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Scale transform in rhythmic similarity of music
André Holzapfel* and Yannis Stylianou

Abstract— As a special case of the Mellin transform, the
scale transform has been applied in various signal processing
areas, in order to get a signal description that is invariant to
scale changes. In this paper, the scale transform is applied to
autocorrelation sequences derived from music signals. It is shown
that two such sequences, when derived from similar rhythms
with different tempo, differ mainly by a scaling factor. By using
the scale transform, the proposed descriptors are robust to
tempo changes, and are specially suited for the comparison of
pieces with different tempi but similar rhythm. As music with
such characteristics is widely encountered in traditional forms
of music, the performance of the descriptors in a classification
task of Greek traditional dances and Turkish traditional songs
is evaluated. On these datasets accuracies compared to non-
tempo robust approaches are improved by more than 20%, while
on a dataset of Western music the achieved accuracy improves
compared to previously presented results.
FINAL DRAFT AFTER ACCEPTANCE IN: IEEE TRANSAC-
TIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESS-
ING

I. INTRODUCTION

Two time sequences can be compared by measuring sim-
ilarities of various kinds, depending on what is the task at
hand. Looking at a speech signal, for example, one can ask
if in two sequences the same vowel is contained. A suitable
similarity measure for this is based on the similarity of the
spectral envelopes of the signals. When the question is the
language of the recording, one might focus on the different
temporal development of utterances, because languages typi-
cally differ in their syllable rate. A similar situation is found
in Music Information Retrieval (MIR): the most appropriate
cues depend on the kind of similarity that is to be determined.
In case the task is to find if a piece of music is more
similar to classic music or to folk music, usually characteristics
derived from the spectral content are sufficient [1][2]. When
the task is to classify into a genre of dance music, such as
tango or waltz, then temporal characteristics have to be taken
into consideration [3][4][5][6][7][8]. In [3], a self similarity
measure is used to derive beat spectra, that are compared by
using a cosine distance. This measure is shown to work well
within a narrow range of tempo variation only. The approaches
in [4][5] do work in presence of different tempi, but for this
either the tempo or meter characteristics have to be estimated.
As indicated in [9], these type of estimation is not very reliable
for music signals without strong percussive content or with
complex rhythmic structure, such as Folk or Jazz. The findings
in [10] indicate that these type of estimation is difficult
on traditional forms of music. Furthermore, state of the art
meter tracking approaches have not been applied yet to music
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forms with time signatures unusual in Western popular music.
In [6][7][8], some features are presented that do not need
any tempo estimation, such as periodicity histograms, inter
onset interval histograms or temporal modulation patterns. The
common shortcoming of these descriptors is that they cannot
be directly compared in presence of tempo differences, and
for that reason characteristics of the descriptors such as their
flatness or energy have to be used.
In this paper, a novel method for the measurement of rhythmic
similarity in music is presented. In Western music, tempo
changes appear within certain boundaries, as observed in [4]
on the example of dance music. In traditional dances the tempo
of the performance usually varies between different perfor-
mances but also within the duration of the piece [11][12].
Thus, in order to compare dance music that accompanies the
same dance but is performed in different tempo, a similarity
measure robust to these changes is necessary. Apart from
traditional dances, other forms of traditional music are also
characterized by wide tempo changes. An example is classic
Ottoman music, where compositions are categorized by their
melodic scheme, the makam, and their rhythmic scheme,
the usul. As these rhythmic categories are not in general
connected to a certain form of dance, they can vary widely in
tempo. Furthermore, the usul can have complex or compound
time signatures. For these types of music signals, a rhythmic
similarity measure was recently proposed in [13] and it was
based on the scale transform [14]. The scale transform is
scale invariant, or equivalent in music, is not sensitive to
tempo changes. In [13], it was shown that it can be applied in
rhythmic similarity of music without previous tempo or meter
estimations. Until now, the scale transform has been applied in
various fields of signal processing in order to compare signals
that have been changed by a scale factor. For example, in
[15] the scale transform is applied to vowel recognition in
speech. The usage of the scale transform is motivated by the
fact, that between two speakers uttering the same vowel there
is a scaling in frequency domain due to the different vocal
tract lengths (VTL). Similar observations can be found in [16],
where the scaling of the impulse response of the vocal tract
due to different VTL’s is shown to disappear when applying a
Mellin transform. In [17], the scale transform was applied in
order to estimate the speed gaps between mechanical systems,
which are assumed to cause the related signals to be different
by a scale factor. To the best of our knowledge, the scale trans-
form has been applied to music signals only for audio effects
[18]. However, two studies have observed improvements when
including a scale invariance into their approaches. In [19],
scale invariance helped to investigate multiple fundamental
frequencies with common harmonic structure. In terms of
rhythm, the authors of [20] presented a method to compensate
for tempo changes between two pieces of music by applying
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a logarithmic scale, which is closely related to the relation
between the scale transform and the Fourier transform as will
be denoted in Section II-A. The authors of the present paper
introduced scale transform for the analysis of music signals in
[13], where autocorrelation sequences are used as descriptor
for the rhythmic content of a piece of dance music. When
the same piece of music is performed at a different tempo,
its autocorrelation is scaled in time. Thus, the scale transform
magnitudes of the autocorrelations remain essentially the same
and can be compared in a straightforward way. In this paper,
this method will be detailed and extended so that it can be
used for different types of signals. Here the focus lies on
using signals different in a musicological perspective as well
as under a technical perspective. This is achieved by examining
a dataset of Turkish traditional music which is available in a
symbolic description format (MIDI). The influence of critical
system parameters will be analyzed in detail and insights into
the characteristics of the obtained scale transform descriptors
will be given.
This paper is structured as follows: Section II introduces the
proposed method, by giving a general overview in Section
II-A. The methods for computing the scale invariant rhythm
descriptors for audio signals and for MIDI signals will be
presented in Sections II-B and II-C, respectively. In order to
facilitate a better understanding of the proposed scale domain
descriptors, in Section II-D some of their characteristics are
detailed. In Section III-A, the music collections will be de-
scribed. The characteristics of these datasets will be outlined,
and their different demands to a rhythmic similarity measure
will be described. Section III-B describes previously proposed
measures that will serve as a baseline for comparison, and
the evaluation method is detailed in Section III-C. The exper-
imental results are discussed in Section IV and the paper is
concluded in Section V.

