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Abstract

Ambient Intelligence environments consist of various devices that collect,

process, change and share the available context information. The imperfect

nature of context, the open and dynamic nature of ambient environments,

and the special characteristics of the involved devices have introduced new

research challenges in the �eld of Distributed Arti�cial Intelligence, which

have not yet been successfully addressed by current Ambient Intelligence

systems.

This thesis proposes a solution based on the Multi-Context Systems paradigm,

in which local context knowledge of ambient agents is encoded in rule the-

ories (contexts), and information 
ow between agents is achieved through

mapping rules that associate concepts used by di�erent contexts. To handle

imperfect context, we extend Multi-Context Systems with non-monotonic

features, such as local defeasible theories, defeasible mapping rules, and a

preference ordering over the system contexts. On top of this model, we have

developed an argumentation framework that exploits context and preference

information to resolve potential con
icts caused by the interaction of ambi-

ent agents through their mappings. We also provide an operational model

in the form of a distributed algorithm for query evaluation, which is sound

and complete with respect to the argumentation framework, as well as three

alternative versions of the algorithm, each of which implements a di�erent

strategy for con
ict resolution. The four strategies, which mainly di�er in

the type and extent of context and preference information that is used to

resolve potential con
icts, have been evaluated in a simulated peer-to-peer

system and implemented in Logic Programming in four di�erent logic meta-

programs.
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Ðåñßëçøç

Ôá ðåñéâÜëëïíôá ÄéÜ÷õôçò Íïçìïóýíçò áðïôåëïýíôáé áðü äéÜöïñåò óõóêåõÝò

ïé ïðïßåò óõëëÝãïõí, åðåîåñãÜæïíôáé, áëëÜæïõí êáé äéáìïéñÜæïíôáé ôçí äéá-

èÝóéìç ðëçñïöïñßá ðåñéâÜëëïíôïò. Ç áôåëÞò ãíþóç ãéá ôçí ðëçñïöïñßá ðåñé-

âÜëëïíôïò, ç áíïéêôÞ êáé äõíáìéêÞ öýóç ôùí ðåñéâáëëüíôùí ÄéÜ÷õôçò Íïç-

ìïóýíçò, êáé ôá åéäéêÜ ÷áñáêôçñéóôéêÜ ôùí åìðëåêüìåíùí óõóêåõþí Ý÷ïõí

åéóÜãåé íÝá åñåõíçôéêÜ ðñïâëÞìáôá óôï ðåäßï ôçò ÊáôáíåìçìÝíçò Ôå÷íçôÞò

Íïçìïóýíçò, ôá ïðïßá äåí Ý÷ïõí áíôéìåôùðéóôåß åðáñêþò áðü ôá õðÜñ÷ïíôá

óõóôÞìáôá ÄéÜ÷õôçò Íïçìïóýíçò.

Ç äéáôñéâÞ áõôÞ ðñïôåßíåé ìßá ëýóç ðïõ âáóéæåôáé óôï ðáñÜäåéãìá ôùí Óõ-

óôçìÜôùí Ðïëëáðëþí Ðåñéâáëëüíôùí (Multi-Context Systems), óôá ïðïßá ç

ôïðéêÞ ãíþóç ôùí åìðëåêüìåíùí ðñáêôüñùí áíáðáñßóôáôáé ùò èåùñßåò êáíü-

íùí (contexts), êáé ç ñïÞ ðëçñïöïñßáò ìåôáîý ôùí ðñáêôüñùí åðéôõã÷Üíåôáé

ìå ÷ñÞóç êáíüíùí óõó÷Ýôéóçò. Ãéá ôï ÷åéñéóìü ôçò áôåëïýò ãíþóçò ðåñé-

âÜëëïíôïò, åðåêôåßíïõìå ôá ÓõóôÞìáôá Ðïëëáðëþí Ðåñéâáëëüíôùí ìå ÷áñá-

êôçñéóôéêÜ ìç-ìïíüôïíùí óõëëïãéóôéêþí, üðùò ôïðéêÝò áíáéñÝóéìåò èåùñßåò,

áíáéñÝóéìïõò êáíüíåò óõó÷Ýôéóçò êáé ìßá ó÷Ýóç ðñïôßìçóçò ðïõ åöáñìüæåôáé

ðÜíù óôá ðïëëáðëÜ ðåñéâÜëëïíôá. ÐÜíù áðü ôï ìïíôÝëï áõôü, Ý÷ïõìå áíá-

ðôýîåé Ýíá óýóôçìá óõëëïãéóôéêÞò ìå ÷ñÞóç åðé÷åéñçìÜôùí (arguments) ðïõ

áîéïðïéåß ðëçñïöïñßá ðåñéâÜëëïíôïò êáé ðñïôéìÞóåùí ãéá ôçí åðßëõóç áóõíå-

ðåéþí ðïõ åíäÝ÷åôáé íá ðñïêýøïõí êáôÜ ôç äéÜäñáóç ôùí ëïãéêþí ðñáêôüñùí

ìÝóù ôùí êáíüíùí óõó÷Ýôéóçò. Åðßóçò, ðáñÝ÷ïõìå Ýíá ëåéôïõñãéêü ìïíôÝëï

óôç ìïñöÞ åíüò êáôáíåìçìÝíïõ áëãïñßèìïõ ãéá áðïôßìçóç åðåñùôÞóåùí, ï

ïðïßïò åßíáé éóïäýíáìüò ùò ðñïò ôá áðïôåëÝóìáôÜ ôïõ ìå ôï óýóôçìá åðé-

÷åéñçìÜôùí, êáèþò êáé ôñåéò äéáöïñåôéêÝò åêäï÷Ýò ôïõ áëãïñßèìïõ, êáèåìßá

áðü ôéò ïðïßåò õëïðïéåß ìßá äéáöïñåôéêÞ óôñáôçãéêÞ ãéá ôçí åðßëõóç áóõíå-

ðåéþí. Ïé ôÝóóåñåéò óôñáôçãéêÝò, ïé ïðïßåò êõñßùò äéáöÝñïõí óôïí ôýðï êáé



ôçí Ýêôáóç ôçò ðëçñïöïñßáò ðïõ áîéïðïéåßôáé ãéá ôçí åðßëõóç áóõíåðåéþí,

Ý÷ïõí áîéïëïãçèåß óå Ýíá ðñïóïìåéùìÝíï äéïìüôéìï óýóôçìá, êáé Ý÷ïõí õëï-

ðïéçèåß óå Ëïãéêü Ðñïãñáììáôéóìü, óå ôÝóóåñá äéáöïñåôéêÜ ëïãéêÜ ìåôá-

ðñïãñÜììáôá.
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Chapter 1

Introduction

Computing is moving towards pervasive, ubiquitous environments in which devices,

software agents and services are all expected to seamlessly integrate and cooperate in

support of human objectives, anticipating needs and delivering services in an anywhere,

any-time and for-all fashion [119]. Pervasive Computing and Ambient Intelligence are

considered to be key issues in the further development and use of Information and

Communication technologies, as evidenced, for example, by the IST Advisory Group

[70].

Ambient Intelligence systems aim at providing the right information to the right

users, at the right time, in the right place, and on the right device. In order to achieve

this, a system must have a thorough knowledge and, as one may say, "understanding" of

its environment, the people and devices that exist in it, their interests and capabilities,

and the tasks and activities that are being undertaken. All this information falls under

the notions of context.

In the literature one can �nd various de�nitions of context. If we restrict the search

in the area of human-computer interaction, the most prominent de�nitions are the

following. In the work that �rst introduces the term "context-aware" [103], context is

referred to as "location, identities of nearby people and objects, and changes to those

objects". Trying to give a broader de�nition, Dey et al. [1] describe context as "any

information that can be used to characterize the situation of an entity. An entity is

a person, place or object that is considered relevant to the interaction between a user

and application, including the user and applications themselves". Gray and Salber

[62] have built on the above de�nition to derive a de�nition about sensed context :

1



1. INTRODUCTION

"Sensed context are properties that characterize a phenomenon, are sensed and that are

potentially relevant to the tasks supported by an application and/or the means by which

those tasks are performed". In an e�ort to specify the di�erent dimensions of context,

Ryan et al. [100] suggest context types of location, environment, identity and time.

Dey et al. [1] suggest a similar categorization, but have replaced "environment" with

"activity", in order to describe what is occurring in a situation. The four primary pieces

of context indicate the types of information necessary for characterizing a situation and

their use as indices provide a way for the context to be used and organized.

1.1 Reasoning about Context in Ambient Intelligence

The intelligence of a mechanic system is mainly determined by its reasoning capabili-

ties. The aim of reasoning about context in Ambient Intelligence is to exploit the true

meaning of raw context data; to process, combine and ultimately translate the low-level

data that is stored in the registers of the sensors into valuable information, based on

which the system can determine the state of its context, and react appropriately to cer-

tain context changes. The uncertainty and imperfection of context information, and the

special characteristics of the entities that operate in Ambient Intelligence environments

introduce, however, several challenges in this task.

Henricksen and Indulska in [69] characterize four types of imperfect context infor-

mation: unknown, ambiguous, imprecise, and erroneous. Sensor or connectivity failures

(which are inevitable in wireless connections) result in situations, that not all context

data is available at any time. When data about a context property comes from multiple

sources, then context may become ambiguous. Imprecision is common in sensor-derived

information, while erroneous context arises as a result of human or hardware errors.

The entities that operate in an Ambient Intelligence environment are expected to

have di�erent goals, experiences and perceptive capabilities. They may use distinct

vocabularies; they may even have di�erent levels of sociality. Due to the highly dynamic

and open nature of the environment (various entities join and leave the environment at

random times) and the unreliable and restricted by the range of the transmitters wireless

communications, ambient agents do not typically know a priori all other entities that

are present at a speci�c time instance nor can they communicate directly with all of

them.

2



1.2 Reasoning Limitations of current Ambient Intelligence Systems

Overall, the role of reasoning about context in Ambient Intelligence systems includes:

• detecting possible errors in the available context information;

• handling missing values;

• evaluating the quality and the validity of the sensed data;

• transforming the low level raw context data into higher level meaningful informa-

tion so that it can later be used in the application layer;

• making decisions about the system behavior when certain changes are detected in

the system's context.

Considering these requirements and the special characteristics of context and ambi-

ent entities, the three main challenges of knowledge management in Ambient Intelligence

are to enable:

1. Reasoning with the highly dynamic and imperfect context.

2. Managing the potentially huge piece of context data, in a real-time fashion, con-

sidering the restricted computational capabilities of some mobile devices, and the

constraints imposed by wireless communications.

3. Collective intelligence, by supporting heterogeneous information sharing, and dis-

tributed reasoning with all the available context information.

1.2 Reasoning Limitations of current Ambient Intelligence
Systems

Most current Ambient Intelligence systems have failed to e�ciently handle all challenges

of knowledge management that are discussed above. Their main limitations result

from the absence of a reasoning model that may inherently deal with the uncertainty

and ambiguity of context knowledge, and from their centralized architecture, which

requires the existence of dedicated central entities that collect all the available context

information and perform the appropriate reasoning tasks. Below, these two limitations

are discussed in more detail.

3



1. INTRODUCTION

1.2.1 Reasoning with the Imperfect Context

The reasoning approaches followed so far in Ambient Intelligence systems either ne-

glect to address the problems caused by the imperfect nature of context, or handle

them by using heuristics and building additional reasoning mechanisms on top of logic

models that cannot inherently deal with the problems of uncertainty, ambiguity and

inconsistency. Representative examples of the �rst category are:

(a) the Description Logic-based approaches followed in [106], where both user pro-

�les and semantic services are modeled as DL predicates, and a set of DL rules is used

for semantic matching between users and services; and [114], where three DL reasoners

(RACER [66], its commercial successor RacerPro [65], and Pellet [90]) are tested in

a real-case application scenario from the smart home domain. The DL reasoning ap-

proaches have two signi�cant advantages. They integrate well with the ontology model,

which is widely used for the representation of context; and most of them have rela-

tively low computational complexity, which enables them to deal well with situations of

rapidly changing context. However, their limited reasoning capabilities are a trade-o�

that cannot be neglected. They cannot deal with missing or ambiguous information,

which is a common case in Ambient Intelligence environments, nor do they provide

support for decision making procedures. Thus, although they can be applied in cases

that the needs are restricted to retrieving information from the context knowledge base,

checking if the available context data is consistent, or deriving implicit higher level on-

tological knowledge from raw context property values, they cannot serve as a standalone

solution for the needs of ambient context-aware applications.

(b) rule-based reasoning approaches, which include the FOL-based approaches fol-

lowed in [117; 118], where a set of user-de�ned rules is used for the deduction of

higher level context information from an OWL context knowledge base; and the Logic

Programming-based approaches followed in [3; 113]. The latter use rules that follow the

pattern: if context attributes C1:::Cn then context attribute Cm, which corresponds to

a Horn clause, where predicates in the head and in the body are represented by classes

and properties de�ned in the context and application-speci�c ontologies. The FOL and

LP based approaches provide formal models for context reasoning. Moreover, rules are

easy to understand and widespread used. However, both approaches share a common

de�ciency; they cannot handle the highly dynamic, ambiguous and imperfect context
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information, and suit better in cases, where there is certainty about the quality of the

available data.

The second category includes the FOL-based context frameworks of Gaia [97] and

SOCAM (Middleware for Context-Aware Mobile Services [63]). Both frameworks use

�rst-order predicates for the representation of context information. In Gaia, in order to

resolve con
icts that occur when multiple rules are activated in the same time, they have

developed a priority based mechanism, allowing only one rule to �re at each time. In

SOCAM, to resolve possible con
icts, they have de�ned sets of rules on the classi�cation

and quality information of the context data, considering that di�erent types of context

have di�erent levels of con�dence, reliability and quality. The development of such

priority mechanisms indeed o�ers some solutions for the problems of uncertainty and

ambiguity of context, adding however additional complexity to the reasoning tasks.

Moreover, these solutions are rather restricted to meet the needs of the speci�c systems

/ applications. For the general needs of Ambient Intelligence systems, a more general

and formal approach that can inherently deal with missing, uncertain, inaccurate and

ambiguous information is certainly required.

1.2.2 Reasoning with the Distributed Context

So far, most Ambient Computing frameworks have been based on fully centralized archi-

tectures for managing context. The common approach followed in such systems dictates

the existence of a central entity, which is responsible for collecting the available context

data from all sensors and ambient agents operating in the same environment, and for all

the required reasoning tasks, which may include transforming the imported context data

in a common format, deducing higher-level context information form the raw context

data, and taking context-dependent decisions for the behavior of the system. Repre-

sentative examples of such systems are: (a) the Context Broker Architecture (CoBrA,

[41]); (b) the Context Awareness Framework presented in [47]; the Contextual Guiding

Platform [92]; the Gaia Context-Aware Framework [97]; the eWallet architecture of

myCampus project [50]; the Semantic Context-Aware Access Control Framework pre-

sented in [113]; the AmbieSense Context Management Framework [76]; and the ec(h)o

audio museum guide [68].

The need for more decentralized approaches in Ambient Intelligence systems has

recently led several research teams to deploy methods and techniques from Distributed
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Arti�cial Intelligence. One such approach is followed in sTuples [75]. This framework

extends Tuple Spaces [52] using Semantic Web technologies to represent and retrieve

tuples from a Tuple Space. The Tuple Space model uses a logically shared memory,

where producers add tuples to a common space, while consumers read or extract tuples

from the space using a search template. Similar approaches, which combine Semantic

Web technologies and shared memory models to support asynchronous communications

in ambient environments, have been adopted in Semantic Spaces [78], and in the con-

text management framework presented in [77]. The latter follows a blackboard -based

approach. A mobile terminal system uses a central context manager, which stores con-

text information from any available source. Clients can directly query the manager to

gain context information, subscribe to various context change noti�cation services, or

use higher level contexts transparently. In the latter case, the context manager assigns

the reasoning tasks to dedicated recognition services.

The OWL-SF framework [87] follows a more decentralized approach. It combines the

OMG's Super Distributed Objects (SDO) technology and the OWL language to allow

the distribution of semantically annotated services for the needs of ambient context-

aware systems. SDOs are logical representations of hardware and software entities that

are used to enable distributed interoperability. The proposed framework integrates two

basic building blocks, OWL-SDOs and Deduction Servers. The OWL-SDOs are seman-

tic extensions of SDOs; they use the OWL language to describe their status, services

and communication interface. Deduction servers are speci�c OWL-SDOs that provide

reasoning services. They contain a deduction engine coordinating reasoning tasks, an

RDF inference layer providing rule reasoning support and an OWL-DL reasoner. Be-

sides providing reasoning support, they are responsible for collecting the status of SDOs

published using the OWL format, and for building an integrated OWL description ac-

cessible to reasoning.

The main feature that distinguishes the latter approach is the lack of one central

reasoning or control entity; it is fully decentralized. Collecting the reasoning tasks

in a central entity certainly has many advantages; it can achieve better control, and

better coordination between the various entities that have access to the central entity.

Blackboard-based and shared-memory models have been thoroughly studied and used

in many di�erent types of distributed systems and have proved to work well in practice.

The requirements are, though, much di�erent in this setting. Context may not be
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restricted to a small room, o�ce or apartment; cases of broader areas must also be

considered. The communication with a central entity is not always guaranteed, and

wireless communications are typically unreliable and restricted by the range of the

transmitters. Thus, a fully distributed scheme is a necessity. The OWL-SF framework

is a step towards this direction, but certainly not the last one. In order to deal with

the challenging issues that arise in Ambient Intelligence environments, some of the

assumptions that they make must be relaxed. For example, di�erent entities should not

be expected to use the same representation and reasoning models, and the existence of

dedicated reasoning machines cannot always be assumed.

The reasoning approaches, along with the aim of the systems referenced in this

section are summarized in Table 1.1.

1.3 Motivating Scenarios from the Ambient Intelligence Do-
main

Below, there is a description of three use case scenarios from the Ambient Intelligence

domain. The aim of these scenarios is to highlight the challenges of contextual reasoning

in Ambient Intelligence.

1.3.1 Context-Aware Mobile Phone in an Ambient Classroom

The �rst scenario involves a context-aware mobile phone that has been con�gured by

Dr. Amber to make decisions about whether it should ring (in case of incoming calls)

based on his preferences and context. Dr. Amber has the following preferences: His

phone should ring in case of an incoming call, unless it is in silent mode or he is giving

a lecture.

Consider the case that Dr. Amber is currently located in the 'RA201' university

classroom. It is class time and he has just �nished with a course lecture, but he still

remains in the classroom reading his emails on his laptop. The mobile phone receives

an incoming call, while it is in normal mode.

The phone cannot decide whether it should ring based only on its local context

knowledge, which includes knowledge about incoming calls and the mode of the phone,

as it is not aware of other important context parameters (e.g. Dr. Amber's current

7
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Table 1.1: Reasoning Approaches followed by Current Ambient Intelligence Systems

System Reasoning Architecture Aim

Semantic Mobile DL distributed Semantic Service
Environment [106] (agent-based) matchmaking
Context-Aware Door
Lock [114]

DL centralized automatic door-lock

CONON DL+FOL centralized context-aware
Prototype [118] services
Semantic Space [117] FOL centralized smart space

mobile services
CARE [3] DL+LP centralized service

(middleware) adaptation
Context-Aware DL+LP centralized policy evaluation
Access Control
Framework [113]
Gaia [97] FOL centralized context-aware services
SOCAM [63] FOL centralized middleware for

(middleware) mobile services
CoBrA [41] FOL centralized middleware for

(middleware) mobile services
Context Awareness RDQL centralized service
Framework [47] prioritization
CG Platform [92] RQL centralized location-based services
eWallet [50] FOL centralized context-aware

(agent-based) services
AmbieSense [76] CBR centralized context management
ec(h)o system [68] FOL centralized audio museum guide
sTuples [75] DL decentralized mobile services

shared memory
Semantic Spaces [78] DL decentralized information sharing

shared memory
Context Management Bayesian decentralized information sharing
Framework [77] (blackboard) noti�cation services
OWL-SF [87] DL distributed distributed services

(SDOs)
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1.3 Motivating Scenarios from the Ambient Intelligence Domain

activity). Therefore, it attempts to contact through the wireless network of the univer-

sity other ambient agents that are located nearby, import from them further context

information, and use this information to reach a decision.

