human listeners. We consider that demanding
an accurate beat tracking on such music resembles demanding
high word recognition rates from an automatic speech recog-
nizer in signals that cannot be perceived by a human listener.
However, a profitable first step may be to concentrate on music
characterized by ternary meters, slow tempo or soft onsets,
among other characteristics that do not impose drastically
increased difficulty to human beat perception.

VI. SAMPLE APPLICATION

In this section, we demonstrate a sample application for the
mutual agreement technique that is different from sample selec-
tion in compiling datasets. We assume a large collection of audio
files without any beat annotations and we would like to perform
a task that relies on beat tracking, e.g., cover song detection or
a chord transcription. As a first step, we seek to reject any files
considered impossible for current beat tracking systems. Then
for the remainder, we would like to choose a reliable beat tracker
to provide the beats. Traditionally this would be done by se-
lecting an algorithm which is considered superior to the others
based on some beat tracking evaluation process. We now show
how our mutual agreement measure with five beat tracking al-
gorithms can be applied for this purpose as well.

In this experiment we ran our committee of beat trackers
on Dataset1 and calculated for each sample. We
then excluded those samples with below a spec-
ified threshold. The threshold was incremented in steps of 0.3
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Fig. 8. Result of automatic beat tracker selection (MaxMA), compared with single best beat tracker choice (Best mean) and oracle scores (Oracle) on Dataset1
using our committee of 5 BT. For the thresholds 0 to 3 bits on������ , the percentage of the 1360 files kept for evaluation is shown on the x-axis. The vertical
line shows the point up to which differences between MaxMa and Beat mean are significant (a) Information gain (b) AMLt (c) F-measure.

bits from 0 to 3 bits. Since we have shown that disagreement
between the committee harms beat tracking performance, we
now try the opposite approach and select the beat sequence
with maximum mutual agreement with the committee, which
we denote, MaxMA . For each sample (at a given threshold),
we simply select the beat sequence with the maximum mutual
agreement (MaxMA) with the other four sequences as the most
reliable beat estimation. In effect we assume that the beat tracker
that best agrees with the rest of the committee is the most reli-
able algorithm. In Fig. 8, we compare the MaxMA approach
to another viable option, that of picking the beat tracker [10]
with the best mean overall performance from our experiments
in Sections IIIV. We denote this option Best mean . To illustrate
the upper limit on performance we also include the theoretical
optimum Oracle , that picks the most accurate beat tracker for
each individual sample.

Fig. 8 shows that applying the MaxMA method to choose a
beat tracker leads to significant improvements when evaluated
against ground truth for both Information Gain and AMLt over
a wide range of thresholds. T-tests with a level of significance
of were performed to compare the MaxMA with the
Best mean at each threshold, and all differences on the left of
the vertical lines in Figs. 8(a) and 8(b) are significant. This im-
provement in performance occurs even when no samples are
discarded and remains when retaining up to 41% for of sam-
ples AMLt and 27% for Information Gain. Beyond this point
only the samples with high mutual agreement remain, which are
among the easiest in the dataset, hence the choosing MaxMA
over the the Best mean may offer less improvement. Indeed both
the MaxMa and Best Mean performance approach the Oracle
when only very few (easy) samples remain.

While there is still a consistent improvement for the F-mea-
sure (Fig. 8(c)), this improvement is not significant for any
threshold value. This is likely the result of the discontinuity of
the F-measure, which assigns 0% to beat sequences misaligned
in phase and values of 66% for tempo halving/doubling. These
properties of the F-measure increase its variance even for sets
of beat sequences that can be acceptable in terms of perceptual
criteria. This supports the observation that significant differ-
ences in beat tracking performance can vary dependent on the
evaluation measure [20].

On the basis of this sample application, we infer that mu-
tual agreement can be successfully applied both for choosing

“beat-trackable” files and for improving beat tracking perfor-
mance on these files by selecting the beat tracker that has the
maximum mutual agreement with the other beat trackers. Since
all beat sequences must be estimated for the file selection/rejec-
tion process, the improvement given by the MaxMA beat tracker
choice adds negligible additional complexity.

VII. CONCLUSIONS

In this paper, we presented a method based on mutual agree-
ment of beat sequences to detect informative samples in non-
annotated data collections. We compiled and annotated a new
dataset that consists mainly of pieces with low mutual agree-
ment, and showed that this dataset is significantly more difficult
for state of the art beat tracking algorithms than the largest ex-
isting collection. Using the new difficult dataset, we analyzed
the signal characteristics that make beat trackers fail, and inves-
tigated the extent to which these characteristics coincide with
the properties that make tapping difficult for humans. Based on
our informal analysis of human tapping it appears that expres-
sive timing contributes strongly to making music difficult to tap
to. Furthermore it may not be musically appropriate to attempt
to precisely follow large expressive changes. The musical ex-
perts who assisted in the annotation process demonstrated more
musically meaningful annotations could be obtained by tapping
a stable pulse around which the timing changes deviate. How-
ever this level of tapping required extensive musical training
(beyond the level of the authors) and provides strong evidence
towards rejecting beat tracking for musical pieces of this nature.
Towards more realistic advances in beat tracking, we propose
investigating techniques for music with properties that do not
pose such considerable difficulties for humans, including pieces
characterized by ternary meter, slow tempo, or soft instrument
onsets.

In order to reliably detect difficult samples using mutual
(dis-)agreement, we demonstrated that the choice of the evalu-
ation measure is crucial, and that Information Gain was better
suited to this task than both the F-measure and AMLt evaluation
methods. However, Information Gain appears less effective in
highlighting where beat tracking algorithms strongly agree with
each other. Hence, in future work, we will explore methods to
combine different evaluation methods.

The proposed MMA method represents an efficient approach
to improve diversity in existing datasets, as well as a simple
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technique to improve beat tracking in large non-annotated
datasets. Our method can also be applied in other contexts by
detecting problematic files for chord recognition where it may
be valuable to reject the use of beat tracking as a temporal
analysis component. Furthermore, outside of beat tracking,
we believe that there is considerable scope to apply mutual
agreement to other MIR research tasks through the use of
context specific evaluation methods.

The audio files of the newly compiled beat tracking dataset
will be made available on request, and all of the accompanying
meta-data is available on the paper’s web-page [32]. We en-
courage the research community to contribute to this resource by
adding further annotated difficult samples along with meta-data.
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