II. SUGGESTED RHYTHM DESCRIPTORS

In this section, we provide the necessary background of
scale transform for supporting our suggestions. Then, we
describe the suggested method of measuring rhythmic sim-
ilarities in music by distinguishing the cases of music rep-
resentation by an audio waveform and by the MIDI format.
More specifically, the necessary background will be provided
in Section II-A, and thereafter in Sections II-B and II-C the
different demands of the waveform and the MIDI data will
be addressed. Section II-D gives further information about
characteristics of the proposed features.

A. Scale Invariant Rhythm Descriptor
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Fig. 1. Computational steps of scale invariant rhythm descriptors

In Figure 1, the three steps in the computation of scale
invariant rhythm descriptors are shown. As a pre-processing

step towards a scale invariant description of rhythm, onset
strength signals (OSS, denoted as o(t)) at a sampling fre-
quency of 50Hz are computed. This sampling period ensures
that only frequencies related to the perception of rhythm are
contained. OSS have salient peaks at the instants where a
musical instrument starts playing a note. For example, in
[21] OSS have been computed from audio signals by using a
method based on spectral magnitude differences, and in [22] a
method to compute OSS from a MIDI file was proposed. From
the computed OSS, salient periodicities that are characteristic
of the rhythm of the sample have to be found. In [23], STFTs
of the onset strength signals were computed, referred to as
periodicity spectra. If X(f) is the Fourier transform of x(t),
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Fig. 2. Periodicity spectra of original (bold) and time scaled (dashed) Cretan
dance sample, Time scale factor: a = 1.1

then it is well known that:
√
ax(at) �

1
a
X(f/a) (1)

In Figure 2, a periodicity spectrum of a Cretan dance sample of
the class Siganos is shown in bold lines, while the periodicity
spectrum of its time scaled version is depicted in dotted lines.
The scaled version was obtained using the audacity1 software,
by applying the included plug-in for changing tempo of an
audio file with a scale factor of a = 1.1. The scaling in
the frequency domain representation can be recognized in
Figure 2. The immediate computation of a point wise distance
between the depicted periodicity spectra is affected by the time
scaling caused by the different tempi.
In this paper, the use of the scale transform is suggested to
overcome the differences in the tempo between similar, in
terms of their rhythm, music pieces. The scale transform is
a special case of the Mellin Transform, defined as [14]:

X(c) =
1

2π

∫ ∞
0

x(t)e(−jc−1/2) ln tdt (2)

and it can be shown to be scale-invariant, which means that the
magnitude distributions of the scale transforms of signals x(t)
and
√
ax(at) are equal [14]. Although the scale transform is

scale invariant, it is not shift invariant. This means that x(t) and
x(t−a) have different Magnitude Scale Tramsform. Instead of
using OSS, as usually suggested in this context (i.e., [23] and
references there in), and motivated by the approach described

1http://audacity.sourceforge.net/
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in [17], we suggest to use the autocorrelation function r(t) of
OSS as a descriptor for the rhythm. It is worth noting that the
autocorrelation function of a scaled signal is equal to the scaled
(by the same scale factor) version of the autocorrelation of the
original signal. By using the autocorrelation function of OSS
we overcome the shift-variant property of the scale transform.
Therefore, the suggested approach is scale (or tempo) and shift
invariant. Throughout the paper, the computed autocorrelations
were normalized, so that their value at the zero lag equals to
one. In Figure 3, the scale magnitudes for the same examples
used in Figure 2 are depicted. It is evident that their scale
magnitudes are essentially the same and they can be compared
by a point to point distance measure in a straightforward way,
avoiding the dynamic programming procedure proposed in
[23].
The computation of the scale transform can be performed
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Fig. 3. Mean scale transform magnitudes of original (bold) and time scaled
(dashed) Cretan dance sample, Time scale factor: a = 1.1

efficiently by using its relation to the Fourier transform [24]:

R(c) =
∫ ∞

0

r(et)e1/2te−jctdt (3)

which is the Fourier transform of the exponentially warped
signal weighted by an exponential window. Since the autocor-
relation computed from OSS is a real signal, this relation to
the Fourier transform clarifies that negative scale values need
not to be considered since the magnitude spectrum is an even
function of frequency. While in [13] the implementation of
the scale transform based on (3) was used, in this paper the
algorithm for computing the direct scale transform (DST) as
presented in [25] was applied. DST is derived from (2), by
approximating the integral in (2) as follows:

R(c) ≈
∑∞

k=1[r(kTs − Ts)− r(kTs)](kTs)1/2−jc

(1/2− jc)
√

2π
(4)

where Ts denotes the minimum lag size of r(t), which
is equal to the sampling period of o(t). Compared to the
implementation presented in [24], the way of computation
depicted in (4) avoids the interpolation that is necessary
to get exponentially spaced samples from signal r(t). The
transform was obtained by precomputing the base function
matrix (kTs)1/2−jc, multiplying it with the difference vector
r(kTs−Ts)− r(kTs) and normalizing using the denominator
in (4). The highest scale value C computed in (4) will be

determined in the experiments shown in Section IV-A. The
scale resolution ∆c, which defines at which scale values the
scale transform in (4) is computed, was not found critical. In
[17], a value of ∆c = 1 was referred to be sufficient for their
application. In general, ∆c is related to the time domain as:

∆c =
π

ln Tup+Ts

Ts

(5)

where Tup is the maximum retained lag time of the used
autocorrelation [17]. For example, if Tup = 8s and Ts = 0.02s
then a value of ∆c = 0.52 is obtained, which means that the
n-th scale coefficient is computed for c = n∆c. In this paper
we will apply (5) for the computation of ∆c.

B. Computation from Audio Signals

On waveform data, OSS are computed using the method
proposed in [21]. Then, the sample autocorrelation ra is
computed from the OSS, o(t), as

ra(t, w) =
Twin−t−1∑

n=0

o(n+ t+ wH)o(n+ wH) (6)

where Twin denotes the length of the rectangular analysis
window in seconds, w denotes the index of the analysis frame,
and H the analysis hop size, which was set to 0.5s. The
maximum lag Tup of the autocorrelation was set equal to
Twin. For each analysis frame w the sample autocorrelation
is transformed into scale domain by applying the DST as
denoted in (4), and only the magnitude values for scales c < C
are kept. This way, slight tempo changes within the piece
are compensated, because they cause a scaling between au-
tocorrelations computed in different analysis windows, which
does not affect the scale transform magnitudes. To get a
single description vector for a song i, the mean of the scale
transform magnitudes is computed, which will be denoted by
SC

i . In Figure 3, the mean scale transform magnitudes (STM)
computed using the described method are depicted.

C. Computation from MIDI data

For MIDI data, there are mainly two differences in comput-
ing the STM:
First, the onset times and the note durations are exactly known
as they can be read from a MIDI file. For that reason, tools
from the miditoolbox [26] could be used to derive the sample
autocorrelations. The onset times in ms were read from the
MIDI files for the MIDI channels that contain the song melody
(channels 1 and 2). Using these onset times, onset vectors
are generated at the same sampling period of Ts = 20ms as
for the audio signals. The amplitudes at the onset times are
determined regarding the duration annotated in the MIDI file,
as suggested in [22].
The second difference is that the windowed computation of
the autocorrelation as defined in (6) has been found to cause
problems. This is related to two facts: OSS derived from MIDI
data are much more sparse than OSS derived from waveform
data, as the onsets are discrete impulses of varying height.
Furthermore, the tempo of pieces in MIDI format remains
absolutely constant. No noise is induced by the way humans
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play musical instruments, which can cause the peaks in OSS
to deviate from the position determined by the meter. Because
of that, one sample autocorrelation is obtained using the whole
onset strength signal as input. The autocorrelation is then
transformed into scale space by using (4), resulting in the STM
descriptor for a MIDI signal.

D. Some Properties of STM

In order to enable better understanding of the features in the
scale domain, some more details about the scale transform will
be provided in this Section. Two autocorrelation sequences of
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Fig. 4. Two examples of autocorrelation vectors for waveform (panel (a))
and MIDI data (panel (b))

OSS computed over audio (a) and MIDI data (b) are depicted
in Figure 4. Note that both autocorrelations show a periodicity
that is related to the tatum, i.e., the smallest metrical unit in the
piece [9]. Especially the autocorrelation sequence computed
from MIDI data shows a similarity with a pulse train of the
tatum period. Considering a pulse train

∑∞
n=1 δ(t− pn) with

period p > 0, the scale transform pair of this pulse train is
given by [27]:

∞∑
n=1

δ(t− pn)⇐⇒ p−jc−0.5ζ(jc+ 0.5) (7)

where ζ(s) denotes the Riemann Zeta function [28]. In panel
(a) of Figure 5, the magnitude of the Riemann Zeta function
ζ(jc + 0.5) is depicted. In panel (b) of Figure 5, two STM
derived from autocorrelations of samples from two traditional