In order to determine whether Dr. Amber is currently giving a lecture, the mobile

phone uses two rules. The �rst rule states that if at this time there is a scheduled

lecture, and Dr. Amber is located in a university classroom, then he is possibly giving a

lecture. Information about scheduled events is imported from Dr. Amber's laptop, while

information about his current location is imported from the wireless network localization

service. The second rule states that if there is no class activity in the classroom, then

Dr. Amber is rather not giving a lecture. Information about the state of the classroom

is imported from the classroom manager (a stationary computer installed in the 'RA201'

classroom).

Dr. Amber's personal laptop contains his personal calendar. Using this information,

it can infer that at present there is a scheduled class event. The localization service

possesses knowledge about Dr. Amber's current position (actually about the position

of his mobile phone). In this case, it provides information that Dr. Amber is currently

located in 'RA201'. The classroom manager possesses knowledge about the state of the

classroom. Speci�cally, it provides information that the classroom projector is o�, and

imports information about the presence of people in the classroom from an external

person detection service. In this case, the service detects only one person (Dr. Amber)

in the classroom. Based on this information, the classroom manager infers that there

is no class activity.

The overall information 
ow in the scenario is depicted in Figure 1.1. Eventually,

the mobile phone will receive ambiguous context information from the various ambient

agents operating in the classroom. Information imported from Dr. Amber's laptop and

the localization service leads to the conclusion that Dr. Amber is currently giving a

lecture. On the other hand, information imported from the classroom manager leads

to the contradictory conclusion that Dr. Amber is not giving a lecture. To resolve this

con
ict, the mobile phone must be able to evaluate the information it receives from the

various sources. For example, in case it is aware that the information derived from the

classroom manager is more accurate than the information imported from Dr. Amber's

laptop, it will determine that Dr. Amber is not currently giving a lecture, and therefore

will reach the 'ring' decision.
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Figure 1.1: Context Information Flow in the Scenario

1.3.2 Ambient Intelligence Home Care System

The second scenario takes place in an apartment hosting an old man, Mr. Jones. Mr.

Jones, a 80 year old widower, is living alone in his apartment, while his son resides in

close proximity. A nurse visits Mr. Jones 8 to 10 hours daily, while his son also visits

him for some hours every couple of days. Mr Jones' apartment is equipped with an

Ambient Intelligence Home Care System, which consists of:

• A position tracking system, which localizes Mr. Jones in the apartment.

• An activity tracking system, which monitors the activities carried out by Mr.

Jones; activity can take values such as sitting, walking, lying, etc.

• A data monitoring system, in the form of a bracelet, which collects Mr. Jones'

basic vital information, such as pulse, skin temperature and skin humidity.

• A person detection system, which is able to recognize Mr. Jones, his son and the

nurse.

• An emergency monitoring system, identifying emergency situations. This system

has a wired connection with the position tracking system, the activity tracking

system, the person detection system and the emergency telephony system, and a

wireless connection with the data monitoring bracelet.

10
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• An emergency telephony system, which makes emergency calls to Mr. Jones' son

in case of emergency.

Assume that neither the nurse nor Mr. Jones' son are located in the apartment,

and Mr Jones is walking through a hall of the apartment to his bedroom. He suddenly

stumbles, falls down and loses his consciousness, while the data monitoring bracelet

that he wears in his wrist is damaged, transmitting erroneous data to the emergency

monitoring system.

The emergency telephony system is con�gured to determine about whether it should

make an emergency call to his son using the following rule: 'If an emergency situation

is detected, and neither the nurse nor Mr. Jones' son are located in the house, then

make an emergency call'. The detection of emergency situations is a responsibility of

the emergency monitoring system, while the person detection system is responsible for

detecting Mr. Jones, his son and the nurse in the house.

The emergency monitoring system uses the following rules for determining emer-

gency situations: (a) Any abnormal situation is an emergency situation; (b) If Mr.

Jones' temperature, skin humidity and pulse have normal values then there is no case

of emergency situation; (c) In case Mr. Jones is lying in a place di�erent than his bed,

then this is an abnormal situation. Information about Mr. Jones' physical situation is

imported from the data monitoring bracelet. In the speci�c case described above, the

bracelet is damaged and keeps erroneously transmitting normal values about Mr. Jones'

temperature, skin humidity and pulse. Knowledge about Mr. Jones' current activity

(lying) is possessed by the activity tracking system, while the position tracking system

is aware of Mr. Jones' current position (hall).

Using information imported from the data monitoring bracelet, and rules a and b,

the emergency monitoring system may conclude that this is not an emergency situation.

However, based on the information imported from the activity and position tracking

systems and rules a and c, the emergency monitoring system reaches the contradictory

conclusion that this is an emergency situation. As the data monitoring bracelet is

considered more prone to damage than the activity and position tracking systems,

and the wired connections between the emergency monitoring system with the activity

and position tracking systems are more reliable than the wireless connection with the
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data monitoring bracelet, the emergency monitoring system determines that this is an

emergency situation, and the telephony system reaches the 'emergency call' decision.

1.3.3 Mushroom Hunting in an Ambient Natural Park

The third scenario takes place in an Ambient Intelligence environment of mushroom

hunters, who collect mushrooms in a natural park in North America. The hunters carry

mobile devices, which they use to communicate with each other through a wireless

network, in order to share their knowledge on edible and non-edible mushrooms.

People interested in picking mushrooms typically do not know every species and

family of mushrooms in detail. They know that a deadly mushroom can be very similar

to an edible one, e.g., the "amanita phalloides" (deadly) and the "amanita caesarea"

(edible and one of the best mushrooms) that look very much alike. In general, a mush-

room hunter has to respect certain rules imposed by the natural park legislation such

as the limited quantity of mushrooms that can be picked. Due to the limitation on the

allowed quantity, there is the need of establishing the specie of an unknown mushroom

during the picking itinerary instead of bringing the picked ones to an expert and dis-

covering, after some days, that the picking has been useless due to the high number

of non-edible picked mushrooms. Furthermore, the picking has not been simply useless

but it has also vainly cheated the ecosystem of a part. Moreover, even in the case of

an irrelevant quantity of non-edible picked mushrooms, it might happen that a small

chunk of a deadly mushroom (e.g., "amanita phalloides" also known as The Death Cap)

mixes with edible ones and accidentally eaten. By keeping in mind the above discussed

motivations, let us consider the scenario in which a mushroom hunter, Adam, �nds an

interesting mushroom but it is unclear if it is edible.

Suppose that the mushroom in question has the following characteristics: It has a

stem base featuring a fairly prominent sack that encloses the bottom of the stem (volva),

and a pale brownish cap with patches, while the margin of the cup is prominently lined,

and the mushroom does not have a ring (annulus).

Adam has some knowledge on the description of speci�c species, such as the De-

stroying Angel, the Death Cap and the Caesar's Mushroom. He also knows that the �rst

two of them are poisonous, while the third one is not. However, the description of the

mushroom in question does not �t with any of these species, so Adam cannot determine

about whether this mushroom is poisonous. He decides to exploit the knowledge of
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other mushroom hunters in the Ambient Natural Park, and uses the wireless network to

contact other hunters that are located nearby. His wireless device establishes connection

with the devices of three other hunters.

The �rst one of the three other hunters, Bob, uses a generic rule, which states that

mushrooms with a volva are non-edible. The second hunter, Chris, has knowledge of

some speci�c species that are not toxic, including springtime amanita, but does not

know their distinct characteristics. The third hunter, Dan, on the other hand, also

uses a very generic rule, which states that amanitas are typically dangerous. Using

the wireless network, Chris establishes a connection with another hunter, Eric, who

knows how amanita velosa (a formal name for springtime amanita) looks like, and

the description of this speci�c specie �ts exactly the description of the mushroom in

question.

In this scenario Adam has three options: Using the knowledge of Bob, he will reach

the conclusion that the mushroom is poisonous, and therefore he should not pick it.

Using the knowledge of Dan, he will reach the same decision. The third option is to use

the combined knowledge of Chris and Eric. In the latter case, he will reach a di�erent

decision; he will determine that the mushroom is not dangerous, and therefore he may

pick it. Being aware that Chris and Eric possess more specialized knowledge than Bob

and Dan, he will determine to give priority to the third option determining that the

mushroom in question is not poisonous.

1.3.4 Common Characteristics of the Three Scenarios

The three scenarios described above share some common characteristics with respect

to the distribution of context knowledge, the nature of this knowledge, and the rela-

tions that exist between the various involved ambient agents. Speci�cally, the following

assumptions have been implicitly made:

• In each case there is an available means of communication through which an

ambient agent can communicate and exchange context information with a subset

of the other available ambient agents.

• Each ambient agent is aware of the type of knowledge that each of the other

agents that it can communicate with possesses, and has speci�ed how part of this

knowledge relates to its local knowledge.
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• Each ambient agent is aware of the quality of context information that it imports

from other ambient agents.

• Each ambient agent has some computing and reasoning capabilities that it may

use to make certain decisions based on its local and imported context information.

• Each ambient agent is willing to disclose and share part of its local knowledge.

The challenges of reasoning with the available context information and making cor-

rect context-dependent decisions in the described scenarios include:

• Local context knowledge may be incomplete, meaning that none of the agents

involved in the scenarios described above has immediate access to all the available

context information.

• Context knowledge may be ambiguous; in all the three scenarios, there is one

case that an ambient agent receives mutually inconsistent information from two

or more other agents.

• Context knowledge may be imprecise; e.g. in the �rst scenario the knowledge

about Dr. Amber's schedule possessed by his laptop is not accurate.

• Context knowledge may be erroneous; e.g. in the second scenario, the values for

Dr. Jones' temperature, skin humidity and pulse that are transmitted by the

bracelet are not valid.

• Each agent may use its own vocabulary to describe its context; e.g. in the third

scenario two hunters may use a di�erent name for the same specie of amanita.

• The computational capabilities of most of the devices that are involved in the

three scenarios are restricted, so the overhead imposed by the reasoning tasks

must not be too heavy.

• The communication load must not also be too heavy, so that the system can

quickly make a decision, taking into account all the available context information

that is distributed between the ambient agents. Communication load refers not

only to the required number of messages exchanged between the involved devices,

but also to the size of these messages.
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1.4 Thesis Contribution

This thesis presents a fully distributed approach for reasoning about context in Ambient

Intelligence environments. The involved entities are modeled as autonomous logic-based

agents, the knowledge possessed by an ambient entity as a local context rule theory, and

the associations between the context knowledge possessed by di�erent ambient agents as

mappings between their respective context theories. To support cases of missing or inac-

curate local context knowledge, contexts are represented as local theories of Defeasible

Logic; and to handle inconsistencies caused by the interaction of mutually inconsistent

contexts, the Multi-Context Systems (MCS ) model is extended with defeasible mapping

rules, and with a preference order on the system contexts.

Reasoning with the distributed context information is based on an argument-based

approach. The arguments have a local range, in the sense that each one uses knowledge

of a single context, but are interrelated through mapping rules. Con
icts that arise

from the interaction of mutually inconsistent contexts are captured through attacking

arguments, and con
ict resolution is achieved by ranking arguments according to the

preference order on the system contexts.

Finally, an operational model in the form of a distributed algorithm for query eval-

uation is provided. The algorithm meets the requirement for low computational load,

while it is sound and complete with respect to the argumentation framework. Addition-

ally to the algorithm that implements the proposed argumentation framework, three

alternative versions are also described. Each of them implements a di�erent strategy

for con
ict resolution with respect to the type and extend of context and preference

information used to resolve the potential con
icts.

1.5 Outline

1.5.1 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 provides background information on contextual reasoning and on argu-

mentation systems. Speci�cally, it describes the intuition behind Multi-Context Sys-

tems, discusses relevant works on non-monotonic MCS and peer data management sys-
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tems, and presents the most prominent works on non-monotonic and preference-based

argumentation systems.

Chapter 3 describes the argumentation framework that enables reasoning with the

imperfect and distributed context information. Firstly, it presents the MCS-based rep-

resentation model, and then provides its semantic characterization using arguments.

Chapter 4 provides the operational model in the form of a distributed algorithm

for query evaluation, and studies its formal properties regarding its termination, com-

plexity, soundness and completeness with respect to the argumentation framework. It

also describes a process, which uni�es the distributed theories in an equivalent global

defeasible theory.

Chapter 5 presents three alternative strategies for con
ict resolution, discusses their

di�erences, and describes how they are implemented in three di�erent versions of a

distributed algorithm for query evaluation.

Chapter 6 presents the process and the results of an evaluation of the four strategies

in a simulated P2P system. It also describes the implementation of the algorithms in

Logic Programming.

Chapter 7 summarizes the main points of the thesis and discusses potential exten-

sions of this work.

1.5.2 Relevant Publications

Most parts of this study have already been published in the following conference and

journal articles

• [29] presents the results of a survey that we conducted on semantics-based ap-

proaches for contextual reasoning in Ambient Intelligence (the main results of

this survey appear in Section 1.2 of this chapter)

• [25] describes the main intuitions behind our approach

• [23] presents how our approach can be applied to the three di�erent use case

scenarios that we discuss in Section 1.3 of this chapter

• [27] describes the argumentation framework, which we present in this thesis in

Chapter 3

16



1.5 Outline

• [24] and [26] present the representation model and the distributed algorithm query

evaluation, which we describe in Chapter 4

• [22] presents the main features of the four alternative strategies for con
ict reso-

lution, which appear in Chapter 5 of this thesis, while [28] presents and discusses

the results of the evaluation of the four strategies (Chapter 6)

• [19] contains several di�erent parts of this study, including the general ideas,

the representation model, the distributed algorithms query evaluation and the

application of our approach in the Ambient Intelligence domain, while it also

provides a proof theoretic formalization

The following two articles are currently under review:

• [21] is an extended version of the LPNMR paper, which additionally provides

some additional properties of the argumentation framework and of the algorithms

for distributed query evaluation and proves the soundness and completeness of

the algorithms with respect to the argumentation framework

• [20] provides a more detailed description of the four di�erent strategies for con
ict

resolution, their implementation and a discussion on the results of the evaluation
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Chapter 2

Background

This chapter provides background information on Contextual Reasoning and on Argu-

mentation Systems. Speci�cally, it provides general information about formalizations

of context in AI, and describes the intuitions behind Multi-Context Systems, which is

the underlying model of our approach. It also presents non-monotonic extensions of

Multi-Context Systems and Peer Data Management Systems, which can be viewed as

special cases of Multi-Context Systems, and discusses their main limitations with re-

spect to Ambient Intelligence. The second section presents the most prominent works

on non-monotonic Argumentation Systems, and discusses recently proposed approaches

on the integration of preferences in Argumentation Systems.

2.1 Contextual Reasoning in Arti�cial Intelligence

The notions of context and contextual reasoning were �rst introduced in Arti�cial In-

telligence by McCarthy in [84], as an approach for the problem of generality. In the

same paper, he argued that the combination of non-monotonic reasoning and contex-

tual reasoning would constitute an adequate solution to this problem. Since then, two

main formalizations have been proposed to formalize context: the propositional logic of

context (PLC [37; 85]), and the Multi-Context Systems introduced in [57], which later

became associated with the Local Model Semantics proposed in [54]. Multi-Context

Systems has been argued to be most adequate with respect to the three properties of

contextual reasoning as these were formulated by [17] (partiality, approximation, prox-

imity) and has been shown to be technically more general than PLC [104].
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2.1.1 Applications of Context and Contextual Reasoning

Context reasoning mechanisms have already been used in practice in various distributed

reasoning applications, and are expected to play a signi�cant role in the development

of the next generation Arti�cial Intelligence Applications. A �rst prominent example

was the design of the CYC common sense knowledge base as a collection of interrelated

partial "microtheories" [64; 79]. CYC's enormous knowledge base of assertions, which

may represent a particular set of surrounding circumstances, relevant facts, IF-THEN

rules, and background assumptions, is divided into many di�erent contexts; every fact

or rule is in some particular context. Whenever Cyc is asked a question, or has to

do some reasoning, the task is always done in some particular context. In this way,

Cyc's "microtheories" provide a mechanism for focusing on relevant information during

problem solving.

The most representative example of distributed interrelated knowledge bases is, how-

ever, the Semantic Web [11; 112]. The Semantic Web is an extension of the current

Web, in which information is given well-de�ned meaning, better enabling computers

and people to work in cooperation. For the semantic annotation of web information,

Semantic Web uses online ontologies - formal descriptions of particular domains, which

can potentially be published and edited by anyone willing to do so. As a result, ontolo-

gies are highly scattered and heterogeneous. To deal with this problem, recent studies

have focused on the development of languages that allow for the expression of contex-

tualized ontologies, with the Distributed Description Logics [33] and C-OWL [35] being

the most prominent examples.

The use of Multi-Context Systems as a means of specifying and implementing agent

architectures has been proposed in [91] and [102]. Both studies propose breaking the

logical description of an agent into a set of contexts, each of which represents a dif-

ferent component of the architecture, and the interactions between these components

are speci�ed by means of bridge rules between the contexts. In [91], they follow this

approach to simplify the construction of a belief/desire/intention (BDI) agent, while in

[102] they extend it to handle more e�ciently implementation issues such as grouping

together contexts in modules, and enabling inter-context synchronization.

Other �elds that the notions of context and contextual reasoning have been suc-

cessfully applied include: multi-agent systems [15; 42], modeling dialog, argumentation
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and information integration in electronic commerce applications [91], commonsense rea-

soning [34], reasoning about beliefs [16; 46; 53; 55; 56] and reasoning with viewpoints

[12].

2.1.2 Multi-Context Systems

A simple illustration of the intuitions underlying Multi Context Systems is provided by

the so-called 'magic box ' example:

Mr. 2

Mr. 1

Mr. 2

Mr. 1

Mr. 2Mr. 2

Mr. 1

Figure 2.1: A magic box.

As depicted in Figure 2.1 above, Mr.1 and Mr.2 look at a box, which is called

"magic" because neither of the observers can make out its depth. Both Mr.1 and Mr.2

maintain a representation of what they believe to be true about the box. Mr.1's beliefs

may regard concepts that are completely meaningless for Mr.2, and vice versa. For

example, Mr.2 could believe the central section of the box to contain a ball. From

Mr.1's viewpoint however, the box does not have a central section, so any statement

about whether it contains a ball or not is meaningless for him. Mr.1 and Mr.2 may

also have concepts in common, but in any case their respective interpretations of those

concepts are independent. For example, "the right section of the box contains a ball"

is a meaningful statement for both Mr.1 and Mr.2. But it is perfectly conceivably that

Mr.1 believes the right section of the box to be empty, while Mr.2 believes it to contain

a ball, and vice versa. The bottom line is that both observers have their own local

language in which they express their beliefs.

Another important notion is that the observers may have (partial) access to each

other's beliefs about the box. For example, Mr.1 may have access to the fact that

Mr.2 believes the box to contain a ball. Mr.1 may interpret this fact in terms of his

own language, and adapt his beliefs accordingly. We think of this mechanism as an

information 
ow among di�erent observers.
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The intuitions underlying Multi-Context Systems can be summarized in the follow-

ing points.

• A context is a subset of an individual global state, or - more formally - a partial

and approximate theory of the world from some individual's perspective [55].

• Reasoning with multiple contexts is a combination of:

{ local reasoning, which is performed using knowledge of a single context. Local

conclusions in a given context derive from a set of axioms and inference rules

that model local context knowledge, and which constitute a small subset of

the entire knowledge.

{ distributed reasoning, which also that takes into account the possible rela-

tions between local contexts. These relations result from the fact that di�er-

ent contexts actually constitute di�erent representations of the same world.

They are modeled as inference rules (known as mapping or bridge rules) with

premises and consequences in di�erent contexts, and enable information 
ow

between related contexts.

• The relationship between di�erent contexts can be described only to a partial

extent. In other words, no context can be 'fully' translated into another, as each

of them may encode assumptions that are not fully explicit.

As a result from the characteristics discussed above, di�erent contexts are expected

to use di�erent languages and inference systems, and although each context may be

locally consistent, global consistency cannot be required or guaranteed. The most crit-

ical issues of reasoning in Multi-Context Systems are; (a) the heterogeneity of local

context theories with respect to the language and inference system that they use; and

(b) the potential con
icts that may arise from the interaction of contexts through their

mappings.

2.1.3 Non-monotonic Contextual Reasoning

Multi-Context Systems have been the basis of two recent studies that were the �rst to

deploy non-monotonic features in contextual reasoning:
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• the non-monotonic rule-based MCS framework [98], which supports default nega-

tion in the mapping rules allowing to reason based on the absence of context

information

• the multi-context variant of Default Logic (ConDL [36]), which models bridge

relations between di�erent contexts as default rules.

Both approaches support many of the characteristics of contextual reasoning in Am-

bient Intelligence environments that we discuss in Chapter 1. Speci�cally, additionally

to the three fundamental dimensions of contextual reasoning (partiality, approximation

and perspective) that the generic MCS model inherently supports, both approaches

support reasoning with incomplete local information using default negation in the body

of the mapping rules. Furthermore, Contextual Default Logic handles ambiguous con-

text using default mapping rules. The case that context A imports con
icting context

information from contexts B and C through A's mapping rules, is modeled using the

di�erent extensions of the theory that includes A's local theory, A's mapping (default)

rules, the local theories and (possibly) the mappings of contexts B and C, and (possi-

bly) other context theories that B and C are connected to through their mapping rules.

Finally, comparing to [98], the ConDL approach has the additional advantage that is

closer to implementation due to the well-studied relation between Default Logic and

Logic Programming.

However, there are still some issues that Contextual Default Logic cannot e�ciently

handle. Speci�cally, it does not provide ways to model the quality of the imported

context information, nor the preference between two di�erent information sources. In

other words, it does not include any notion of priority, not allowing to resolve potential

con
icts that may arise while importing context information from two di�erent sources.

Furthermore, computing extensions or checking if a formula is in one or in all extensions

of a Default theory has been showed to be a complex computational problem [59; 107],

and would add a too heavy computational overhead to the devices operating in Ambient

Intelligence environments, which typically have limited computational capabilities.

2.1.4 Peer Data Management Systems

Peer data managements systems can be viewed as special cases of Multi-Context Sys-

tems, as they consist of autonomous logic-based entities (peers) that exchange local
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information using bridge rules. A key issue in formalizing data-oriented Peer-to-Peer

systems is the semantic characterization of mappings (bridge rules). One approach,

followed in [18; 67], is the �rst-order logic interpretation of Peer-to-Peer systems. [39]

identi�ed several drawbacks with this approach, regarding modularity, generality and

decidability, and proposed new semantics based on epistemic logic. A common problem

of both approaches is that they do not model and thus cannot handle inconsistency.

Franconi et al. in [48] extended the autoepistemic semantics to formalize local incon-

sistency. The latter approach guarantees that a locally inconsistent database base will

not render the entire knowledge base inconsistent. A broader extension, proposed by

Calvanese et al. in [38], is based on non-monotonic epistemic logic, and enables isolating

local inconsistency, while also handling peers that may provide mutually inconsistent

data. It guarantees that in case of importing knowledge that would render the local

knowledge inconsistent, the local peer knowledge base remains consistent by discarding

a minimal amount of the data retrieved from the other peers. The propositional Peer-

to-Peer Inference System proposed by Chatalic et al. in [40] extends the distributed

reasoning methods of [2] to deal with con
icts caused by mutually inconsistent infor-

mation sources, by detecting them and reasoning without them. Finally, based on the

latter study, [31] proposes algorithms for inconsistency resolution in Peer-to-Peer Query

Answering exploiting a preference relation on the peers.

The three latter approaches ([38], [40] and [31]), have some common characteristics

that meet many of the requirements of Ambient Intelligence environments discussed in

Chapter 1. Speci�cally, they support information 
ow between di�erent agents through

mapping rules, enable reasoning with incomplete local information, and handle (each

one in its own way) agents that provide mutually inconsistent information. However,

regarding their deployment in Ambient Intelligence, they have the following limitations:

• The approach of [38] assumes that all peers share a common alphabet of constants,

which is not always realistic in ambient environments.

• The approaches of [38] and [40] do not include the notion of preference between

system peers, which could be used to resolve potential con
icts caused by mutually

inconsistent information sources.

• The method followed by [31] assumes a global preference relation on the systems

peers, which is shared and used by all peers. This feature is in contrast with
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the dimension of perspective, which allows each agent to use its own preference

relation based on its own viewpoint.

• The distributed algorithms used in [40] and [31] assume that the inconsistencies

caused by the mappings of a newly joined peer must be computed at the time

the mappings are created, and not at reasoning time. This has two implications:

(a) It may produce an additional possibly unnecessary computational overhead

to a peer, considering that it may never have to use this information; (b) This

information may become stale, in the sense that some of the mappings that cause

the inconsistencies may have been de�ned by a peer which has left the system at

the time of query evaluation.

• The studies of [40] and [31] do not deal with cases of local inconsistency, which

are realistic in ambient environments.

• None of the approaches include the notion of privacy. All peers are expected

to cooperate and disclose the same type of information during distributed query

evaluation, and use the same strategy for con
ict resolution.

2.2 Argumentation Systems

Argumentation systems constitute a way to formalize non-monotonic reasoning, viz.

as the construction and comparison of arguments for and against certain conclusions.

In these systems, the basic notion is not that of a defeasible conditional but that of

a defeasible argument. The idea is that the construction of arguments is monotonic,

i.e., an argument stays an argument if more premises are added. Non-monotonicity, or

defeasibility, is not explained in terms of the interpretation of a defeasible conditional,

but in terms of the interactions between con
icting arguments: in argumentation sys-

tems non-monotonicity arises from the fact that new premises may give rise to stronger

counter-arguments, which defeat the original argument.

Argumentation systems can be applied to any form of reasoning with contradictory

information, whether the contradictions have to do with rules and exceptions or not.

For instance, the contradictions may arise from reasoning with several sources of infor-

mation, or they may be caused by disagreement about beliefs or about moral, ethical

or political claims. Moreover, it is important that several argumentation systems allow
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the construction and attack of arguments that are traditionally called ampliative, such

as inductive, analogical and abductive arguments; these reasoning forms fall outside the

scope of most other non-monotonic logics.

Most argumentation systems have been developed in arti�cial intelligence research

on non-monotonic reasoning, although Pollock's work [93], which was the �rst logi-

cal formalization of defeasible argumentation, was initially applied to the philosophy

of knowledge and justi�cation (epistemology). The �rst arti�cial intelligence paper

on argumentation systems was [99]. Argumentation systems have been applied to do-

mains such as legal reasoning, medical reasoning and negotiation. Below, we present

an abstract approach to defeasible argumentation, developed in several articles by Bon-

darenko, Dung, Toni and Kowalski. We also give a brief description of some other

interesting approaches.

2.2.1 The Abstract Approach of Bondarenko, Dung, Kowalski and
Toni

Historically, this work came after the development by others of a number of argumen-

tation systems (to be discussed below). The major innovation of the BDKT approach

is that it provides a framework and vocabulary for investigating the general features of

these other systems, and also of non-monotonic logics that are not argument-based.

The latest and most comprehensive account of the BDKT approach is Bondarenko

et al. [32]. In this account, the basic notion is that of a set of assumptions. In their

approach the premises come in two kinds: ordinary premises, comprising a theory, and

assumptions, which are formulas (of whatever form) that are designated (on whatever

ground) as having default status. Bondarenko et al. regard non-monotonic reasoning

as adding sets of assumptions to theories formulated in an underlying monotonic logic,

provided that the contrary of the assumptions cannot be shown. What in their view

makes the theory argumentation-theoretic is that this provision is formalized in terms

of sets of assumptions attacking each other. In other words, according to [32], an

argument is a set of assumptions. This approach has especially proven successful in

capturing existing non-monotonic logics.

Another version of the BDKT approach, presented by Dung [45], completely ab-

stracts from both the internal structure of an argument and the origin of the set of

arguments; all that is assumed is the existence of a set of arguments, ordered by a
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binary relation of defeat. Dung then de�nes various notions of so-called argument ex-

tensions, which are intended to capture various types of defeasible consequence. These

notions are declarative, just declaring sets of arguments as having a certain status.

Finally, Dung shows that many existing non-monotonic logics can be reformulated as

instances of the abstract framework.

2.2.2 Other Approaches

Pollock

Another interesting approach is Pollock's argumentation system [93]. In this system,

the underlying logical language is that of standard �rst-order logic, but the notion

of an argument has some non-standard features. What still conforms to accounts of

deductive logic is that arguments are sequences of propositions linked by inference rules

(or better, by instantiated inference schemes). However, Pollock's formalism begins

to deviate when we look at the kinds of inference schemes that can be used to build

arguments.

Inheritance Systems

A forerunner of argumentation systems is work on so-called inheritance systems, es-

pecially of Horty et al. [71]. Inheritance systems determine whether an object of a

certain kind has a certain property. Their language is very restricted. The network is a

directed acyclic graph. Its initial nodes represent individuals and its other nodes stand

for classes of individuals. There are two kinds of links → and 9, depending on whether

an individual does or does not belong to a certain class, or a class is or is not member

of a certain class. Links from an individual to a class express class membership, and

links between two classes express class inclusion. A path through the graph is an inher-

itance path i� its only negative link is the last one. Thus the following are examples of

inheritance paths:

P1 : Tweety → Penguin→ Canfly

P1 : Tweety → Penguin9 Canfly

Another basic notion is that of an assertion, which is of the form x → y or x 9 y

where x is an individual and y is a class. Such an assertion is enabled by an inheritance

path if the path starts with x and ends with the same link to y as the assertion. Above,

27



2. BACKGROUND

an assertion enabled by P1 is Tweety → Canfly, and an assertion enabled by P2 is

Tweety 9 Canfly. Two paths can be con
icting. They are compared on speci�ty,

which is read o� from the syntactic structure of the net, resulting in relations of neu-

tralization and preemption between paths. Although Horty et al. present their system

as a special-purpose formalism, it clearly has all the elements of an argumentation sys-

tem. An inheritance path corresponds to an argument, and an assertion enabled by

a path to a conclusion of an argument. Their notion of con
icting paths corresponds

to rebutting attack. Furthermore, neutralization and preemption correspond to defeat,

while a permitted path is the same as a justi�ed argument.

Lin & Shoham

Before the BDKT approach, an earlier attempt to provide a unifying framework for

non-monotonic logics was made by Lin & Shoham [80]. They show how any logic,

whether monotonic or not, can be reformulated as a system for constructing arguments.

However, in contrast with the other theories in this section, they are not concerned with

comparing incompatible arguments, and so their framework cannot be used as a theory

of defeat among arguments. The basic elements of Lin & Shoham's abstract framework

are an unspeci�ed logical language, only assumed to contain a negation symbol, and an

also unspeci�ed set of inference rules de�ned over the assumed language. Arguments

can be constructed by chaining inference rules into trees. Inference rules are either

monotonic or non-monotonic.

Vreeswijk

Like the BDKT approach and Lin & Shoham [80], Vreeswijk [116; 116] also aims to

provide an abstract framework for defeasible argumentation. His framework builds on

the one of Lin & Shoham, but contains the main elements that are missing in their

system; namely, notions of con
ict and defeat between arguments. As Lin & Shoham,

Vreeswijk also assumes an unspeci�ed logical language L, only assumed to contain the

symbol ⊥, denoting falsum or contradiction, and an unspeci�ed set of monotonic and

nonmonotonic inference rules (which Vreeswijk calls strict and defeasible). This also

makes his system an abstract framework rather than a particular system.
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Prakken & Sartor

Inspired by legal reasoning, Prakken Sartor [95; 96] have developed an argumentation

system that combines the language (but not the rest) of default logic with the grounded

semantics of the BDKT approach. Actually, Prakken & Sartor originally used the

language of extended logic programming, but Prakken [94] generalized the system to

default logic's language. The main contributions to defeasible argumentation are a

study of the relation between rebutting and assumption attack, and a formalization of

argumentation about the criteria for defeat.

Governatori et al.

In [61], Governatori et al. provide argumentation semantics for two defeasible logics:

ambiguity blocking and ambiguity propagating Defeasible Logic [10]. In both cases

they disregard the rule superiority relation without, however, a�ecting the generality of

their approach, as it has been proved that this relation can be simulated by the other

ingredients of the logic [8]. Speci�cally, they show that Dung's grounded semantics

characterizes the ambiguity propagating Defeasible Logic, while to give a semantic char-

acterization of the original (ambiguity blocking) Defeasible Logic they modify Dung's

notion of acceptability. In this framework, they de�ne arguments as (possible in�nite)

proof trees, and classify them into two categories: strict and defeasible arguments. They

de�ne the notions of attack and undercut for defeasible arguments only. Speci�cally, a

defeasible argument is attacked by arguments with con
icting conclusion, and undercut

when a proper subargument is attacked by a justi�ed argument. They also de�ne the

notions of acceptable, justi�ed and rejected arguments for the two logics, taking into ac-

count the attacks against them. The argumentation framework for ambiguity blocking

Defeasible Logic of [61] can be considered as a special case of the argumentation theo-

retic semantics of the ambiguity blocking DL with superiority relation provided in [60].

A distinct characteristic of the latter approach is that in order to handle team defeat,

which refers to the full Defeasible Logic with priorities [10], they de�ne arguments as

sets of proof trees, instead of single proof trees.
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2.2.3 Preference-based Argumentation Systems

A central notion in argument-based reasoning is that of acceptability of arguments.

In general, to determine whether an argument is acceptable, it must be compared to

its counter-arguments; namely, those arguments that support opposite or con
icting

conclusions. In preference-based argumentation systems, this comparison is enabled by

a preference relation, which is either implicitly derived from elements of the underlying

theory, or is explicitly de�ned on the set of arguments.

In the works of Simari and Loui [105], and Stolzenburg et al. [108], the preference

relation takes into account the internal structure of arguments. Overall, arguments are

compared in terms of speci�ty. Intuitively, the notion of speci�ty favors two aspects

in an argument; it prefers an argument with greater information content or less use of

defeasible information. In other words, an argument will be deemed better than an-

other if it is more precise or concise. The object language used in [105] is a �rst-order

language, which uses facts and defeasible rules, while in the case of [108], the underlying

language is Defeasible Logic Programming [51], which uses both strict and defeasible

rules. An extension of [105], which explicitly supports distributed entities in the argu-

mentation process, and an argumentation-based Multi-Agent Systems architecture have

been recently proposed by Thimm et al. in [109; 111]. In this framework, all agents

share common strict knowledge, which is encoded in strict rules, while each of them also

possesses subjective beliefs encoded in local defeasible theories. Each agent generates

its own arguments on the basis of the global knowledge and the local belief bases and

reacts on arguments of other agents with counterarguments. In [110], they extend this

framework to support collaborations between agents, which enables combining the belief

bases of di�erent agents and producing more and better arguments. The distributed

nature of these frameworks is, however, compromised by two assumptions that they

make; namely, the existence of a meta-agent representing and acting on behalf of col-

laborative agents, and the disjointness of collaborations - one agent cannot participate

in more than one collaborations.

The approaches followed by Prakken and Sartor [96], Governatori et al. [60], and

Kakas and Moraitis [73] share the common feature that preferences among arguments

are derived from a priority relation on the rules in the underlying theory. Speci�cally,

in [96], the underlying language is that of Extended Logic Programming, which includes
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strict rules and defeasible rules, while preference information is provided in the form

of an ordering on the defeasible rules. They study two di�erent cases with respect to

the nature of this ordering. In the �rst one, the ordering is �xed and indisputable

(strict priorities), while in the second case priorities are themselves defeasibly derived

as conclusions within the system. To support defeasible priorities, they allow stating

rules and constructing arguments about priorities. The argumentation framework of

Governatori and Maher [60] uses the language of Defeasible Logic. In this framework,

the rule priority relation of Defeasible Logic is used to determine whether an argument

is defeated by a counter-argument. Similarly with [96], the framework proposed by

Kakas and Moraitis [73] also includes the notion of dynamic priorities. Speci�cally,

the underlying monotonic logic includes a special type of rules that are used to give

priority between competing rules in case of con
ict. Based on these rules, they build

arguments on priorities, and reason with them to give preference to speci�c arguments

in the system. Another interesting feature of this work is the integration of abduction

to handle cases of incomplete information.

An alternative approach, which is followed by Bench-Capon [14], and by Kaci and

Torre [72], relates arguments to the values they promote. In the so called Value Based

Argumentation Frameworks, the preference ordering of the arguments is derived from

a preference ordering over their related values. In [14], each argument promotes only

a single value, and an argument is preferred to another one if and only if the value

promoted by the former argument is preferred to the value promoted by the latter one.

Kaci and Torre [72] provide a generalization of this approach, in which arguments can

promote multiple values and the comparison is conducted between sets of arguments.

The abstract preference-based argumentation frameworks proposed by Amgoud and

her colleagues [4; 5; 6] assume that preferences among arguments are induced by a

preference relation de�ned on the supports of the arguments, which is a partial pre-

ordering. The preference relation on the supports is itself induced by a priority relation

de�ned on the underlying belief base. In [7], Amgoud et al. introduce the notion of

contextual preferences in the form of several pre-orderings on the belief base, to take

into account preferences that depend upon a particular context. Con
icts between

preferences may appear when these preferences are expressed in di�erent contexts; e.g.

an argument A may be preferred to another argument B in a context C1 and the
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argument B may be preferred to A in a context C2. To resolve this kind of con
icts,

they use meta-preferences, in the form of total preordering on the set of contexts.

The abstract argumentation framework of Modgil [86] integrates meta-level argu-

mentation about preferences in Dung's argumentation theory. The extended framework

retains the basic conceptual machinery of Dung's theory, and extends the notion of

defeat to account for arguments that claim preferences between arguments.

Finally, building on previous works on inconsistency handling in P2P Query An-

swering Systems [2; 31; 40], Binas and McIlraith propose an argumentation framework

that integrates preference information about the system peers [30]. They assume that

each peer has its own knowledge base encoded in propositional logic, and use a prefer-

ence ordering on the system peers to resolve potential con
icts that may arise between

arguments derived from di�erent peers.