Turkish songs represented in MIDI format are shown. It is
apparent that these STM have similarities with the envelope
of the Riemann Zeta function. Note that for the STM com-
puted on the autocorrelation sequences obtained from audio
waveforms (see an example in Figure 3) depicted in Figure
3, this similarity is not so distinct. This is because, as it was
shown in Figure 4, the autocorrelation sequences derived from
waveform data are less spiky than the corresponding sequences
computed from MIDI data. Note that the overall shape of the
Riemann Zeta magnitude does not depend on period p, and
thus leads to a similar shape of the STM envelope for pieces
with different tempi. In practice, one more problem we have
to face is the energy compensation between scaled signals.
In theory, because of the energy normalization factor

√
a the

scale transform magnitude remains the same for scaled signals.
However, in our case, the autocorrelation functions cannot
easily be normalized since they are derived from different
signals, with unknown scale relation. This infeasibility of
correct normalization in the time domain would lead to a
constant factor change in scale magnitude. For that reason a
Euclidean distance measure between STM is not applicable.
As the appearance of p in the scale transform of a pulse
train constitutes a constant factor in magnitude, instead of
measuring Euclidean distance we suggest to measure the angle
between two STM.
It is worth to clarify the effect of choosing some range of
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Fig. 5. Comparison of the Riemann Zeta function in panel (a) and two STM
computed from two autocorrelations of MIDI samples in panel (b)
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scale coefficients c < C at this point. As mentioned above,
autocorrelation sequences derived from musical signals are
typically characterized by the period defined by the tatum of
the piece.
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Fig. 6. Reconstruction of an impulse train by filtering in scale domain

In Figure 6, three pulse trains, as a simplified model for such
type of autocorrelation sequence, are reconstructed using the
complex scale coefficients smaller than C = {50, 100, 200}.
The pulse train has a length of 5s and a period length of
100ms, and it was sampled at a sampling period of Ts =
20ms. It can be seen that by using more scale coefficients
for the reconstruction, the approximation of samples at large
time values gets improved. This is caused by the type of
the base function applied in the scale transform as denoted
in (2): functions e(−jc−1/2) ln t are chirp functions for which
the period is increasing as time increases. This increment is
realized faster for small scale values. Thus, the base functions
of c1 will match the period of the pulse train earlier in time
than the base function of c2, if c1 < c2. This leads to an
interesting interpretation: Fixing the maximum lag Tup of

the autocorrelation results in a vector of a given length, and
increasing the number C in the STM descriptors equals to
giving more weight to higher lag values within this vector.

III. EXPERIMENTAL SETUP

A. Evaluation Data

In this paper, three different datasets are used: The first
dataset, which will be referred to as D1, is a set of ballroom
dances that was used in the rhythm classification contest in
the ISMIR conference 2004 [29]. It has been used for the
evaluation of dance music classification for example in [4][6].
In [4], it was found that a classification accuracy of 78%
can be achieved given the true tempo of the pieces as the
only input to the classifier. Because there is a small overlap
in the tempo distribution of the classes, this dataset can be
considered as simple and it was chosen in order to prove
the general validity of the approach presented in this paper.
The second dataset, D2, is a dataset of traditional dances
encountered in the island of Crete in Greece, and the third
dataset, D3, consists of samples of traditional Turkish music.
The latter two datasets were compiled by the first author of
the paper. The distribution of tempi per dataset is provided in
Table I.
Dataset D2 was used previously in [13] and contains
samples of the following six dances: Kalamatianos, Siganos,
Maleviziotis, Pentozalis, Sousta and Kritikos Syrtos. Each
class contains thirty instrumental song excerpts of about
ten seconds length. As shown in [13], there are large
overlaps between their tempo distributions. In the case of
tempo-halving and doubling errors in a tempo estimation
pre-processing step, these overlaps would become even larger.
Thus, a similarity measure that does not rely on tempo
information is necessary to achieve a good classification
in that dataset. Regarding their rhythmic properties, all
traditional dances from the Greek islands share the property
of having a 2

4 time signature ([30], page 32). Only the dance
class Kalamatianos in D2 has a 7

8 time signature.
The dataset of Turkish music, D3, consists of six different
classes of rhythm, but unlike the other two datasets, the
classes are not related to specific dances. The musicological
term used for the different types of rhythm in this music
is usul. Each usul specifies a rhythmic pattern that defines
the temporal grid for the composition. These patterns can
be of various lengths from 2 up to 124 beats. The six usul
in D3 have lengths from 3 up to 10: Aksak ( 9