The argumentation framework described in the following chapter is an extension

of the framework of Governatori et al. [61]. Both frameworks use the language of

Defeasible Logic without superiority relation as their underlying language. To take

account for the distribution of context information, and a preference ordering on the

system contexts, our framework additionally uses the notions of local and mapping

arguments, argumentation lines, and rank of arguments. In the proposed framework,

preferences are derived both from the structure of arguments - arguments that use

strict rules are considered stronger than those that use defeasible rules - and from

the preference ordering - arguments that use information from more preferred contexts

are stronger than those that use information from less preferred contexts. Among the

remaining works that we discuss in this section, our approach shares common ideas

with the argumentation framework with contextual preferences of Amgoud et al. [7],

in the sense that both frameworks allow di�erent contexts to de�ne di�erent preference

orderings. The main di�erences are that in our case, these orderings are applied to the

contexts themselves rather than directly to a set of arguments, and that each context

uses a di�erent knowledge base; and therefore a di�erent set of arguments. Compared

to the P2P Argumentation System of Binas and McIlraith [30], our framework di�ers in

two primary ways: (a) it can additionally handle local inconsistencies using defeasible

arguments; (b) it assumes that each context uses its own preference ordering, opposed

to the global preference relation used in [30].
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Chapter 3

Contextual Argumentation

This chapter describes a non-monotonic extension of Multi-Context Systems that inte-

grates defeasible mapping rules and preference information to model imperfect context

information. The second section provides a semantic characterization of the model using

arguments. Speci�cally, it provides the necessary de�nitions, explains how the proposed

argumentation system is used to derive the logical consequences of a Multi-Context Sys-

tem through examples, and studies its formal properties.

3.1 Rule-based Representation Model

We model a Multi-Context System C as a collection of distributed context defeasible

theories Ci: A context (context defeasible theory) is de�ned as a tuple of the form

(Vi; Ri; Ti), where Vi is the vocabulary used by Ci, Ri is a �nite set of rules, and Ti is

a preference relation on C.

Vi is a �nite set of positive and negative literals. If qi is a literal in Vi, ∼ qi denotes

the complementary literal, which belongs also to Vi. If qi is a positive literal p then

∼ qi is ¬qi; and if qi is ¬p, then ∼ qi is p. We assume that each context uses a distinct

vocabulary.

Ri consists of two sets of rules: the set of local rules and the set of mapping rules.

The body of a local rule is a conjunction of local literals (literals that are contained in

Vi), while its head contains a single local literal. There are two types of local rules:

• Strict rules, of the form

rli : a1
i ; a

2
i ; :::a

n−1
i → ani
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They express sound local knowledge and are interpreted in the classical sense:

whenever the literals in the body of the rule (a1
i ; a2

i ; :::a
n−1
i ) are strict consequences

of the local theory, then so is the conclusion of the rule (ani ). Strict rules with

empty body denote factual knowledge.

• Defeasible rules, of the form

rdi : b1i ; b
2
i ; :::b

n−1
i ⇒ bni

They are used to express uncertainty, in the sense that a defeasible rule (rdi ) cannot

be applied to support its conclusion (bni ) if there is adequate contrary evidence.

Mapping rules associate literals from the local vocabulary Vi (local literals) with

literals from the vocabularies of other contexts (foreign literals). The body of each such

rule is a conjunction of local and foreign literals, while its head contains a single local

literal. A mapping rule is modeled as a defeasible rule of the form

rmi : a1
i ; a

2
j ; :::a

n−1
k ⇒ ani

rmi associates local literals of Ci (e.g. a1
i ) with local literals of Cj (a2

j ), Ck (an−1
k ) and

possibly other contexts. ani is a local literal of the theory that has de�ned rmi (Ci).

Finally, each context Ci de�nes a total preference ordering Ti on C to express its

con�dence on the knowledge it imports from other contexts. This is of the form:

Ti = [Ck; Cl; :::; Cn]

According to Ti, Ck is preferred by Ci to Cl if Ck precedes Cl in Ti. The total preference

order enables resolving all potential con
icts that may arise from the interaction of

contexts through their mapping rules. An alternative choice, which is closer to the

needs of Ambient Intelligence applications, is partial ordering. However, this would add

complexity to the reasoning tasks, and would enable resolving certain con
icts only.

We should note here that we have deliberately chosen to use the simplest version

of Defeasible Logic, and disregard facts, defeaters and the superiority relation between

rules, which are used in fuller versions of Defeasible Logic [8], to keep the discussion

and technicalities simple. Besides, the results of [8] have shown that these elements can

be simulated by the other ingredients of the logic.
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Example 1. The representation model described above is applied as follows to the

motivating scenario described in Section 1.3.1 of Chapter 1. The local knowledge of the

mobile phone (denoted as C1) is encoded in the following strict local rules:

rl11 :→ incoming call1

rl12 :→ normal mode1

Two defeasible rules encode Dr. Amber's preferences:

rd13 : incoming call1;¬lecture1 ⇒ ring1

rd14 : silent mode1 ⇒ ¬ring1

Mapping rules rm15 and rm16 encode the associations of the local knowledge of the

mobile phone with the context knowledge of Dr. Amber's laptop (C2), the localization

service (C3), and the classroom manager (C4).

rm15 : classtime2; location RA2013 ⇒ lecture1

rm16 : ¬class activity4 ⇒ ¬lecture1

The local context knowledge of the laptop, the localization service, and the classroom

manager is encoded in rules rl21, rl31 and rl41 respectively. The classroom manager infers

whether there is active class activity, based on the state of the projector that is installed

in the classroom, and the number of people detected in the classroom by a person

detection service (C5). To import this information from C5, C4 uses rule rm42. Rule rl51

encodes the local knowledge of the person detection service.

rl21 :→ classtime2

rl31 :→ location RA2013

rl41 :→ projector(off)4

rm42 : projector(off)4; detected(1)5 ⇒ ¬class activity4

rl51 :→ detected(1)5

The mobile phone is con�gured to give highest priority to information imported by

the classroom manager and lowest priority to the information imported by the person

detection service. This is described in the preference order T1 = [C4; C3; C2; C5]. ¤
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3.2 Argumentation Semantics

The argumentation framework described in this section extends the argumentation se-

mantics of Defeasible Logic presented in [61] (which in turn is based on Dung's argumen-

tation framework [44; 45]) with the notions of distribution of the available information,

and preference among system contexts.

3.2.1 De�nitions

The framework uses arguments of local range, in the sense that each one contains rules

of a single context only. Arguments of di�erent contexts are interrelated in the Support

Relation (De�nition 1) through mapping rules. The Support Relation contains triples

that represent proof trees for literals in the system. Each proof tree is made of rules of

the context that the literal in its root is de�ned by. In case a proof tree contains mapping

rules, for the respective triple to be contained in the Support Relation, similar triples

for the foreign literals in the proof tree must have already been obtained. We should

also note that, for sake of simplicity, we assume that there are no loops in the local

context theories, and thus proof trees are �nite. However the global knowledge base

may contain loops caused by mapping rules, which associate di�erent context theories.

De�nition 1 Let C = {Ci} be a (Defeasible) MCS. The Support Relation of C (SRC)
is the set of all triples of the form (Ci; PTpi ; pi), where Ci ∈ C, pi ∈ Vi, and PTpi is the
proof tree for pi based on the set of local and mapping rules of Ci. PTpi is a tree with
nodes labeled by literals such that the root is labeled by pi, and for every node with label
q:

1. If q ∈ Vi and a1; :::; an label the children of q then

• If ∀ai ∈ {a1; :::; an}: ai ∈ Vi then there is a local rule ri ∈ Ci with body
a1; :::; an and head q

• If ∃aj ∈ {a1; :::; an} such that aj =∈ Vi then there is a mapping rule ri ∈ Ci
with body a1; :::; an and head q

2. If q ∈ Vj 6= Vi, then this is a leaf node of the tree and there is a triple of the form
(Cj ; PTq; q) in SRC

3. The arcs in a proof tree are labeled by the rules used to obtain them.
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Arguments are de�ned as triples in the Support Relation.

De�nition 2 An argument A for a literal pi is a triple (Ci; PTpi ; pi) in SRC .

Any literal labeling a node of PTpi is called a conclusion of A. However, when we

refer to the conclusion of A, we refer to the literal labeling the root of PTpi (pi). We

write r ∈ A to denote that rule r is used in the proof tree of A.

The de�nition of subarguments (De�nition 3) is based on the notion of subtrees.

De�nition 3 A (proper) subargument of A is every argument with a proof tree that is
(proper) subtree of the proof tree of A.

Based on the origin of the literals contained in their proof tree, arguments are

classi�ed to local arguments (De�nition 4) and mapping arguments (De�nition 5). Based

on the type of rules that they use, local arguments are classi�ed to strict local arguments

and defeasible local arguments.

De�nition 4 A local argument of context Ci for a literal in Vi is an argument with a
proof tree that contains only local literals of Ci. If a local argument A contains only
strict rules, then A is a strict local argument; otherwise it is a defeasible local argument.

De�nition 5 A mapping argument of context Ci for a literal in Vi is an argument with
a proof tree that contains at least one foreign literal of Ci.

De�nition 6 ArgsCi is the set of all arguments of context Ci. ArgsC is the set of all
arguments in C = {Ci}: ArgsC =

⋃
iArgsCi

Example 2. Consider the following context theory C1:

rl11 : a1 → x1

rm12 : a2 ⇒ a1

rm13 : a3; a4 ⇒ ¬a1

rd14 : b1 ⇒ x1

rd15 :⇒ b1
rl16 : d1 → ¬b1
rl17 :→ d1

a1, x1, b1 and d1 are local literals of Ci (they belong to Vi), while a2, a3 and a4 are

local literals of C2, C3 and C4 respectively, which belong to the same Multi-Context

37



3. CONTEXTUAL ARGUMENTATION

 

x1 

a1 

a2 

A1 

x1 

b1 

A3 

¬b1 

d1 

A4 

¬a1 

 

a3 

A2 

a4 

Figure 3.1: Arguments contained in ArgsCi (example 2)

System C. Assuming that for a2, a3 and a4 there are triples of the form (Ci; PTai ; ai)

in SRC , ArgsC1 contains the arguments depicted in Figure 3.1.

The subarguments of A1, A3 and A4 with conclusions a1, b1 and d1 respectively are

also arguments in ArgsC1 . A3 and A4 are local arguments, since they contain only local

literals of C1. A3 is a defeasible local argument, since it contains two defeasible rules

(rd14 and rd15), while A4 is a strict local argument since both rules that it contains (rl16

and rl17) are strict. On the other hand, A1 and A2 are mapping arguments of C1 since

they both contain foreign literals of C1. ¤

The derivation of local logical consequences of a context Ci is based on its strict

local arguments. Actually, the conclusions of all strict local arguments in ArgsCi are

actually logical consequences of Ci. The derivation of distributed logical consequences

in C is based both on local and mapping arguments. In this case, we should also

consider con
icts between competing rules (rules with complementary head literals),

which are modeled in the framework as attacks between the arguments that contains

the competing rules, and the preference orderings on the system contexts, which are

used in our framework to rank mapping arguments.

The rank of a mapping argument (De�nition 8) depends on the ranks of the literals

contained in the argument (De�nition 7).

De�nition 7 The rank of a literal p in context Ci (R(p; Ci)) equals 0 if p ∈ Vi. If
p ∈ Vj 6= Vi, then R(p; Ci) equals the rank of Cj in Ti (the preference order of Ci).
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3.2 Argumentation Semantics

De�nition 8 The rank of an argument A = (Cj ; PTpj ; pj) in Ci (R(A;Ci)) equals the
maximum between the ranks in Ci of the literals contained in PTpj .

It is obvious that for any three arguments A1, A2, A3: If R(A1; Ci) ≤ R(A2; Ci) and

R(A2; Ci) ≤ R(A3; Ci), then R(A1; Ci) ≤ R(A3; Ci); namely the preference relation <

on ArgsC is transitive. From the de�nitions above, it also becomes obvious that the

ranks of local arguments equal 0, while the ranks of mapping arguments are greater

than 0.

The de�nitions of attack and defeat that follow apply only for defeasible local and

mapping arguments.

De�nition 9 An argument A attacks a defeasible local or mapping argument B at pi,
if pi is a conclusion of B, ∼ pi is a conclusion of A, and the subargument of B with
conclusion pi is not a strict local argument.

De�nition 10 An argument A defeats a defeasible local or mapping argument B at pi,
if A attacks B at pi, and for the subargument of A, A′, with conclusion ∼ pi, and the
subargument of B, B′, with conclusion pi, it holds that the rank of B′ in Ci is not lower
than the rank of A′ in Ci: R(A′; Ci) ≤ R(B′; Ci).

Example 2 (continued). Assuming that the preference ordering of C1 is T1 =

[C4; C2; C3], A1 attacks and defeats A2 at ¬a1, as R(A′1; C1) = R(a2; C1) = 2 (where

A′1 is the subargument of A1 with conclusion a1), while R(A2; C1) = R(a3; C1) = 3.

A2 attacks but does not defeat A1 at a1. For A3 and A4, it holds that A4 attacks and

defeats A3 at b1, since both are local arguments, and thus their ranks (and the ranks of

their subarguments) equal 0. On the other hand, A3 does not attack (and hence does

not defeat) A4, since A4 is a strict local argument. ¤

To link arguments through the mapping rules that they contain, we introduce in

our framework the notion of argumentation line.

De�nition 11 An argumentation line AL for a literal pi is a sequence of arguments in
ArgsC , constructed in steps as follows:

• In the �rst step add in AL one argument for pi
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• In each next step, for each distinct literal qj labeling a leaf node of the proof trees
of the arguments added in the previous step, add one argument with conclusion qj.
The addition should obey the following restriction.

• An argument B for a literal qj can be added in AL only if there is no argument
D 6= B for qj already in AL.

The argument for pi added in the �rst step is called the head argument of AL, and

its conclusion pi is also the conclusion of AL. If the number of steps required to build an

AL is �nite, then AL is a �nite argumentation line. In�nite argumentation lines imply

loops in the global knowledge base. Arguments contained in in�nite lines participate

in attacks against counter-arguments but may not be used to support the conclusion of

their argumentation lines.

The notion of supported argument (De�nition 12) is meant to indicate when an

argument has an active role in proving or preventing the derivation of a conclusion.

De�nition 12 An argument A is supported by a set of arguments S if:

• every proper subargument of A is in S and

• there is a �nite argumentation line AL with head A, such that every argument in
AL − {A} is in S

That an argument A is undercut by a set of arguments S (De�nition 13) means that

we can show that some premises of A cannot be proved if we accept the arguments in

S.

De�nition 13 A defeasible local or mapping argument A is undercut by a set of argu-
ments S if for every argumentation line AL with head A: there is an argument B, such
that B is supported by S, and B defeats a proper subargument of A or an argument in
AL − {A}.

Example 3. Consider the Multi-Context System C depicted in Figure 3.2. The ar-

guments in Figure 3.3 and their subarguments constitute the set of arguments ArgsC .

Speci�cally, ArgsC1 = {A1; B1}, ArgsC2 = {A2; B2}, ArgsC3 = {B3}, ArgsC4 = {B4},
ArgsC5 = {A5}, and ArgsC6 = {A6; B6}. A1, A2 and A5 can be used to form an

argumentation line for x1 (AL1). B1, B3 and B4 are used for the construction of an

argumentation line for ¬a1 (BL1), while B2 and B6 are the arguments contained in
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C1 C2 C3

rl11 : a1 → x1 rm21 : a5 ⇒ a2 rl31 :→ a3

rm12 : a2 ⇒ a1 rm22 : a6 ⇒ ¬a2

rm13 : a3; a4 ⇒ ¬a1

C4 C5 C6

rl41 :→ a4 rl51 :→ a5 rd61 :⇒ a6

rl62 :→ ¬a6

Figure 3.2: A MCS of Six Context Theories (example 3)

the argumentation line for ¬a2 (BL2). Assuming that S = {A5; A6}, the following

statements hold:

• A2 is supported by S since there is an argumentation line AL2 with head A2 (AL2

is the line obtained by removing A1 from AL1), A2 has no proper subarguments,

and A5, which is the only argument contained in AL2 − {A2} is in S.

• B2 is undercut by S since it is a mapping argument, and A6, which is in S defeats

B6, which is contained in the only argumentation line with head B2 (BL2).

Assuming that S = {A5; A6; B3; B4; A2}, T1 = [C3; C2; C4; C5; C6] and

T2 = [C6; C5; C1; C3; C4] the following statements hold:

• B1 and A′1 (the subargument of A1 with conclusion a1) are supported by S.

• A′1 is not undercut by S, since it has no proper subarguments and none of the

arguments in AL1 is defeated by an argument supported by S (B1 attacks but

does not defeat A1 R(A1; C1) = 2 < R(B1; C1) = 3, while B2 defeats A2, since

R(B2; C2) = 1 < R(A2; C2) = 2, but B2 is not supported by S). ¤

The de�nition of acceptable arguments that follows is based on the de�nitions given

above. Intuitively, that an argument A is acceptable w.r.t. a set of arguments S means

that if we accept the arguments in S as valid arguments, then we feel compelled to

accept A as valid.
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Figure 3.3: Arguments contained in ArgsC (example 3)

De�nition 14 An argument A is acceptable w.r.t a set of arguments S if:

1. A is a strict local argument; or

2. (a) A is supported by S and

(b) every argument in ArgsC defeating A is undercut by S

Based on the concept of acceptable arguments, we proceed to de�ne justi�ed argu-

ments and justi�ed literals.

De�nition 15 Let C be a MCS. JCi is de�ned as follows:

• JC0 = ∅;

• JCi+1 = {A ∈ ArgsC | A is acceptable w.r.t. JCi }

The set of justi�ed arguments in a MCS C is JArgsC =
⋃∞
i=1 J

C
i . A literal pi is

justi�ed in C if it is the conclusion of an argument in JArgsC . That an argument A is

justi�ed means that it resists every reasonable refutation. That a literal pi is justi�ed,

it actually means that it is a logical consequence of C.
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3.2 Argumentation Semantics

Finally, we also introduce the notion of rejected arguments and rejected literals for

the characterization of conclusions that do not derive from C. That an argument is

rejected by sets of arguments S and T means that either it is supported by arguments

in S, which can be thought of as the set of already rejected arguments, or it cannot

overcome an attack from an argument supported by T , which can be thought of as the

set of justi�ed arguments.

De�nition 16 An argument A is rejected by sets of arguments S, T when:

1. A is not a strict local argument, and either

2. (a) a proper subargument of A is in S; or

(b) A is defeated by an argument supported by T ; or

(c) for every argumentation line AL with head A there exists an argument A′ ∈
AL−A, such that either a subargument of A′ is in S; or A′ is defeated by an
argument supported by T

Based on the de�nition of rejected arguments, RCi is de�ned as follows:

De�nition 17 Let C be a MCS, and JArgsC the set of justi�ed arguments in C. JCi
is de�ned as follows:

• RC0 = ∅;

• RCi+1 = {A ∈ ArgsC | A is rejected by RCi , JArgsC}

The set of rejected arguments in a MCS C is RArgsC =
⋃∞
i=1R

C
i . A literal pi is

rejected in C if there is no argument in ArgsC − RArgsC with conclusion pi. That a

literal is rejected means that we are able to prove that it is not a logical consequence

of the system theories.

Example 3 (continued). Based on the de�nitions given above, we can calculate the

following for the arguments depicted in Figure 3.3.