8 ), Curcuna
( 10

8 ), Düyek ( 8
8 ), Semai ( 3

4 ), Sofyan ( 4
4 ), and Türkaksagi ( 5

8 ).
These short usuls were chosen, because no sufficient number
of songs with longer usuls were available to the authors.
According to Table I, the tempo variances within each class
are much bigger than in D1 and D2. This is because samples
in D2 are connected to specific dance movements which puts
a natural constraint to the range of tempo variations. Most
of the samples in D3 are not dance music and as such, their
tempo can vary in a much wider range. Thus, features for
the description of the rhythmic content have to be robust to
these changes. In order to acquire the samples, the teaching
software Mus2okur [31] was used, resulting in a collection of
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288 songs, distributed among the six usul as shown in the last
row of Table I. The software gives a list of songs for a chosen
usul, which are then exported to a MIDI file. Thus, the data
in D3 is available in form of symbolic descriptions, which
means that their onset times can be read from the description.
The MIDI files contain the description of the melody lines,
usually played by only one or two instruments in unison, and
the rhythmic accompaniment by a percussive instrument. As
this content is separated into different voices, the rhythmic
accompaniment can be excluded. This enables to focus on
the relation between the melody of the composition and the
underlying usul. To the best of our knowledge, such a study
on usul has not been conducted before.

TABLE I
STATISTICS OF THE TEMPO DISTRIBUTIONS

D1
CLASS CHA JIV QUI RUM SAM TAN VW WAL
MEAN 122 166 201 100 102 127 178 86
STD 5.6 14.5 11.5 11.2 18.0 4.0 2.2 4.4

NSongs 111 60 82 98 86 86 65 110

D2
CLASS KAL SIG MAL PENT SOUS SYRT
MEAN 128 98 147 145 123 68
STD 8.7 4.5 8.8 10.8 8.7 5.9

NSongs 30 30 30 30 30 30

D3
CLASS AKS CURC DUY SEM SOF TURK
MEAN 99 98 71 132 81 73
STD 27.9 13.5 12.6 26.3 16.7 22.3

NSongs 64 57 47 22 60 38

B. Similarity Measures

Because of the scale invariance property of STM, a simple
point wise distance can be applied to get a (dis)similarity
measure between two STM. As shown in [3] and [23], the co-
sine distance outperforms the Euclidean distance. Furthermore,
as described in the previous Section, measuring the angle
between two STMs is to be preferred from using Euclidean
distance due to the unknown normalization factor. Because
of that, the rhythmic dissimilarity between songs i and j can
be measured by computing the cosine distance between their
mean STMs SC

i and SC
j

dsc(i, j) = 1−
SC

i · SC
j

|SC
i ||SC

j |
(8)

In order to confirm the superiority of the cosine distance
compared to the Euclidean distance, also the Euclidean
distance between two mean STM, deucl(i, j) will be used.
For reasons of comparison, some previously proposed
measures of rhythmic similarity will be used as well. As
shown in [3][23], the cosine distance denoted in (8) is a
good measure for rhythmic similarity directly applied to
periodicity spectra if the tempi do not differ widely between
the pieces that are compared. Because of that, such measures
can be expected to perform well on D1 with its small tempo
variations while it should decrease in performance on the

other datasets. The cosine measure will be denoted as dcos(P )
when directly applied to periodicity spectra, and dcos(R)
when directly applied to the autocorrelation sequences derived
from OSS.
In [23], a dissimilarity measure based on a warping strategy
was introduced: periodicity spectra as shown in Figure 2 are
computed from OSS, and then the periodicity spectrum of
one song is warped in order to be aligned with the periodicity
spectrum of another song, a process referred to as Dynamic
Periodicity Warping (DPW). The linearity of the warping path
derived in DPW serves as a measure of rhythmic similarity:
the more linear the warping path, the more similar the two
pieces are considered. This dissimilarity measure will be
denoted as dDPW .

C. Evaluation Procedure

For a given dataset, all pairwise dissimilarities between
songs are computed using the measures described in Section
III-B. This results in dissimilarity matrices, having values
close to zero whenever two pieces are found to be similar.
In order to determine the accuracy of the proposed rhythmic
similarity measure, the accuracies of a k-Nearest Neighbor
(kNN) classification will be determined. For this, each single
song will be used as a query for which a classification into
one of the available classes is desired, i.e., a leave-one-out
cross validation is performed using the computed dissimilarity
matrix as an input. The value k that determines the number
of neighbors is varied in the interval [2...30], and the best
accuracy achieved by varying k is then reported. In order to
determine if these accuracies are over optimistic, the kNN
accuracies will be compared with results achieved using a
Fisher LDA classifier and a pairwise SVM classification using
a linear kernel. For SVM, the implementation included in the
WEKA software [32] has been used without any parameter
changes. Both LDA and SVM classifiers are evaluated using
leave-one-out cross-validations.
In Section IV-A, the accuracy of the proposed STM features
for the discrimination of different rhythms will be discovered.
Therefore, it is necessary to evaluate the optimum set of
scale coefficients for each dataset. In the first experiments, the
accuracy depending on the choice of the highest included scale
coefficient will be determined. In Section IV-D it is evaluated
if a maximum relevance feature selection as proposed in [33]
can provide us with a consistent way to derive a compact set
of features that is optimal for the classification task. For this,
the relevance to the target class of each feature in a training
set is computed by determining their mutual information:

I(xi, c) =
∫ ∫

p(xi, c) log
(
p(xi, c)
p(xi)p(c)

)
dxidc (9)

In practice, the integration in (9) is problematic for continuous
valued features as the scale coefficients in our case. For that
reason, each feature has been discretized by using an adaptive
quantization as proposed in [33], using b = 5 bins. In order to
select a set of relevant features all mutual information values
between the single scale coefficients and the target class have
been computed. Then, a threshold has been applied to the
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computed mutual information, which for a value of 100%
chooses all features and for a value of 0% only the one feature
with the maximum relevance for the training set. Changing this
threshold continuously from 0% to 100% leads to choosing a
subset of features regarding their individual relevance for the
classification. The influence of varying this threshold will be
determined in Section IV-A.

IV. EXPERIMENTS

For the proposed similarity measure dsc there are mainly
two critical parameters: the length of the maximum lag Tup

considered in the autocorrelation and the numbers of coeffi-
cients C of STM in (8). The influence of these parameters will
be explored by computing the accuracies in a grid search of
these two parameters. For each dataset the optimum number
for the maximum lag will be determined, and the effect of
varying the number of scale coefficients will be explored.

A. Optimum upper scale and maximum lag
On both waveform datasets D1 and D2, the optimum maxi-

mum lag Tup found in the grid search was 8s. The accuracies
for D3 improved until a maximum lag of 14s is reached. It was
observed that further increase does not lead to a decrease in
accuracy on this dataset, as it is the case on the waveform data
in D1 and D2. In Figure 7, the accuracies of kNN classifiers
are depicted when changing the number of scale coefficients
C. The optimum maximum lag was used for each dataset. It
can be seen that the accuracy of the classification depends on
the number of chosen scale parameters in a different way for
each dataset. The highest classification accuracy was achieved
for D1, which confirms the hypothesis of this dataset being
simple due to small overlaps of tempo distributions and small
tempo variances in comparison to D3. More specifically, the
classification accuracy increases up to 88.1% at c=170. In
general, an area of almost constant accuracy is reached for
C > 80, as can be seen from Figure 7. A similar behavior can
be observed for D3, where the best accuracy using kNN is
achieved at C = 140 (78.1%). On D2, a maximum is reached
at c = 30 with an accuracy of 76.1%. Unlike for D1 and D3,
when further increasing C on D2 the accuracy decreases. As
mentioned in Section III-C, the shown kNN accuracies are the
maximum values achieved by varying k, and thus the values
might be over-optimistic. However, similar results are obtained
using the SVM and LDA classifiers, as can be seen in Table
II. For SVM, on D1 and D3 a saturation is reached while for
D2 this does not hold, just like for the kNN results depicted
in Figure 7. The LDA classification could not be evaluated for
very large values of C, as the increasing dimensionality causes
numerical problems. In Table II, the best accuracies for all
three classifiers using the proposed features are depicted along
with the value of C at which this accuracy is reached. It seems
that for higher scale values on D2 the STM contain more noise
than for the other two datasets. As shown in Section II-D,
higher scale values lead to a more accurate reconstruction at
larger autocorrelation lags. Thus, regarding Figure 6, for D2 a
stronger weighting for lags smaller than one second is optimal,
while for D1 this weighting is extended to about two seconds.
This behavior will be further explored in Section IV-D.
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Fig. 7. Accuracies on the three datasets for varying number of scale
parameters, using kNN

TABLE II
CLASSIFICATION ACCURACIES AT C USING STM FEATURES

kNN SVM LDA
D1 88.1(C = 170) 91.7(C = 160) 89.5(C = 120)
D2 76.1(C = 30) 76.1(C = 35) 77.8(C = 25)
D3 78.1(C = 140) 82.3(C = 140) 77.1(C = 40)