JC0 = {};
JC1 = {B3; B4; A5; A6};
JC2 = {B3; B4; A5; A6; A2};
JC3 = {B3; B4; A5; A6; A2; A′1};
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Figure 3.4: Arguments in the Ambient Intelligence Scenario (example 1)

JC4 = {B3; B4; A5; A6; A2; A′1; A1} = JArgsC

RC0 (JArgsC) = {};
RC1 (JArgsC) = {B6; B2; B1} = RArgsC(JArgsC)

Based on the above, a1, x1, a2, a3, a4, a5 and ¬a6 are justi�ed literals, while ¬a1,

¬a2 and a6 are rejected literals. ¤

Example 1 (continued). The arguments that are derived from the MCS C of Example

1 are the arguments depicted in Figure 3.4 and their subarguments.

A1, B1 and D1 are in ArgsC1 ; the �rst two of them are mapping arguments, while

D1 is a strict local argument. B2, B3 and A5 are strict local arguments of C2, C3 and

C5, respectively, while A4 is a mapping argument of C4.

JC0 contains no arguments, while JC1 contains the strict local arguments of the sys-

tem; namely A′1, D1, B2, B3, A′4 and A5, where A′1 is the subargument of A1 with conclu-

sion incoming call1, and A′4 is the subargument of A4 with conclusion projector(off)4.
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JC2 additionally contains A4, since A4 and A5 form an argumentation line (AL4)

with head A4, both A5 and A′4 (the only proper subargument of A4) are in JC1 , and

there is no argument that attacks A4.

JC3 additionally containsA′′1, which is the subargument ofA1 with conclusion ¬lecture1,

since A5, A4 and A′′1 form an argumentation line with head A′′1, A4 and A5 are both

in JC2 , and the only argument attacking A′′1, B1, does not defeat A′′1 as R(A′′1; C1) = 1,

while R(B1; C1) = 3 (according to T1 = [C4; C3; C2; C5]).

Finally, JC4 additionally contains A1, as all proper subarguments of A1 (A′1 and A′′1)

are in JC3 , there is an argumentation line with head A1, which consists of arguments

A1, A4 and A5, and both A4 and A5 are in JC3 , while the only attacking argument, B1,

does not defeat A1.

JC4 actually constitutes the set of justi�ed arguments in C (JArgsC = JC4 ), as there

is no other argument that can be added in the next steps of JCi . Hence, all the literals

de�ned in the system except lecture1 and silent mode1 are justi�ed.

On the other hand, RC0 (JArgsC) contains no arguments, while RC1 (JArgsC), which

equals RArgsC(JArgsC) contains only one argument, B1. Hence, lecture1 is a rejected

literal, since the only argument with conclusion lecture1 (B1) is in RArgsC(JArgsC).

silent mode1 is also a rejected literal, since there is no argument is ArgsC with this

conclusion. ¤

Example 4 - In�nite Argumentation Lines. As we already stated in this Chapter,

in�nite argumentation lines cannot be used for the justi�cation of a conclusion. How-

ever, unlike other approaches, we do not consider them as a fallacy of the system, as

they can participate in attacks against counter-arguments. An in�nite argumentation

line is created when the conclusion of its head argument is also a conclusion of another

argument in this line.

Consider a MCS of four contexts, which use the arguments depicted in Figure 3.5.

C1 uses A1 and B1, C2 uses A2, C3 uses A3, and C4 uses B4. A1, B1, A2 and A3 are

mapping arguments, while B4 is a local argument of C4.

In this system, A1 is the head argument of an in�nite argumentation line AL1 =

{A1; A2; A3; A1; A2; :::}. On the other hand, B1 is the head argument of the �nite

argumentation line BL1={B1; B4}. Assuming that the preference ordering of C1 is

T1 = [C2; C3; C4], a1 is not justi�ed, as A1 is the only argument with conclusion a1, and
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Figure 3.5: In�nite Argumentation Lines (example 4)

there is no �nite argumentation line with head A1. a1 is not rejected, as B1, which is the

only argument that attacks A1, has higher rank than A1, and therefore does not defeat

A1. On the other hand, ¬a1 is not justi�ed, because A1 defeats B1 and is not undercut

by JArgsC , which contains only one argument, B4. ¬a1 is not also rejected because

although A1 defeats B1, it is only supported by AL1, which is an in�nite argumentation

line, and therefore it cannot be supported by JArgsC .

Assuming that T1 = [C4; C2; C3], B1 defeats A1, and therefore using BL1 we can

prove that B1 is in JArgsC , and hence ¬a1 is justi�ed. On the other hand, a1 is rejected

in C, since B1 is supported by JArgsC and defeats A1. ¤

Example 5 - Self-Defeating Argumentation Lines. In this example we show how

our framework deals with the so-called self-defeating argumentation lines. Consider a

MCS of four contexts, which use the arguments depicted in Figure 3.6. C1 uses A1

and B1, C2 uses B2, C3 uses B3, and C4 uses A4. A1, B1, B2 and B3 are mapping

arguments, while A4 is a strict local argument of C4.

In this system, A1 is the head argument of argumentation line AL1={A1; A4}, while

B1 is the head argument of argumentation line BL1 = {B1; B3; B2; A1; A4}. Assuming

that the preference ordering of C1 is T1 = [C2; C3; C4], a1 is neither accepted nor

rejected. It is not justi�ed, since A1 is defeated by B1 (B1 has lower rank than A1),

and although BL1 is undercut at argument A1 by B1, B1 is not supported by JArgsC ,

which contains only A4, and therefore BL1 is not undercut by JArgsC . a1 is not rejected

since, although B1 defeats A1, it is not supported by JArgsC . On the other hand, ¬a1

is also neither justi�ed nor rejected. It is not justi�ed, because A1, which is one of the

arguments in BL1, is defeated by B1, and B1 is not undercut by JArgsC , since none of
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Figure 3.6: Self-Defeating Argumentation Lines (example 5)

the arguments in BL1 is defeated by an argument that is supported by JArgsC . ¬a1 is

not rejected because none of the arguments in BL1 is defeated by an argument that is

supported by JArgsC .

Assuming that T1 = [C4; C2; C3], A1 is not defeated by B1, and is supported by

JArgsC (since A4 is in JArgsC); hence A1 is in JArgsC , and its conclusion, a1 is a

justi�ed conclusion. On the other hand, since B1 is defeated by A1, which is supported

by JArgsC , B1 is rejected by JArgsC , and ¬a1 is rejected. ¤

3.2.2 Properties of the Framework

Lemmata 1-3 (presented below) describe some formal properties of the framework. Their

proofs are presented in Appendix A. Lemma 1 refers to the monotonicity in JCi and

RCi (T ).

Lemma 1 The sequences of sets of arguments JCi and RCi (T ) are monotonically in-
creasing.

Lemma 2 represents the fact that no argument is both \believed" and \disbelieved".

Lemma 2 In a defeasible Multi-Context System C:

• No argument is both justi�ed and rejected.

• No literal is both justi�ed and rejected.

If consistency is assumed in the local strict rules of a context theory (two complemen-

tary conclusions may not derive as strict local consequences of a context theory), then
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using the previous Lemma, it is easy to prove that the entire framework is consistent;

this is described in the following Lemma.

Lemma 3 If the set of justi�ed arguments in C, JArgsC , contains two arguments with
con
icting conclusions, then both arguments are strict local arguments.
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Chapter 4

Distributed Query Evaluation

The previous chapter presented a semantic characterization of our approach for defea-

sible reasoning in Multi-Context Systems using arguments. This chapter provides an

operational model in the form of a distributed algorithm for query evaluation. The �rst

section describes the algorithm in detail and explains how it works through examples,

while the second one studies its formal properties regarding its termination, soundness

and completeness with respect to the argumentation framework, communication and

computational load. The last section describes a standard procedure that uni�es the

distributed context theories in a single theory of Defeasible Logic, which produces the

same results with the query evaluation algorithm, under the proof theory of [8].

4.1 Algorithm Description

P2P DR is a distributed algorithm for query evaluation in Multi-Context Systems

following the model described in Section 3.1. The speci�c reasoning problem that it

deals with is: Given a MCS C, and a query about literal pi issued to context Ci, compute

the truth value of pi. For an arbitrary literal pi, P2P DR returns one of the following

values:

• true; indicating that pi is justi�ed in C

• false; indicating that pi is rejected in C

• unde�ned ; indicating pi is neither justi�ed nor rejected in C
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P2P DR proceeds in four main steps. In the �rst step (lines 1-8 in the pseudocode

given below), P2P DR determines whether pi, or its negation ∼ pi are consequences

of the local strict rules of Ci, using local alg, a local reasoning algorithm, which is

described later in this section. If local alg computes true as an answer for pi or ∼ pi,

P2P DR returns true/false respectively as an answer for pi and terminates.

In the second step (lines 9-12), P2P DR calls Support (described later in this sec-

tion) to determine whether there are applicable and unblocked rules with head pi. We

call applicable those rules that for all literals in their body P2P DR has computed true

as their truth value, while unblocked are the rules that for all literals in their body

P2P DR has computed either true or unde�ned as their truth value. Support also

returns two data structures for pi: (a) the set of foreign literals used in the most pre-

ferred (according to Ti) chain of applicable rules for pi (SSpi); and (b) the set of foreign

literals used in the most preferred chain of unblocked rules for pi (BSpi). If there is no

unblocked rule for pi, the algorithm returns false as an answer and terminates.

In the third step (lines 13-14), P2P DR calls Support to compute the respective

constructs for ∼ pi (SS∼pi , BS∼pi).

In the last step (lines 15-24), P2P DR uses the constructs computed in the previous

steps and the preference order de�ned by Ci (Ti), to determine the truth value of pi.

In case there is no unblocked rule for ∼ pi (unbpi = false), or SSpi is computed by

Stronger (described later in this section) to be stronger than BS∼pi , P2P DR returns

true as an answer for pi. That SSpi is stronger than BS∼pi means that the chains of

applicable rules for pi involve information from contexts that are preferred by Ci to the

contexts that are involved in the chain of unblocked rules for ∼ pi. In case there is

at least one applicable rule for ∼ pi, and BSpi is not stronger than SS∼pi , P2P DR

returns false as an answer for pi. In any other case, the algorithm returns unde�ned.

The context that is called to evaluate the query for pi (Ci) returns through Anspi
the truth value of the literal it is queried about. SSpi and BSpi are returned to the

querying context (C0) only if the two contexts (the querying and the queried one) are

actually the same context. Otherwise, the empty set is assigned to both SSpi and BSpi
and returned to C0. In this way, the size of the messages exchanged between di�erent

contexts is kept small. Histpi is a structure used by Support to detect loops in the

global knowledge base. The input parameters of P2P DR are:
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• pi: the queried literal

• C0: the context that issues the query

• Ci: the context that de�nes pi

• Histpi : the list of pending queries ([p1; :::; pi])

• Ti: the preference ordering of Ci

The output parameters of the algorithm are:

• SSpi : a set of foreign literals of Ci denoting the Supportive Set of pi

• BSpi : a set of foreign literals of Ci denoting the Blocking Set of pi

• Anspi : the answer returned for pi

Below, we provide the pseudocode of P2P DR.

P2P DR(pi; C0; Ci; Histpi ; Ti; SSpi ; BSpi ; Anspi)
1: call local alg(pi; localAnspi)
2: if localAnspi = true then
3: Anspi ← true, SSpi ← ∅, BSpi ← ∅
4: terminate
5: call local alg(∼ pi; localAns∼pi)
6: if localAns∼pi = true then
7: Anspi ← false, SSpi ← ∅, BSpi ← ∅
8: terminate
9: call Support(pi; Histpi ; Ti; suppi ; unbpi ; SSpi ; BSpi)

10: if unbpi = false then
11: Anspi ← false, SSpi ← ∅, BSpi ← ∅
12: terminate
13: Hist∼pi ← (Histpi − {pi}) ∪ {∼ pi}
14: call Support(∼ pi;Hist∼pi ; Ti; sup∼pi ; unb∼pi ; SS∼pi ; BS∼pi)
15: if suppi = true and (unb∼pi = false or Stronger(SSpi ; BS∼pi ; Ti) = SSpi) then
16: Anspi ← true
17: if C0 6= Ci then
18: SSpi ← ∅, BSpi ← ∅
19: else if sup∼pi = true and Stronger(BSpi ; SS∼pi ; Ti) 6= BSpi then
20: Anspi ← false, SSpi ← ∅, BSpi ← ∅
21: else
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22: Anspi ← undefined
23: if C0 6= Ci then
24: SSpi ← ∅, BSpi ← ∅

local alg is called by P2P DR to determine whether the truth value of the queried

literal can be derived from the local strict rules of a context theory (Rs). We should

note again that, for sake of simplicity, we assume that there are no loops in the local

context theories. local alg returns either true or false as a local answer for the queried

literal. The algorithm parameters are:

pi: the queried literal (input)

localAnspi : the local answer for pi (output)

local alg(pi; localAnspi)
1: for all ri ∈ Rs[pi] do
2: for all bi ∈ body(ri) do
3: call local alg(bi; localAnsbi)
4: if for all bi: localAnsbi = true then
5: return localAnspi = true and terminate
6: return localAnspi = false

Support is called by P2P DR to determine whether there are applicable and un-

blocked rules for pi. In case there is at least one applicable rule for pi, Support returns

suppi = true; otherwise, it returns suppi = false. Similarly, unbpi = true is returned

when there is at least one unblocked rule for pi; otherwise, unbpi = false.

Support also returns two data structures for pi:

• SSpi , the Supportive Set for pi. This is a set of literals representing the most

preferred (according to Ti) chain of applicable rules for pi

• BSpi ; the Blocking Set for pi. This is a set of literals representing the most

preferred (according to Ti) chain of unblocked rules for pi.

To compute these structures, Support checks the applicability of the rules with

head pi, using the truth values of the literals in their body, as these are evaluated by

P2P DR. To avoid loops, before calling P2P DR, it checks if the same query has been

issued before during the running call of P2P DR. In this case, it marks the rule with a
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cycle value, and proceeds with the remaining body literals. For each applicable rule ri,

Support builds its Supportive Set, SSri ; this is the union of the set of foreign literals

contained in the body of ri with the Supportive Sets of the local literals contained in

the body of the rule. Similarly, for each unblocked rule ri, it computes its Blocking Set

BSri using the Blocking Sets of its body literals. Support computes the Supportive Set

of pi, SSpi , as the strongest rule Supportive Set SSri ; and its Blocking Set, BSpi , as the

strongest rule Blocking Set BSri , using the Stronger function. The input parameters

of Support are:

• pi: the queried literal

• Histpi : the list of pending queries ([p1; :::; pi])

• Ti: the preference ordering of Ci

The output parameters of Support are:

• suppi , which indicates whether pi is supported in C

• unbpi , which indicates whether pi is unblocked in C

• SSpi : a set of foreign literals of Ci denoting the Supportive Set of pi

• BSpi : a set of foreign literals of Ci denoting the Blocking Set of pi

Support(pi; Histpi ; Ti; suppi ; unbpi ; SSpi ; BSpi)
1: suppi ← false
2: unbpi ← false
3: for all ri ∈ R[pi] do
4: cycle(ri) ← false
5: SSri ← ∅
6: BSri ← ∅
7: for all bt ∈ body(ri) do
8: if bt ∈ Histpi then
9: cycle(ri) ← true

10: BSri ← BSri ∪ {dt} {dt ≡ bt if bt =∈ Vi; otherwise dt is the �rst foreign literal of Ci
added in Histpi after bt}

11: else
12: Histbt ← Histpi ∪ {bt}
13: call P2P DR(bt; Ci; Ct;Histbt ; Tt; SSbt ; BSbt ; Ansbt)

53



4. DISTRIBUTED QUERY EVALUATION

14: if Ansbt = false then
15: stop and check the next rule
16: else if Ansbt = undefined or cycle(ri) = true then
17: cycle(ri) ← true
18: if bt =∈ Vi then
19: BSri ← BSri ∪ {bt}
20: else
21: BSri ← BSri ∪BSbt
22: else
23: if bt =∈ Vi then
24: BSri ← BSri ∪ {bt}
25: SSri ← SSri ∪ {bt}
26: else
27: BSri ← BSri ∪BSbt
28: SSri ← SSri ∪ SSbt
29: if unbpi = false or Stronger(BSri ; BSpi ; Ti) = BSri then
30: BSpi ← BSri
31: unbpi ← true
32: if cycle(ri) = false then
33: if suppi = false or Stronger(SSri ; SSpi ; Ti) = SSri then
34: SSpi ← SSri
35: suppi ← true

The Stronger(A;B; Ti) function computes the strongest between two sets of literals,

A and B according to the preference order Ti. A literal ak is preferred to a literal bl, if

Ck has lower rank than Cl in Ti. The strength of a set is determined by the the weakest

(least preferred) literal in this set.

Stronger(A;B; Ti)
1: if ∃bl ∈ B: ∀ak ∈ A: Ck has lower rank than Cl in Ti

or (A = ∅ and B 6= ∅) then
2: Stronger = A
3: else if ∃ak ∈ A: ∀bl ∈ B: Cl has lower rank than Ck in Ti

or (B = ∅ and A 6= ∅) then
4: Stronger = B
5: else
6: Stronger = None
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Example 3 (continued) In the MCS depicted in Figure 3.2, given a query about x1

issued to context C1, P2P DR is called by C1 and proceeds as follows:

• In the �rst step, it fails to compute the truth value of x1 using the strict local

rules of C1.

• In the second step, P2P DR calls Support for x1. The only rule with head x1 is

rl11; hence Support calls P2P DR to compute the truth value of the only literal

in the body of rl11, a1.

• P2P DR fails to compute the truth value of a1 using the strict local rules of C1.

Therefore, it calls Support for a1. a1 is only supported by rule rm12, hence Support

calls P2P DR to compute the truth value of the only literal in the body of rm12,

a2.

• P2P DR fails to compute the truth value of a2 using the strict local rules of C2.

Therefore, it calls Support for a2. a2 is only supported by rule rm21, hence Support

calls P2P DR to compute the truth value of the only literal in the body of rm21,

a5.

• Using rule rl51 (a strict rule with empty body), local alg computes localAnsa5 =

true, and P2P DR returns Ansa5 = true.

• Support computes SSrm21 = {a5}, and since there is no other rule with head a2,

BSa2 = SSa2 = {a5}.

• In the next step, P2P DR calls Support for ¬a2. ¬a2 is only supported by rule

rm22, hence Support calls P2P DR to compute the truth value of the only literal

in the body of rm22, a6.

• Using rule rl62 (a strict rule with empty body), local alg computes localAns¬a6 =

true, and P2P DR returns Ansa6 = false.

• As there is no other rule with head ¬a2, Support computes unb¬a2 = false, and

Ansa2 = true.

• Support computes SSrm12 = {a2}, and since there is no other rule with head a1,

BSa1 = SSa1 = {a2}.
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• In the next step, P2P DR calls Support for ¬a1. ¬a1 is only supported by rule

rm13, hence Support calls P2P DR to compute the truth values of a3 and a4.

• Both a3 and a4 are derived as conclusions of the strict local rules in C3 and C4

respectively; hence for both literals P2P DR returns true as an answer.

• Support computes SSrm13 = {a3; a4}, and since there is no other rule with head

¬a1, BS¬a1 = SS¬a1 = {a3; a4}.

• Assuming that T1 = [C3; C2; C4; C5; C6], P2P DR determines that SSa1 = {a2}
is stronger than BS¬a1 = {a3; a4}, and computes Ansa1 = true.

• As there is no rule with head ¬x1, P2P DR computes Ansx1 = true. ¤

Example 1 (continued) In the MCS of example 1, given a query about ring1,

P2P DR proceeds as follows:

• In the �rst step, P2P DR fails to compute an answer for ring1 based on the local

strict rules of C1.