TABLE III
KNN-CLASSIFICATION ACCURACIES

dcos(P ) dcos(R) dDPW deucl dsc

D1 86.1 86.0 83.5 86.1 88.1
D2 54.3 44.7 60.9 73.9 76.1

D3mel 53.1 56.2 50.5 75.7 78.1
D3all 63.5 66.7 71.0 83.7 86.0

B. Comparison of distance measures

Table III shows the classification accuracies on the datasets,
using the measures as described in Section III-B and kNN
classification. Similar to the results presented in [23], the direct
cosine measures between the periodicity spectra, dcos(P ), and
between the autocorrelation sequences, dcos(R), work well
on D1. The proposed scale method, dsc achieves a slightly
improved accuracy of 88.1%. However, this improvement is
not significant regarding the confidence interval, which is
2.4% (level of confidence = 95%). Comparing these results
to the highest accuracy, without the usage of the tempo
annotations, of 85.7% as presented in [34] on the same
dataset D1, the accuracy presented here using dsc appears
to be a satisfying proof of concept. The improvements in
comparison to [23] and [13] must be assigned to the changed
sample rate of the OSS (50Hz instead of 160Hz) which in
general improved results throughout the experiments, and to
the different computation of the scale transform.
For D2, Table III shows a considerable advantage for the
proposed scale distance measure dsc, which achieves an
accuracy of 76.1% with a confidence interval of 6.2%: on
this dataset it outperforms the cosine measures by 21.8/31.4
percentage points. This clear improvement can be assigned to
the robustness to tempo changes of the scale transform.
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The accuracies for the dataset of Turkish MIDI files are
listed in the third and fourth row of Table III. The third row
gives the accuracies when using the melody lines only for
the onset computation as described in Section II-C. Using
the dissimilarity measure dsc proposed in this paper leads to
the best results: an optimum accuracy of 78.1% is reached
at C = 140, with a confidence interval of 4.8%. Direct
comparisons of either periodicity spectra or autocorrelation
sequences are clearly inferior due to the large changes in
tempo for each usul. The DPW approach presented in [23]
does not lead to good results on D3. This must be assigned
to the large standard deviation of the tempi in one class
since DPW assumes that there are no differences in tempo
larger than 20% between two songs. When tempo differences
exceed this threshold, the whole procedure is becoming
unreliable [23].
The fourth row of Table III (i.e., for D3all) shows
the accuracies that can be achieved when the tracks
containing percussive accompaniment are also included in
the computation of OSS. The accuracies are then in general
improved, since the percussive accompaniment is typically
the same for one specific usul. The relatively high values in
the third row, D3mel, clarify the information about the usul
that is contained solely in the melody line of the composition.
As the difference between the best accuracy in the third row
and the best in the fourth row is only 7.9 percentage points,
it can be concluded that this relation between the melody and
the usul is very strong.
Comparing the measures based on the scale transform (i.e.,
deucl using Euclidean distance and dsc using cosine distance)
we see that dsc indeed outperforms deuc. This was expected,
because of the normalization factor in (1) (i.e., a) is unknown,
and this affects the magnitude of vectors being compared,
but not the angle between them. Compared to dDPW , the
distance derived using Dynamic Periodicity Warping [23], the
advantage of dsc regards accuracy as well as computational:
while in DPW there is the need to compute a warping
path using dynamic programming, the most time consuming
operation in the scale distance measure is the scale transform
which is performed using a matrix multiplication.

C. Further exploring MIDI

Two more experiments have been conducted to evaluate
the robustness of the proposed method. For these experiments
the SVM classification that resulted in the best accuracy
of 82.3% on the MIDI data has been used, which means
that all scale coefficients until c = 140 have been used in
the STM (see Table II). Again, only the melody lines have
been included in the OSS computations, while the percussive
instruments have been left out.
The first experiments explores the influence of tempo
deviations within the classes. Since for the MIDI files the
tempo information is given, experiments could be conducted
with the tempo of the pieces changed in a deterministic way.
For this, from the data in D3 the global tempo mean value
has been computed. Then, all pieces have been assigned this

tempo mean plus a uniformly distributed noise. This noise
has been varied in steps of 5% from 0% up to 85%. For 0%
noise all pieces share the same tempo, and no scaling effects
the autocorrelations. At 85% noise level noise level the global
mean of about 87 bpm results in a possible tempo range
from 13 to 161 bpm. In order to compensate for the noise
introduced by the randomly changed tempo for each noise
level the experiment has been rerun ten times, and the mean
accuracies of the ten runs are reported. Computing the mean
SVM-accuracy for the noise free case leads to an accuracy
of 82.9%. The small difference to the accuracy of 82.3% (as
shown in Table II) in presence of the original tempo variance
of the data proves the robustness of the proposed method to
this variance. Increasing the noise level leads to an almost
linear decrease in classification accuracy. However, at the
largest tempo noise level of 85% the accuracy is still 73.2%.
This confirms that the theoretical properties of the scale
transform make the features robust to large tempo changes in
practice as well.
The second experiment explores the way accuracy might get
affected when dealing with real audio signals of Turkish
music instead of the MIDI signals as contained in D3. For
that purpose, the functionality of the MIDI toolbox [35]
for the synthesis of an audio file from a MIDI has been
used. The synthesis locates Shepard tones [36] of constant
intensity wherever an onset is listed in the MIDI file. Thus,
computing an OSS from the signals synthesized in this
way results in almost constant onset strengths amplitudes
at the locations of the note onsets. The accuracy clearly
decreased to 63.5% (from 82.3%), again using SVM on STM
features at C = 140. It was investigated if this decrease is
caused by the flat characteristic of the OSS that does not
allow the differentiation between strong and weak onsets.
For this, audio files were synthesized using the timidity2

software, which uses the velocity information contained in
MIDI file, which means that onsets have varying strength. A
standard piano sound has been used for synthesis. In the same
experimental setup, using SVM on STM features at C = 140,
an accuracy of 77.4% was obtained. In another experiment,
the durational accent type used in the OSS computation from
the MIDI files was replaced by flat accents. This means that
impulses of constant height were positioned at the location of
all note onsets. Indeed, removing the information about the
intensity of the onset leads to the accuracy of 68.7%, and it
can be concluded that the weighting of an onset according to
its strength is a crucial information. Thus, it can be assumed
that this method will work comparably well when applied to
real world audio, which contain the full range of dynamics
that characterizes human performance.

D. Mutual information based feature selection

In order to find a way to obtain an optimal set of features
for classification independent of the dataset, various criteria
based on the coefficient energies or the scale bandwidth as
introduced in [14] have been evaluated without success. We

2http://timidity.sourceforge.net/
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decided then to compute the mutual information, MI, between
each scale coefficient and the class label as this was described
in Section III-C in order to select the best features for our
task from a given STM based on information theorem criteria.
This was further motivated by the fact that for D1 and D3
classification accuracies improve, when low scale coefficients
are left out. Thus, for each dataset different scale coefficients
appear to be relevant for classification. It was decided to use
the SVM classifier, which achieved the highest accuracies in
Table II, and to vary the mutual information threshold as
described in Section III-C on the set of features obtained for
C = 200 for all datasets. The classification accuracies are
depicted in Figure 8. It can be seen that from an MI threshold
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Fig. 8. SVM classification accuracies on the three datasets for varying mutual
information threshold

value of about 60% upwards for all three datasets a saturation
effect is reached. These saturation levels are about the same
as the best classification accuracies depicted in Table II. Thus,
it can be concluded that using mutual information criteria a
common way to get to an optimal feature set can be defined.
From Figure 8 it is clear that the number of samples in a
dataset affects the way the accuracy changes when increasing
the threshold. Increasing the threshold leads to an increasing
dimensionality of the feature vector, which leads to problems
especially on the smallest dataset, D2. It is interesting to
compare the compression achieved using mutual information
thresholds for the three datasets. Table IV shows the number
of coefficients corresponding to an MI threshold value of
60%. It can be seen that for D2, a much higher compression
is achieved than for D1. It was observed that for D2 scale
coefficients for low scales (c < 50) are the most relevant,
while for D1 the relevant scales were found among the whole
scale range. This phenomenon is not related to the size of
the datasets, but only to the different musical characteristics
of the contained data. We recall from Figure 6 that the scale
coefficients until c = 50 allow for a reconstruction of the
autocorrelation for lags up to one second. This means that
small lags are more important for this type of music than the
others.

E. Listening Test

In order to evaluate the relation between the proposed dis-
tance measure and the way human subjects perceive rhythmic

TABLE IV
COMPRESSION VALUES FOR MUTUAL INFORMATION THRESHOLD OF 60%

D1 D2 D3
Nfeat 249 27 98

Compression 34.7% 92.9% 76.5%

similarity on the used data, a listening test was conducted. For
this test, eleven subjects were asked to judge the similarity
measurements performed on D2 which lead to the optimum
classification performance for this dataset in Section IV-A
(C = 35 for LDA). Each subject was asked to decide which
of two comparison samples was rhythmically closer to a
reference sample. A total amount of 25 reference samples were
randomly chosen from D2 and presented to each subject. One
of the comparison samples was the closest to the reference
according to the proposed rhythm similarity measurement,
while the other was the sample which was positioned in
the middle of the ranked list of samples produced by the
suggesting method as being similar to the reference sample.
The subjects could decide for one of the two samples being
closer, or they had the possibility to state that both comparison
samples are equally close to the reference. All subjects had
practical experience in all style of dances present in the dataset
(Cretan dances). They were informed that all music will be
traditional Cretan dances, but not exactly which type of dances.
Furthermore, they were asked not to restrict their judgement
on the recognition of the class, but to concentrate on judging
rhythmical similarity, independently of the class affiliation.
The result is shown in Table V, and it can be seen that in
64% of the cases the proposed measurement agrees with the
listeners’ judgements. In only 16% of the cases, the proposed
measurement contradicted the listeners’ opinion. No difference
regarding the similarity of the two comparison samples was
perceived in 20% of the cases. These results prove that apart
from the objective verification of the proposed method in
the classification task, the method is characterized by a high
correlation of the way subjects perceive rhythmic similarity.

TABLE V
RESULTS OF LISTENING TEST FOR D2

CONTRADICTION NEUTRAL CONSENSUS
16% 20% 64%

V. CONCLUSIONS

A description of the rhythmic content of a piece of music
based on the scale transform was proposed. This description
is robust to large tempo variations that appear within a
specific class and to large tempo overlaps between classes.
Using simple distance measure and classifier techniques, the
descriptor vectors can be used to classify the samples with
high accuracies. The approach is computationally simple and
has no need of any tempo or meter estimation which might be
desirable for certain kinds of music signals. Based on mutual
information criteria, a method was proposed for choosing a
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feature set that is optimal for the classification task. The
relation between autocorrelations sequences and the Riemann
Zeta function in scale domain was explored, while a discussion
of the signal reconstruction by applying inverse transform
enabled to gain valuable insight into the relation between
variables in scale and in time domain. The inclusion of
the traditional Turkish dataset provided us with a potential
starting point for a detailed study of rhythmic characteristics
of Turkish traditional music. The suggested measure provides
a simple and efficient tool for the description and comparison
of rhythm content, especially applicable to music with little
or no percussive content and strong tempo variations.
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