• In the second step, it calls Support for ring1. rd13 is the only rule with head

ring1. Support calls P2P DR for incoming call1 and ¬lecture1, which are the

only literals in the body of rd13.

• Using rule rl11, local alg computes true as a local answer for incoming call1 and

therefore P2P DR returns Ansincoming call1 = true.

• P2P DR fails to compute an answer for ¬lecture1 based on the local strict rules

of C1, so it calls Support for ¬lecture1. rm16 is the only rule with head ¬lecture1.

Support calls P2P DR for ¬class activity4, which is the only literal in the body

of rm15.

• P2P DR fails to compute an answer for ¬class activity4 based on the local strict

rules of C4, so it calls Support for ¬class activity4. rm42 is the only rule with head

¬class activity4. Support calls P2P DR for projector(off)4 and detected(1)5,

which are the only literals in the body of rm42.

• Using rule rl41, local alg computes true as a local answer for projector(off)4 and

therefore P2P DR returns Ansprojector(off)4 = true.
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• Using rule rl51, local alg computes true as a local answer for detected(1)5 and

therefore P2P DR returns Ansdetected(1)5 = true.

• Support computes SSrm42 = {detected(1)5}, and since there is no rule with head

class activity4, P2P DR returns Ans¬class activity4 = true.

• Support computes SSrm16 = {¬class activity4}, and since there is no other rule

with head ¬lecture1, BS¬lecture1 = SS¬lecture1 = {¬class activity4}.

• In the next step, P2P DR calls Support for lecture1. lecture1 is in the head of

rule rm15, hence Support calls P2P DR to compute the truth values of classtime2
and location RA2013, which are contained in the body of rm15.

• Both classtime2 and location RA2013 are derived as conclusions of the strict local

rules in C2 and C3 respectively; hence for both literals P2P DR returns true as

an answer.

• Support computes SSrm15 = {classtime2; location RA2013}, and since there is no

other rule with head lecture1, BSlecture1 = {classtime2; location RA2013}.

• Assuming that T1 = [C4; C3; C2; C5], P2P DR determines that SS¬lecture1 is

stronger than BSlecture1 , and returns Ans¬lecture1 = true.

• Support computes SSrd13 = {¬class activity4}, and since there is no other rule

with head lecture1, it returns BSring1 = SSring1 = {¬class activity4}.

• In the next step, P2P DR calls Support for ¬ring1. ¬ring1 is in the head of rule

rd14, hence Support calls P2P DR to compute the truth value of silent mode1,

which is the only literal in the body of rd13. Since there is no rule with head

silent mode1, P2P DR returns Anssilent mode1 = false.

• As there is no other rule with ¬ring1 in its head, Support returns unb¬ring1 =

false, and eventually P2P DR returns Ansring1 = true. ¤

Example 4 - In�nite Argumentation Lines (continued). In the MCS using the

arguments depicted in Figure 3.5, Support will return the following results for a1 and

¬a1. For a1, it returns: unba1 = true, supa1 = false and BSa1 = {a2}. For ¬a1, it

returns unb¬a1 = true, sup¬a1 = true, and BS¬a1 = SS¬a1 = {b4}. Therefore, in case

57



4. DISTRIBUTED QUERY EVALUATION

T1 = [C2; C3; C4], P2P DR will return Ansa1 = undefined and Ans¬a1 = undefined.

In case T1 = [C4; C2; C3] it will return Ansa1 = false and Ans¬a1 = true. ¤

Example 5 - Self-defeating Argumentation Lines (continued). In the MCS using

the arguments depicted in Figure 3.6, Support will return the following results for a1

and ¬a1. For a1, it returns: unba1 = true, supa1 = true and SSa1 = BSa1 = {a4}. For

¬a1, it returns unb¬a1 = true, sup¬a1 = false, and BS¬a1 = {a3}. Therefore, in case

T1 = [C2; C3; C4], P2P DR will return Ansa1 = undefined and Ans¬a1 = undefined.

In case T1 = [C4; C2; C3] it will return Ansa1 = true and Ans¬a1 = false ¤.

4.2 Properties of the Algorithm

Below, we describe some formal properties of P2P DR regarding its termination, com-

plexity, and soundness and completeness with respect to the argumentation framework,

and propose some optimizations that aim at the reduction of the total number of mes-

sages. The proofs for the propositions that appear in this section are provided in

Appendix A.

4.2.1 Termination

Proposition 1 refers to the termination of P2P DR, and is a consequence of the cycle

detection process within the algorithm.

Proposition 1 P2P DR is guaranteed to terminate returning one of the values true,
false and unde�ned as an answer for the queried literal.

4.2.2 Soundness & Completeness

Propositions 2 and 3 associate the results computed by local alg and P2P DR with

concepts of the argumentation framework. Speci�cally, Proposition 2 provides a char-

acterization of answers returned by local alg with respect to the concept of strict local

arguments, while Proposition 3 associates the answers returned by P2P DR with the

concepts of justi�ed and rejected literals.

Proposition 2 For a Multi-Context System C and a literal pi in Ci ∈ C, local alg
returns
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1. localAnspi = true i� there is a strict local argument for pi in ArgsCi

2. localAnspi = false i� there is no strict local argument for pi in ArgsCi

Proposition 3 For a Multi-Context System C and a literal pi in C, P2P DR returns:

1. Anspi = true i� pi is justi�ed in C

2. Anspi = false i� pi is rejected in C

3. Anspi = undefined i� pi is neither justi�ed nor rejected in C

4.2.3 Complexity

In this section we provide a complexity analysis in terms of computational complexity

of the proposed algorithms, and number of algorithm calls and number of messages

imposed by distributed query evaluation.

Computational Complexity

The term computational complexity refers to the total number of operations imposed

by a single call of the algorithms. Obviously, the complexity of the local algorithm,

local alg, is related only to the strict local rules and local literals of a context. By

de�nition of local alg and by the fact that there are no loops in the local context

theories, it is trivial to prove that the complexity of local alg is proportional to the

number of strict local rules of a context, and to the total number of its local literals.

The complexity of Stronger(A;B; Ti) is related to the total number of elements

contained in the two sets, A and B. Stronger can be implemented in a slightly di�erent

way than that described in the pseudocode provided in the previous section. Speci�cally,

it requires a process that identi�es the weakest literal in each of the two sets based on the

rank of the contexts that the literals are de�ned by, and a comparison of the strength of

the weakest literals. The complexity of this process is proportional to the total number

of elements contained in each set.

Support imposes one operation for each of the literals contained in each rule that

contains the queried literal or its negation in its head. It also requires computing

the strongest between the Supportive or Blocking Sets of all such rules. Taking into

account the complexity of Stronger, and by the fact that, in the worst case, all rules of

a context may be relevant, the complexity of Support is in the worst case proportional
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to the number of rules of a context theory and to the number of literals de�ned in the

system.

By de�nition, P2P DR calls local alg, Support and Stronger twice. Taking into ac-

count their complexitites, we obtain the following result for the complexity of P2P DR:

Proposition 4 The number of operations imposed by one call of P2P DR for the eval-
uation of a query for literal pi is, in the worst case that all rules of Ci contain either pi
or ∼ pi in their head and all literals de�ned in the system in their bodies, proportional
to the number of rules in Ci, ri, and to the total number n of literals de�ned in the
system (O(ri; n)).

Algorithm Calls & and Number of Messages

Applying the P2P DR algorithm to conduct distributed query evaluation in a very

dense Multi-Context System can result in a huge amount of messages, which is unde-

sirable in settings such as Ambient Intelligence environments, which involve wireless

communications and devices with limited communication capabilities. Using the term

dense, we imply systems, in which all contexts de�ne mapping rules that associate

their local context knowledge with the knowledge of the majority of the other contexts

in the system. The worst case is that each context, for each of its local literals, has

de�ned mappings that contain all possible combinations of foreign literals in their body.

Example 6. Consider a MCS, which consists of four di�erent context theories: C1,

C2, C3 and C4, with respective vocabularies: V1 = {a1}, V2 = {a2}, V3 = {a3} and

V4 = {a4}. Assume that C1 contains the following mapping rules with head a1:

rm1 : a2; a3; a4 ⇒ a1

rm2 : a2; a3 ⇒ a1

rm3 : a2; a4 ⇒ a1

rm4 : a3; a4 ⇒ a1

rm5 : a2 ⇒ a1

rm6 : a3 ⇒ a1

rm7 : a4 ⇒ a1
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Suppose, also that the other contexts have de�ned similar sets of mapping rules for

their local literals. In that case, for the evaluation of the truth value of a1, a number

of 204 calls of P2P DR and Support is required, and since a remote call of P2P DR

induces two messages (query and response), 408 messages in total must be exchanged

between the four contexts. ¤

Remark. Obviously, this case could be avoided, since it is easy to notice that when

someone has de�ned rules rm5 , rm6 and rm7 , the remaining rules are unnecessary for the

computation of the Supportive and Blocking Sets and the truth value of a1. However,

we use it to highlight the complexity of the problem in the worst case scenario.

Optimizations

A major factor that causes this huge amount of messages is that for each of the literals

that are contained in the body of its mapping rules, a context may have to send multiple

query messages. E.g. in Example 4, C1 has to query about a2 four di�erent times, while

during the whole query evaluation process, each of contexts C2, C3 and C4 issue 32

di�erent queries for each of two di�erent literals from the set {a2; a3; a4}. The question

is whether are all those queries necessary, and if not which of them could be avoided

and how.

One way to avoid unnecessary queries would be to keep track of the answers returned

for each of the queries that a context imposes through P2P DR to other contexts, so

that these answers are available for any subsequent calls of the algorithm. We should

note, however, that the answer returned by P2P DR depends not only on the queried

literal, but also on the history of the query.

Example 7. Consider a MCS that consists of the following four context theories:

C0: rl01 :→ a0

C1: rm11 : a0 ⇒ a1, rm12 : a2 ⇒ a1

C2: rm21 : a3 ⇒ a2

C3: rm31 : a1 ⇒ a3, rm32 : a1; a2 ⇒ b3
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Suppose that a query about b3 is issued to C3. To evaluate the truth value of b3,

P2P DR calls Support, which in turn issues queries for literals a1 and a2 in order to

check the applicability of the only rule with head b3, rm32. In the process of evaluating

the answer for a1, P2P DR will be called successively for a2 and a3, will detect a cycle

caused by literals a1, a2 and a3, and will return unde�ned as answer for both a3 and a2.

This result is caused by the fact that a1 is in the history of the queries imposed for a2

and a3. Eventually, using rule rm11, P2P DR will return true as an answer for a1. For

a2, the other body literal of rm32, P2P DR will return true, using rules rm21, rm31, rm11 and

rl01. During this query evaluation process, two di�erent queries are issued to a2. The

�rst one is issued by C1 with history Hista2 = [b3; a1; a2] and results in an unde�ned

answer, while the second is issued by C3 with history Hista2 = [b3; a2] and results in a

di�erent answer (true). ¤

Based on these observations, we modify our algorithms as follows. For each context

Ci, we use two structures that the algorithms may access to store or retrieve the results

obtained during a query evaluation process:

• OUTQ, which stores the results of queries for foreign literals of Ci that are con-

tained in the bodies of mapping rules of Ci

• INCQ, which stores the results of queries for local literals of Ci

OUTQ contains records of the form rec(pj ; Histpj ) : Anspj , where pj =∈ Vi, and

Histpi is a set of local or foreign literals of Ci. Each such record contains Anspj for a

query for literal pj with history Histpj , which has already been evaluated during the

same query evaluation process.

INCQ contains records of the form rec(pi; Histpi) : (Anspi ; BSpi ; SSpi), where pi ∈
Vi and Histpi is a set of local or foreign literals of Ci. Each record represents the results

that have already been obtained during the same query evaluation process for a query

for literal pi with history Histpi . The results contained in one record include Anspi ,

and (in case Anspi 6= false) BSpi and SSpi . For each local literal pi, INCQ contains

an additional record of the form rec(pi) : localAnspi that retains localAnspi , which is

independent of the history of the query as we have assumed that there are no loops in

the local context theories.
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Using these two structures, P2P DR and Support are modi�ed as follows. Before

calling local alg to compute the local answers for pi and ∼ pi, P2P DR checks whether

there are already records for pi in INCQ, In case there are such records, it retrieves the

local answers for pi and ∼ pi from INCQ (lines 1-2, 9-10). Otherwise, after evaluat-

ing the local answers using local alg, P2P DR creates appropriate records for pi and

∼ pi in INCQ (lines 5,13). Also, after evaluating Anspi , BSpi and SSpi using Support

and Stronger, P2P DR creates an appropriate record for the query for pi with history

Histpi in INCQ (lines 20,25,30,33). The pseudocode of the optimized version of the

algorithm, P2P DRO is given below:

P2P DRO(pi; C0; Ci; Histpi ; Ti; SSpi ; BSpi ; Anspi)
1: if rec(pi) : localAnspi ∈ INCQ then
2: retrieve localAnspi from rec(pi)
3: else
4: call local alg(pi; localAnspi)
5: add record rec(pi) : localAnspi in INCQ
6: if localAnspi = true then
7: Anspi ← true, SSpi ← ∅, BSpi ← ∅
8: terminate
9: if rec(∼ pi) : localAns∼pi ∈ INCQ then

10: retrieve localAns∼pi from rec(∼ pi)
11: else
12: call local alg(∼ pi; localAns∼pi)
13: add record rec(∼ pi) : localAns∼pi in INCQ
14: if localAns∼pi = true then
15: Anspi ← false, SSpi ← ∅, BSpi ← ∅
16: terminate
17: call SupportO(pi; Histpi ; Ti; suppi ; unbpi ; SSpi ; BSpi)
18: if unbpi = false then
19: Anspi ← false, SSpi ← ∅, BSpi ← ∅
20: add record rec(pi;Histpi) : (Anspi ; ∅; ∅) in INCQ and terminate
21: Hist∼pi ← (Histpi − {pi})∪ ∼ {pi}
22: call SupportO(∼ pi;Hist∼pi ; Ti; sup∼pi ; unb∼pi ; SS∼pi ; BS∼pi)
23: if suppi = true and (unb∼pi = false or Stronger(SSpi ; BS∼pi ; Ti) = SSpi) then
24: Anspi ← true
25: add record rec(pi;Histpi) : (Anspi ; BSpi ; SSpi) in INCQ and terminate
26: if C0 6= Ci then
27: SSpi ← ∅ ,BSpi ← ∅
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28: else if sup∼pi = true and Stronger(BSpi ; SS∼pi ; Ti) 6= BSpi then
29: Anspi ← false, SSpi ← ∅, BSpi ← ∅
30: add record rec(pi;Histpi) : (Anspi ; ∅; ∅) in INCQ
31: else
32: Anspi ← undefined
33: add record rec(pi;Histpi) : (Anspi ; BSpi ; ∅) in INCQ
34: if C0 6= Ci then
35: SSpi ← ∅, BSpi ← ∅

Support is also modi�ed as follows. Before calling P2P DRO to compute Ansbt ,

SSbt and BSbt for each of the literals bt contained in the body of the rules with head

pi, SupportO (the optimized version of Support) checks whether there is a record for bt
and Histbt in INCQ or OUTQ. In case there is no such record, it calls P2P DRO and

creates an appropriate record for (bt,Histbt) in INCQ if bt is a local literal of Ci, or in

OUTQ otherwise. This modi�cation is achieved by replacing line 13 of Support with

the pseudocode described below.

if bt ∈ Vi and rec(bt;Histbt) : (Ansbt ; BSbt ; SSbt) ∈ INCQ then
retrieve Ansbt ; BSbt ; SSbt from rec(bt;Histbt)

else if bt =∈ Vi and rec(bt;Histbt) : Ansbt ∈ OUTQ then
retrieve Ansbt from rec(bt;Histbt)

else
call P2P DR(bt; Ci; Ct;Histbt ; Tt; SSbt ; BSbt ; Ansbt)
if bt ∈ Vi then

add record rec(bi; Histbt) : (Ansbt ; BSbt ; SSbt) in INCQ
else

add record rec(bt;Histbt) : Ansbt in OUTQ

We should note that since we assume that the state of the network remains un-

changed during a query evaluation process, but may change in the meantime between

two consecutive query evaluation processes, the two structures INCQ and OUTQ are

updated every time a new query is posed to the system.

Example 7 (continued). At the start of the query evaluation process for b3, the two

structures, INCQ and OUTQ, that each context retains are empty. In the end, the

following records will have been created in INCQ and OUTQ of C2:
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rec(a2; [b3; a1; a2]) : (undefined; {a3}; ∅)
rec(a2; [b3; a2]) : (true; {a3}; {a3})
rec(a3; [b3; a1; a2; a3]) : undefined

rec(a3; [b3; a2; a3]) : true

The �rst and the third records are created during the evaluation of the query for a1

issued by C3. The �rst record is retained in INCQ and indicates that a query for a2

with history [b3; a1; a2] has returned Ansa2 = undefined, BSa2 = {a3} and SSa2 = ∅.
The third record is retained in OUTQ, and indicates that a query for a3 with history

[b3; a1; a2] has returned Ansa2 = undefined. The second and the fourth records are

created during the evaluation of the query for a2 issued by C3. ¤

Complexity Analysis of the Optimized Algorithms

Using the optimized algorithms described above, we aim at reducing not only the num-

ber of messages between the system contexts, but also the total number of operations

performed by a context during a query evaluation process. Speci�cally, using OUTQ,

many messages are replaced with retrievals of relevant answers from OUTQ. Using

INCQ, we replace queries imposed by a context to itself (recursive calls of P2P DR)

with retrievals from INCQ. In Example 4, the total number of algorithm calls that are

required for the evaluation of the query for a1 is reduced from 204 to 15, and the total

number of messages is reduced from 408 to 30. The following proposition refers to the

complexity of query evaluation using the optimized versions of P2P DR and Support.

Proposition 5 The total number of calls of P2P DRO that are required for the eval-
uation of a single query is in the worst case O(n × ∑

P (n; k)), where n stands for
the total number of literals in the system,

∑
expresses the sum over k = 0; 1; :::; n,

and P (n; k) stands for the number of permutations with length k of n elements. If
each of the literals in the system is de�ned by a di�erent context, then the total num-
ber of messages exchanged between the system contexts for the evaluation of a query is
O(2× n×∑

P (n; k)).

We should note that
∑
P (n; k) stands between 2n and n!2n. If we assume that there

are no loops in the global knowledge base (acyclic MCS), then the history of a query

is irrelevant to how it is evaluated. In this case, INCQ and OUTQ retain at most one
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record for each of the local and foreign literals of a context, and the complexity of query

evaluation is reduced as follows.

Proposition 6 In acyclic MCS, the total number of calls of P2P DRO that are required
for the evaluation of a single query is in the worst case O(c×n), where c stands for the
total number of contexts in the system, and n stands for the total number of literals in
the system. If each of the literals in the system is de�ned by a di�erent context, then
the total number of messages exchanged between the system contexts for the evaluation
of a query is O(2× c× n).

4.3 Equivalent Global Defeasible Theory

The goal of the procedure that we describe in this section is the construction of a global

defeasible theory T�(C), which produces the same results as the application of P2P DR

on a Multi-Context System C under the proof theory of the ambiguity blocking version

of Defeasible Logic with superiority relation [8]. The existence of this procedure enables

resorting to centralized reasoning by collecting the distributed context theories in a

central entity and creating an equivalent defeasible theory. In addition, this result is

typical of other works in the area of Peer-to-Peer reasoning, in which the distributed

query evaluation algorithm is related to querying a single knowledge base that can be

constructed (see, e.g. [2]).

The procedure follows three main steps:

1. The local strict rules of each context theory are added as strict rules in T�(C).

2. The local defeasible and mapping rules of each context theory are added as de-

feasible rules in T�(C).

3. For each pair of rules with contradictory conclusions, a priority relation is added

taking into account the preference orderings of the system contexts.

The vocabulary used by T�(C) (V ) is the union of the vocabularies of the uni�ed

context theories: V =
⋃
Vi. For the global theory T�(C), Lemma 4 holds as an im-

mediate consequence of the �rst two steps of the procedure that constructs T�(C), and

from the fact that each rule in a context Ci has a head labeled by a literal in Vi (the

vocabulary of Ci).
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Lemma 4 For a literal pi in V :
(a) The set of strict rules with head pi in T�(C) is the same with the set of local

strict rules with head pi in Ci.
(b) The set of defeasible rules with head pi in T�(C) is the same with the set of local

defeasible or mapping rules with head pi in Ci.

The construction of the superiority relation of the global defeasible theory is achieved

using the Priorities process described below. The role of this process is to augment

T�(C), as this is derived from the �rst two steps of the procedure described above, with

the additional required rule priorities considering the preference orderings of the system

contexts.

Priorities

The derivation of priorities between con
icting rules (rules with contradictory conclu-

sions) in T�(C) is a �nite sequence Pr = (Pr(1); :::; P r(n)), where each Pr(i) can be

one of the followings:

• The Supportive Set of a rule in T�(C) (a set of literals).

• A priority relation between two con
icting rules in T�(C)

• The Supportive Set of a literal in T�(C) (a set of literals).

In this process we use two special elements: (a) w, to mark the rules that cannot be

applied to support their conclusions; and (b) s, to mark the literals the truth value of

which is derived from the strict rules of T�(C).

Overall, for a rule ri, such that the literals in its body are logical consequences of

the local strict rules in T�(C), Priorities assigns {s} as its Supportive Set (1(�)). {w}
is assigned as the Supportive Set of a rule that contains a foreign literal in its body,

which is not a logical consequence of T�(C) (1(�)). For the rest of the rules, Priorities

computes their Supportive Set as the union of foreign literals contained in their body

with the Supportive Sets of the local literals in their body (1(
)). The priority relation

between two applicable rules with contradictory conclusions is computed based on the

Stronger function, which takes into account the preference order of their context (2).
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For a literal pi, which is logical consequence of T�(C), Priorities assigns the Supportive

Set of the strongest supportive rule with head pi as the Supportive Set of pi, using the

Stronger function (3(�)). For the rest of the literals, {w} is assigned as their Supportive

Set (3(�)).

In the followings we denote the set of strict rules with head pi in T�(C) as Rs[pi],

and the set of defeasible rules with head pi in T�(C) as Rd[pi].

1. If Pr(i+ 1) = Sri then ri ∈ T�(C) and either

(�) Sri = {s} and ri ∈ Rs[pi] and

∀ai ∈ body(ri), Sai = {s} ∈ Pr(1:::i) or

(�) Sri = {w}, and ri ∈ Rd[pi] and

∃aj ∈ body(ri): aj =∈ Vi, Saj ∈ Pr(1:::i) and w ∈ Saj or

(
) (
1) ∀ai ∈ body(ri) ∩ Vi: Sai ∈ Pr(1:::i) and

(
2) ∀aj ∈ body(ri)− Vi: Saj ∈ Pr(1:::i) and w =∈ Saj and

(
3) Sri = (
⋃
a′i
Sa′i) ∪ (

⋃
aj aj), where

a′i are the literals in the body of ri s.t. a′i ∈ Vi and Sa′i 6= {s}

2. If Pr(i+ 1) = ri > si then ri; si ∈ T�(C) and

(�) head(ri) =∼ head(si) and

(�) Sri ; Ssi ∈ Pr(1:::i) and

(
) w =∈ Sri , w =∈ Ssi , Sri 6= {s}, Ssi 6= {s} and

(�) Stronger(Sri ; Ssi ; Ti) = Sri

3. If Pr(i+ 1) = Spi then either

(�) ∃ri ∈ R[pi]: Sri ∈ Pr(1:::i) and Spi = Sri and w =∈ Sri and either

(�1) ri ∈ Rs[pi] and Sri = {s} or

(�2) (�2:1) ∀si ∈ R[∼ pi]:

(�2:1:1) Ssi ∈ Pr(1:::i) and

(�2:1:2) Ssi 6= {s} and

(�2:1:3) w ∈ Ssi or Stronger(Sri ; Ssi ; Ti) = Sri and

(�2:2) ∀ti ∈ R[pi]:

(�2:2:1) Sti ∈ Pr(1:::i) and

(�2:2:2) Sti 6= {s} and

(�2:2:3) w ∈ Sti or Stronger(Sri ; Sti ; Ti) 6= Sti or
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(�) Spi = {w} and either

(�1) ∀ri ∈ R[pi]: Sri ∈ Pr(1:::i) and w ∈ Sri or

(�2) ∃si ∈ R[∼ pi]:

(�2:1) Ssi ∈ Pr(1:::i) and w =∈ Ssi and Ssi 6= {s} and

(�2:2) ∀ri ∈ R[pi]: Sri ∈ Pr(1:::i) and Sri 6= {s} and either

(�2:2:1) w ∈ Sri or

(�2:2:2) w =∈ Sri and Stronger(Sri ; Ssi ; Ti) 6= Sri or

(�3) S∼pi ∈ Pr(1:::i) and S∼pi = {s}

Pr(n) will contain the Supportive Sets of all rules and literals in T�(C), and the

required priority relations between all con
icting rules in T�(C). It is easy to verify that

the process described above is deterministic in the sense that for a given MCS C, the

same set of elements is always contained in Pr(n) regardless of the order of contexts Ci
in C, and the orders of the rules in each context Ci in C.

Example 3 (continued) Following the procedure described above, taking as input the

context theories of the MCS depicted in Figure 3.2, all strict local rules will be added as

strict rules in T�(C), all local defeasible and mapping rules will be added as defeasible

rules in T�(C), and Priorities will proceed as follows:

• The �rst four derivation steps will produce: Srl31 = Srl41 = Srl51 = Srl62 = {s}.

• The next �ve steps will produce: Sa3 = Sa4 = Sa5 = S¬a6 = {s} and Sa6 = {w}.

• The next three steps will be: Pr(10) = Srm21 = {a5}, Pr(11) = Srm22 = {w} and

Pr(12) = Srm13 = {a3; a4}.

• The thirteenth step will be: Pr(13) = Sa2 = {a5}.

• The fourteenth step will be: Pr(14) = Srm12 = {a2}

• The �fteenth step will be: Pr(15) = rm12 > rm13.

• The last three steps of the process will be: Pr(16) = Sa1 = {a2}, Pr(17) = Srl11 =

{a2} and Pr(18) = Sx1 = {a2}.

Eventually, the only priority relation that will be added to T�(C) is rm12 > rm13. ¤
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Example 1 (continued) Taking as input the context theories of the MCS of Example

1, all strict local rules of the theories will be added as strict rules in T�(C), all local

defeasible and mapping rules of the theories will be added as defeasible rules in T�(C),

and Priorities will proceed as follows:

• The �rst seven derivation steps will produce: Srl11 = Srl12 = Srl21 = Srl31 = Srl41 =

Srl51 = {s} and Ssilent mode1 = {w}.

• The next seven steps will produce: Sincoming call1 = Snormal mode1 = Sclasstime2 =

Slocation RA2013 = Sprojector(off)4 =Sdetected(1)5 = {s} and Srl14 = {w}.

• The next three steps will produce: Srm42 = {detected(1)5}, Pr(10) = Srm15 =

{classtime2; location RA2013} and S¬ring1 = {w}.

• Pr(18) = S¬class activity4 = {detected(1)5}.

• Pr(19) = Srm16 = {¬class activity4}.

• The next three steps will produce rm16 > rm15, S¬lecture1 = {¬class activity4},
Slecture1 = {w}.

• The last three steps of the process will be: Pr(23) = Srd13 = {¬class activity4}
and Pr(24) = Sring1 = {¬class activity4}.

Eventually, the only priority relation that will be added to T�(C) is rm16 > rm15. ¤

Relation with Defeasible Logic

In case, T�(C) contains no loops (there is no literal pi in T�(C), such that pi has an

in�nite proof tree), the following statements describe the relationship between T�(C)

and the distributed context theories Ci.

Lemmas 5 and 6 refer to the association of the answers produced by local alg and

P2P DR with the constructs computed by Priorities.

Lemma 5 For a literal pi in Vi, local alg computes
(1) localAnspi = true i� Spi ∈ Pr(1:::n) and Spi = {s}
(2) localAnspi = false i� Spi ∈ Pr(1:::n) and Spi 6= {s}
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Lemma 6 For a literal pi in Vi, P2P DR computes
(1) localAnspi = false, Anspi = true and SSpi = Σ i� Spi ∈ Pr(1:::n) and Spi = Σ

and Σ 6= {s}, Σ 6= {w}.
(2) Anspi = false i� Spi ∈ Pr(1:::n) and Spi 6= {w}

Propositions 7 and 8 are consequences of the above lemmas and describe the associa-

tion between the answers produced by local alg and P2P DR and the results produced

by the application of the proof theory of the ambiguity version of Defeasible Logic [8]

on T�(C).

Proposition 7 For a literal pi in Vi, local alg computes
(1) localAnspi = true i� T�(C) ` +∆pi
(2) localAnspi = false i� T�(C) ` −∆pi

Proposition 8 For a literal pi in Vi, P2P DR computes
(1) Anspi = true i� T�(C) ` +@pi
(2) Anspi = false i� T�(C) ` −@pi

4.4 Summary of the results

The main results regarding the formal properties of P2P DR that we described in this

section are summarized as follows.

• The algorithm always terminates returning one of the values true, false and un-

de�ned for the queried literal (Proposition 1).

• The algorithm is sound and complete with respect to the argumentation frame-

work (Propositions 2 and 3).

• The worst case complexity of the algorithm in terms of number of messages is

between 2n and n!2n (Proposition 5), while in case of acyclic MCS, it is O(n; c)

(Proposition 6), where n stands for the total number of system literals and c for

the total number of contexts.

• There is a standard process that takes as input the distributed context theories

and their preference orderings and creates a global uni�ed theory of Defeasible

Logic, which in case there are no loops in the global theory, produces equivalent

results with P2P DR (Propositions 7 and 8).
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Chapter 5

Alternative Strategies for Con
ict
Resolution

The algorithm described in Chapter 4 (P2P DR) resolves con
icts that arise when mu-

tually inconsistent information is imported from di�erent contexts based on the rank of

these contexts in the preference ordering of the context that imports this information.

This chapter describes three alternative strategies for con
ict resolution (Strict-Weak

Answers, Propagating Mapping Sets and Complex Mapping Sets), which di�er in the

type and extent of context information that is used to evaluate the quality of the im-

ported knowledge. The intuition behind these strategies is that imported knowledge

should be evaluated not only based on their \source" - the context that the knowledge

is imported by - but also on the way that the \source" acquired this knowledge. The

following sections discuss the features of the three strategies, explain their main di�er-

ences through examples, and describe their implementation in three alternative versions

of P2P DR.

5.1 Strict-Weak Answers

The distinct feature of Strict-Weak Answers, compared to the strategy implemented by

P2P DR (which for the rest of the thesis will be referred to as Single Answers), is that

imported knowledge is not only evaluated based on its \source" (the context that it is

imported by), but also based on whether the \source" derived this knowledge strictly

- based on its strict local rules. The intuition behind this is that the case that the
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imported knowledge is part of the local context knowledge of the \source" should be

treated di�erently (preferred) to the case that the \source" may have used knowledge

imported from third parties to derive this knowledge. For example, in the case of the

system in Example 1 (Figure 1.1), the knowledge that the mobile phone imports from

the laptop and the localization service is part of their local knowledge bases, and hence

should be preferred to the knowledge that is imported from the classroom manager,

which is derived based on information that the classroom manager imports from an

external source.

5.1.1 Distributed Query Evaluation

The version of the distributed algorithm that implements this strategy, P2P DRSWA,

uses two types of answers for the literals with a positive truth value:

• a strict answer indicates that the truth value is derived from the strict rules of

the queried context;

• a weak answer indicates that the truth value is derived from the combination of

local and mapping rules of the queried context

For unde�ned answers, there is no need to de�ne two di�erent types. Since we

have assumed that there are no loops in the local context theories, an unde�ned answer

cannot be derived using only the local strict rules of a context. P2P DRSWA follows

the four main steps of P2P DR, but with the following modi�cations:

• For a literal pi, Anspi can take one of the following four values:

1. str(true), indicating a strictly derived positive truth value

2. weak(true) indicating a non-strictly derived positive truth value

3. undefined

4. false

• An element of a Supportive/Blocking Set is actually a signed literal; the sign of

the literal indicates whether the truth value of the literal is derived from the local

strict rules of the queried context (e.g. +pi), or from the combination of the strict

rules and the local defeasible and mapping rules of the context (−pi).
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• The strength of an element in a Supportive/Blocking Set is determined primarily

by the type of answer (strict answers are considered stronger than weak ones),

and secondly by the rank of the queried context in the preference order of the

querying context.

The pseudocode of P2P DRSWA is derived from P2P DR as follows:

• Lines 2-4 are replaced by:
if localAnspi = true then
Anspi ← str(true), SSpi ← ∅, BSpi ← ∅
terminate

• Lines 15-16 are replaced by:
if suppi = true and (unb∼pi = false or Stronger(SSpi ; BS∼pi ; Ti) = SSpi) then
Anspi ← weak(true)

local alg remains unchanged, while Support is modi�ed as follows:

• Lines 8-10 are replaced by:
if bt ∈ Histpi then
cycle(ri) ← true
BSri ← BSri ∪ {−dt}

• Lines 18-19 are replaced by:
if bt =∈ Vi then
BSri ← BSri ∪ {−bt}

• Lines 23-25 are replaced by:
if bt =∈ Vi and Ansbt = str(true) then
BSri ← BSri ∪ {+bt}
SSri ← SSri ∪ {+bt}

else if bt =∈ Vi and Ansbt = weak(true) then
BSri ← BSri ∪ {−bt}
SSri ← SSri ∪ {−bt}

Finally, the Stronger function is also modi�ed as follows:

Parameters

A;B: sets of signed literals of the form +pi/−pi
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C1 C2 C3

rl11 : a1 → x1 rl21 : c2 → a2 rl31 :→ a3

rm12 : a2 ⇒ a1 rl22 : b2 → a2

rm13 : a3; a4 ⇒ ¬a1 rm23 : b5 ⇒ b2
rm24 : b6 ⇒ b2

C4 C5 C6

rl41 :→ a4 rl51 :→ b5 rl61 :→ b6

Figure 5.1: A MCS of Six Context Theories (example 6)

Ti: a preference order

Stronger(A;B; Ti)
1: if ∃bl: −bl ∈ B and ∀ ± ak ∈ A either +ak ∈ A or Ck has lower rank than Cl in Ti then
2: Stronger = A
3: else if ∃ak: −ak ∈ A and ∀ ± bl ∈ B either +bl ∈ B or Cl has lower rank than Ck in Ti

then
4: Stronger = B
5: else if ∀ ± ak ∈ A;±bl ∈ B: +ak ∈ A and +bl ∈ B then
6: if ∃+ bl ∈ B: ∀+ ak ∈ A, Ck has lower rank than Cl in Ti then
7: Stronger = A
8: else if ∃+ ak ∈ A: ∀+ bl ∈ B, Cl has lower rank than Ck in Ti then
9: Stronger = B

10: else
11: Stronger = None

Example 6. Consider that a query about x1 is issued to Ci in the MCS depicted in

Figure 5.1. An interesting feature of this system is that a3 and a4, which constitute the

premises of rm13, are strict consequences of the local theories of C3 and C4 respectively,

while a2, which is the only premise of the rule that is in con
ict with rm13 (rm12) is not a

strict consequence of the local theory of C2.

P2P DR, the algorithm that implements the Single Answers strategy, receives pos-

itive answers (true) for a2, a3 and a4 (from the instances of the algorithm called by

C2, C3 and C4 respectively), and resolves the con
ict that arises for literal a1 by

comparing its Supportive Set, SSa1 = SSr12 = {a2}, with the Blocking Set of ¬a1,

76



5.1 Strict-Weak Answers

BS¬a1 = BSr13 = {a3; a4}. Assuming that the preference order de�ned by C1 is

T1 = [C4; C2; C6; C3; C5], P2P DR determines that SSa1 is stronger than BS¬a1 (as C2

precedes C3 in T1) and returns a positive answer for a1 and eventually for x1 as well.

On the other hand, P2P DRSWA proceeds as follows: For a3 and a4, it returns

Ansa3 = str(true) and Ansa3 = str(true), as both are strict local conclusions of C3

and C4, respectively. For a2, it returns Ansa3 = weak(true), as for the evaluation of

this answer it uses both local and mapping rules of C2. Hence, the Supportive Sets of

rules r12 and r13 are respectively: SSrm12 = {−a2}, and SSmr13 = {+a3;+a4}. Hence,

BSa1 = {−a2} and SS¬a1 = {+a3;+a4}, and SS¬a1 is stronger than BSa1 . Eventually,

P2P DRSWA returns negative truth values for a1 and, hence for x1 as well. ¤

Example 1 (continued). In the MCS of example 1 (Figure 1.1), P2P DR receives

positive answers (true) for classtime2, location RA2013 and ¬class activity4 (from the

instances of the algorithm called by C2, C3 and C4 respectively), and resolves the con-


ict that arises for

¬lecture1 by comparing its Supportive Set, SS¬lecture1 = SSrm16 = {¬class activity4},
with the Blocking Set of lecture1, BSlecture1 = BSrm15 = {classtime2; location RA2013}.
Using T1 = [C4; C3; C2; C5], P2P DR determines that SS¬lecture1 is stronger than

BSlecture1 (as C4 precedes both C2 and C3 in T1) and returns a positive answer for

¬lecture1 and eventually for ring1 as well.

On the other hand, the version of the algorithm that implements Strict-Weak An-

swers, P2P DRSWA, returnsAnsclasstime2 = str(true) andAnslocation RA2013 = str(true),

as both are strict local conclusions of C2 and C3 respectively. For

¬class activity4, it returns Ans¬class activity4 = weak(true), as for the evaluation of

this answer it uses both local and mapping rules of C4. Hence, the Supportive Sets

of rules rm15 and rm16 are respectively: SSrm12 = {+classtime2;+location RA2013}, and

SSmr13 = {−¬class activity4}, and P2P DRSWA evaluates a negative truth value for

¬lecture1 and, eventually returns a negative truth value for ring1 as well. ¤

5.1.2 Complexity Analysis

The implementation of the Strict-Weak Answers strategy does not require drastic mod-

i�cations to the algorithms that implement the Single Answers strategy. Speci�cally,

local alg remains as it is, while the modi�cations of Support, Stronger and P2P DR
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do not a�ect the overall complexity of the algorithms. Therefore, Proposition 4 holds as

it is for the versions of the algorithms that implement the Strict-Weak Answers strategy

as well.

Similarly with the case of P2P DRO, which implements the Single Answers strategy,

P2P DRSWA can also be optimized using structures that retain the answers for incom-

ing and outgoing queries. In fact, P2P DROSWA uses structures of exactly the same form

with INC Q and OUT Q. The only di�erence is that for a record for (pj ; Histpj ), the

�eld that corresponds to Anspj is �lled with one of the values: str(true), weak(true),

undefined and false.

Using these optimizations, the number of algorithm calls and messages is reduced

in the same way with the Single Answers strategy, to O(n×∑
P (n; k)) and O(2× n×

∑
P (n; k)) respectively for the general case, and O(c×n) and O(2× c×n) respectively

for acyclic MCS, where c stands for the total number of contexts and n for the total

number of literals in the system.

5.2 Propagating Mapping Sets

The third strategy, Propagating Mapping Sets, goes one step further compared to Strict-

Weak Answers. Similarly with the second strategy, the evaluation of the imported

knowledge is based on how the \source" of this knowledge infers this knowledge. In

Strict-Weak Answers, we only care about whether the imported knowledge is inferred

from the strict local knowledge of the \source" or it is derived from both its local theory

and its mappings (and therefore from the knowledge of other contexts). Propagating

Mapping Sets further requires the \source" to return information about the identity

of other contexts that are involved in the derivation of the imported knowledge, and

evaluates it based on the ranks of these contexts in the preference ordering of the

context that imports this knowledge. In the MCS of example 1 (Figure 1.1), following

this strategy, the classroom manager does not only notify the mobile phone that there

is no class activity in the classroom, but also informs it that to reach this conclusion it

had to import knowledge from the person detection service. Hence, the evaluation of

this knowledge will take into account the preference that the mobile phone has in both

the classroom manager and the person detection service.
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5.2.1 Distributed Query Evaluation

The only modi�cations of P2P DR that are required to implement this strategy are

two:

• the Supportive Set and the Blocking Set of the queried literal are always returned

along with the computed truth value - in contrast with P2P DR, which in case

that a query is posed by some other context, the queried context just returns the

truth value of the literal it is queried about.

• The Supportive (Blocking) Set of a rule is the union of the foreign literals in the

body of the rule and the Supportive (Blocking) Sets of all literals in the body of

the rule - in contrast with P2P DR, where the Supportive (Blocking) Sets of the

foreign literals are not taken into account.

The pseudocode of P2P DRPS , the version of the distributed algorithm that im-

plements Propagating Mapping Sets, is derived from P2P DR as follows: Lines 15-24

are replaced by:

if suppi = true and (unb∼pi = false or Stronger(SSpi ; BS∼pi ; Ti) = SSpi) then
Anspi ← true

else if sup∼pi = true and Stronger(BSpi ; SS∼pi ; Ti) 6= BSpi then
Anspi ← false, SSpi = ∅, BSpi = ∅

else
Anspi ← undefined

The pseudocodes of local alg and Stronger remain unchanged, while Support is

modi�ed as follows:

• Lines 8-10 are replaced by:
if bt ∈ Histpi then
cycle(ri) ← true
BSri ← BSri ∪ (

⋃{dt}) {dt are the foreign literals of Ci added in Histpi after bt
including bt in case bt =∈ Vi}

• Lines 18-19 are replaced by:
if bt =∈ Vi then
BSri ← BSri ∪BSbt ∪ {bt}
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• Lines 23-25 are replaced by:
if bt =∈ Vi then
BSri ← BSri ∪BSbt ∪ {bt}
SSri ← SSri ∪ SSbt ∪ {bt}

Example 6 (continued). In the MCS depicted in Figure 5.1, P2P DRPS returns pos-

itive (true) answers for a3, a4, b5 and b6 along with empty Supportive and Blocking Sets,

as all of them are conclusions of C3, C4, C5 and C6 respectively. Called by C2, Support

computes SSrm23 = {b5} and SSrm24 = {b6}. Assuming that the preference ordering de-

�ned by C2 is T2 = [C4; C3; C5; C2; C6], Support determines that SSrm23 is stronger than

SSrm24 , and P2P DRPS returns true as an answer for b2 and a2 and SSa2 = SSb2 = {b5}.
For rm12 and rm13, Support respectively computes SSrm12 = {a2; b5} and SSrm13 = {a3; a4}.
According to T1 = [C4; C2; C6; C3; C5], C5 does not precede neither C3 nor C4 in

T1. Therefore, SS¬a1 = SSrm13 is computed to be stronger than BSa1 = SSrm12 , and

P2P DRPS returns false as answer for a1, and eventually Ansx1 = false. ¤

Example 1 (continued) In the MCS of Example 1 (Figure 1.1), P2P DRPS re-

turns positive (true) answers for classtime2, location RA2013, projector(off)4 and

detected(1)5 along with empty Supportive and Blocking Sets, as all of them are included

in the strict local knowledge of C2 (laptop), C3 (localization service), C4 (classroom man-

ager) and C5 (person detection service) respectively. For ¬class activity4, it returns a

positive (true) answer along with its Supportive Set SS¬class activity4 = {detected(1)5}.
For the two con
icting rules, rm15 and rm16, Support respectively computes SSrm15 =

{classtime2,location RA2013} and SSrm16 = {¬class activity4,

detected(1)5}. According to T1 = [C4; C3; C2; C5], C5 does not precede neither C3 nor

C4 in T1. Therefore, SSlecture1 = SSrm15 is computed to be stronger than BS¬lecture1 =

SSrm16 , and P2P DRPS returns false as answer for ¬lecture1, and eventually Ansring1 =

false. ¤

5.2.2 Complexity Analysis

The implementation of the Propagating Mapping Sets strategy requires each context to

return the Supportive and Blocking Sets of the queried literal, along with the answer

that indicates its truth value. This a�ects the overall complexity of distributed query

evaluation as follows: The overall complexity of the algorithms remains the same with
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the case of Single Answers. However, the worst case is not the same in the two cases.

The worst case in Single Answers is when all rules of Ci (the context that evaluates the

query) contain either pi or ∼ pi in their head and all literals de�ned in the system in

their bodies. In Propagating Mapping Sets, the worst case is when all rules of Ci contain

either pi or ∼ pi in their head, and the Supportive / Blocking Sets of all rules contain

all literals de�ned in the system, which means that the applicability of each rule in Ci
depends on the truth values of all literals de�ned in the system. Obviously, the worst

case described for Single Answer is a subcase of the case that we describe here. This

result is described in the Proposition below.

Proposition 9 The number of operations imposed by one call of P2P DR for the eval-
uation of a query for literal pi is in the worst case that all rules of Ci contain either
pi or ∼ pi in their head, and the applicability of each rule in Ci depends on the truth
values of all literals de�ned in the system, proportional to the number of rules in Ci,
and to the total number of literals in the system.

Similarly with the case of P2P DRO, which implements the Single Answers strategy,

P2P DRPS can also be optimized using structures that retain the answers for incoming

and outgoing queries. In this case both INCQ and OUTQ contain records of the form:

rec(pi; Histpi) : (Anspi ; BSpi ; SSpi) for each query about local/foreign pi with history

Histpi that has already been evaluated.

Using these optimizations, the number of algorithm calls and messages is reduced

in the same way with the Single Answers strategy, to O(n×∑
P (n; k)) and O(2× n×

∑
P (n; k)) respectively for the general case, and O(c×n) and O(2× c×n) respectively

for acyclic MCS, where c stands for the total number of contexts and n for the total

number of literals in the system.

5.3 Complex Mapping Sets

The main feature of Propagating Mapping Sets is that a context that imports knowledge

from another context, requires the \source" to return information about the identity

of all other contexts that are involved in the derivation of the imported knowledge.

Speci�cally, the \source" returns a set of literals that corresponds to the most preferred

reasoning chain that leads to the inferred knowledge. However, preference is subjective.
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The most preferred between two or more di�erent reasoning chains may vary according

to the viewpoint of two di�erent contexts. The fourth strategy, Complex Mapping Sets,

has the distinct feature that the most preferred between two or more reasoning chains is

not determined by the queried context, but by the context that imports the knowledge.

In the MCS used in Example 1, for each piece of knowledge that is exchanged between

the ambient agents, there is only one reasoning chain that leads to its inference. Suppose,

however, that there are two di�erent services that provide knowledge about the presence

of people in the classroom, C5 and C6, and that both detect one person in the classroom.

Using the strategy described in the previous section (Propagating Mapping Sets), the

classroom manager will use its local preference ordering to determine which of them

is preferred (e.g. more trustworthy), and will return the identity of that service (e.g.

C5) to the mobile phone. In this case, the mobile phone cannot be aware that C6

also provided the same knowledge, and will evaluate the knowledge it imports from the

classroom manager based on its preference in the classroom manager and C5. Following

Complex Mapping Sets, the classroom manager will inform the mobile phone that there

are two di�erent ways to infer that there is no activity in the classroom; one that

involves knowledge derived from C5, and another one that involves the local knowledge

of C6. In this case, the mobile phone will separately evaluate the two di�erent reasoning

chains, using its own preference in the two person detection services. If at least one of

these chains is preferred to the reasoning chains that lead to contradictory conclusions,

the mobile phone will be able to use this knowledge (that there is no class activity)

to derive further conclusions. Obviously, this approach is the richest w.r.t. the extent

of context knowledge that it exploits, but also the one with the highest computational

complexity.

5.3.1 Distributed Query Evaluation

To support the features of Complex Mapping Sets, P2P DR is modi�ed as follows:

• the Supportive Set and the Blocking Set of the queried literal are always returned

along with the computed truth value.

• The Supportive Set (Blocking Set) of a literal is actually the set of the Supportive

Sets (Blocking Sets) of all rules that can be applied to support this literal.
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• The Supportive Set (Blocking Set) of a rule is the Union Product (De�nition 18)

of the Supportive Sets (Blocking Sets) of all literals in the body of the rule.

De�nition 18 Let A, B be two sets, the elements of which are sets of literals. Their
Union Product is de�ned as:

A⊗B = {ai ∪ bj |ai ∈ A; bj ∈ B}

The Union Product of n sets A1; A2; :::; An is de�ned as follows:
⊗

i

Ai = (:::((A1 ⊗A2)⊗A3):::⊗An)

P2P DRCS is derived from P2P DR by replacing lines 15-24 with:

if suppi = true and (unb∼pi = false or ∃A ∈ BSpi : ∀B ∈ SS∼pi Stronger(A;B; Ti) = A)
then
Anspi ← true

else if sup∼pi = true and ∃B ∈ SS∼pi : ∀A ∈ BSpi Stronger(A;B; Ti) 6= A then
Anspi ← false, SSpi = ∅, BSpi = ∅

else
Anspi ← undefined

The pseudocodes of local alg and Stronger remain unchanged, while Support is

modi�ed as follows:

Support(pi; Histpi ; Ti; suppi ; unbpi ; SSpi ; BSpi)
1: suppi ← false
2: unbpi ← false
3: for all ri ∈ R[pi] do
4: cycle(ri) ← false
5: SSri ← ∅
6: BSri ← ∅
7: for all bt ∈ body(ri) do
8: if bt ∈ Histpi then
9: cycle(ri) ← true

10: BSri ← BSri ⊗ (
⋃{dt}) {dt are the foreign literals of Ci added in Histpi after bt

including bt in case bt =∈ Vi}
11: else
12: Histbt ← Histpi ∪ {bt}
13: call P2P DR(bt; Ci; Ct;Histbt ; Tt; SSbt ; BSbt ; Ansbt)
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14: if Ansbt = false then
15: stop and check the next rule
16: else if Ansbt = undefined or cycle(ri) = true then
17: cycle(ri) ← true
18: if bt =∈ Vi then
19: BSri ← BSri ⊗ (BSbt ⊗ {bt})
20: else
21: BSri ← BSri ⊗BSbt
22: else
23: if bt =∈ Vi then
24: BSri ← BSri ⊗ (BSbt ⊗ {bt})
25: SSri ← SSri ⊗ (SSbt ⊗ {bt})
26: else
27: BSri ← BSri ⊗BSbt
28: SSri ← SSri ⊗ SSbt
29: BSpi ← BSpi ∪BSri
30: unbpi ← true
31: if cycle(ri) = false then
32: SSpi ← SSpi ∪ SSri
33: suppi ← true

Example 6 (continued). In the MCS depicted in Figure 5.1, P2P DRCS returns

positive (true) answers for a3, a4, b5 and b6 along with empty Supportive and Blocking

Sets, as all of them are local conclusions of C3, C4, C5 and C6 respectively. Called

by C2, Support computes SSrm23 = {{b5}} and SSrm24 = {{b6}}, and P2P DRCS re-

turns true as an answer for b2 and a2 and SSa2 = SSb2 = {{b5}; {b6}}. For rm12 and

rm13, Support respectively computes SSrm12 = {{a2; b5}; {a2; b6}} and SSrm13 = {{a3; a4}},
and SSa1 = SSrm12 , BS¬a1 = SSrm13 . According to T1 = [C4; C2; C6; C3; C5], C6 and

C2 both precede C3 in T1, and A = {a2; b6} ∈ SSa1 is computed to be stronger than

B = {a3; a4}, which is the only set in BS¬a1 , and therefore P2P DRCS returns true as

answer for a1, and eventually Ansx1 = true. ¤

Example 1 (continued). In the system described in Example 1 (Figure 1.1), suppose

that there is an additional person detection service, C6, and its local knowledge is en-

coded in rule rl61, which states that it has detected one person it the classroom:

rl61 :→ persons(1)6
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Suppose also that C4 (the classroom manager) uses an additional mapping rule, rm43,

which states that if the projector is o�, and it receives information from C6 that there

is only one person in the classroom, then there is no class activity.

rm43 : projector(off)4; persons(1)6 ⇒ ¬class activity4

Assume also that the preference ordering de�ned by C1 and C4 are, respectively,

T1 = [C4; C3; C6; C2; C5] and T4 = [C4; C3; C5; C2; C6]. P2P DRPS , the algorithm

that implements Propagating Mapping Sets, will compute Ans¬class activity4 = true and

SS¬class activity4 = {detected(1)5}, since C5 precedes C6 in T4. Support will compute

SSrm15 = {classtime2,location RA2013} and SSrm16 = {¬class activity4; detected(1)5}.
Since C5 does not precede neither C3 nor C4 in T1, SSlecture1 = SSrm15 will be computed

to be stronger than BS¬lecture1 = SSrm16 , and P2P DRPS will return false as answer

for ¬lecture1, and eventually Ansring1 = false.

On the other hand, P2P DRCS will also return Ans¬class activity4 = true, but

the Supportive Set of ¬class activity4 is in this case SS¬class activity4={{detected(1)5},
{persons(1)6}}. For the two con
icting rules, rm15 and rm16, Support respectively com-

putes SSrm15 = {{classtime2, location RA2013}} and SSrm16 = {{¬class activity4,

detected(1)5}, {¬class activity4, persons(1)6}}. According to T1, C6 and C4 both pre-

cede C2 in T1, and A = {¬class activity4, persons(1)6} ∈ SS¬lecture1 is computed to be

stronger than B = {classtime2, location RA2013}, which is the only set in BSlecture1 .

Eventually, P2P DRCS returns true as answer for ¬lecture1, and Ansring1 = true. ¤

5.3.2 Complexity Analysis

The main di�erence of Complex Mapping Sets with the �rst three strategies is that

the Supportive / Blocking Sets used in this case are actually sets of sets of literals,

with each di�erent set representing a di�erent way to prove a literal. As a result, each

Supportive / Blocking Set may contain a number of sets, which is in the worst case

equal to the total number of di�erent combinations of the literals de�ned in the system.

As a result, the complexity of comparing two Supportive / Blocking Sets is in this case

O(nn), where n is the total number of literals de�ned in the system, making the overall

complexity of the algorithms exponential to the size of the knowledge base.
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Proposition 10 The number of operations imposed by one call of P2P DR for the
evaluation of a query for literal pi is in the worst case that all rules of Ci contain either
pi or ∼ pi in their head, and each di�erent combination of system literals can be used
to derive either pi or ∼ pi, O(nn), where n is the total number of literals de�ned in the
system.

P2P DRCS can also be optimized using structures of the same form with those used

by P2P DRPS , which implements Propagating Mapping Sets. Each record of INCQ or

OURQ is of the form: rec(pi; Histpi) : (Anspi ; BSpi ; SSpi), and the only di�erence with

the respective structures used by P2P DRPS is in the form of BSpi and SSpi .

Using these optimizations, the number of algorithm calls and messages is reduced

in the same way with the Single Answers strategy, to O(n×∑
P (n; k)) and O(2× n×

∑
P (n; k)) respectively for the general case, and O(c×n) and O(2× c×n) respectively

for acyclic MCS, where c stands for the total number of contexts and n for the total

number of literals in the system.
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Chapter 6

Implementation & Evaluation

This chapter describes two di�erent implementations of the four strategies for con
ict

resolution - the Single Answers strategy presented in Chapter 4, and the three alterna-

tive strategies (Strict-Weak Answers, Propagating Mapping Sets and Complex Mapping

Sets) presented in Chapter 5. In the �rst implementation, we used a simulated peer-

to-peer environment in order to evaluate and compare the four strategies in terms of

computational complexity. In the second one, the four strategies are implemented in

Logic Programming. The aim of the second implementation is to highlight the relation

between our rule-based approach and Logic Programming, and to enable reasoning in

real ambient environments using lightweight Prolog machines running on a variety of

stationary and mobile ambient devices.

6.1 Simulation-driven evaluation

6.1.1 Simulation Environment

In order to evaluate the four strategies, we implemented the respective versions of

P2P DR, and a P2P system simulating the proposed Multi-Context framework in Java.

The main reasons for choosing this particular programming language are

1. Java contains several data structures that can be used easily and e�ciently.

2. It is a \write-once, use many" language, thus giving us the opportunity to use

the peer-to-peer system virtually anywhere a virtual machine can be installed,
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Figure 6.1: System Layered Architecture.

from personal computers to mobile phones. This adds an extra advantage when

creating applications that involve multiple types of devices.

Software Architecture

For the network library as well as the peer-to-peer communication library, we used a

custom-built library based on the java.network packages. Libraries such as JXTA [58]

would be ine�cient due to the complexity in con�guring such a simple ad-hoc peer-to-

peer network. The message exchanging protocol in our custom library is also simple

and straightforward. However, one can use any other peer communication libraries, as

the system uses an abstract network manager interface.

The system is composed of 5 packages: agencies, logic, knowledge, network, peer-

lib. The agencies package contains the classes that implement the text �le parsers as

well as those that implement the four versions of P2P DR. The logic package con-

tains the classes the represent (in memory) the literals and the rules. The knowledge

package includes the KnowledgeBase class, which stores the local and mapping rules,

the preference ordering and any other required information, and some cache classes.

The network package includes the mechanism that associates a new socket connection

with a new thread, whereas the peerlib contains the higher-level classes that operate the

communication between two peers.

Figure 6.1 depicts the architecture, organized in a protocol stack manner. The main

class that operates the peer instance is called Node. Its functionality includes parsing

the preference ordering and theory �les, as well as the initialization of the network
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libraries and knowledge base. When initialization is complete, it waits for pending

queries. Finally, another class named Client can be used to connect to a Node speci�ed

by IP address, so that one can manually make speci�c queries to that speci�c peer

instance.

Network Formation

When receiving an incoming query, a system node �rstly uses its local knowledge to

compute the answer. In case it fails to answer based on its local theory, the node

attempts to use its mappings. In the latter case, it invokes other peers in the network,

by sending them queries about the truth value of some of their local literals. When

issuing a query about a given literal, a node determines which peer to ask by checking

the name of the literal, which associates the literal with the system node vocabulary

it belongs to. One query may result in a sequence of queries spread over the network.

The response path of this sequence will eventually follow the exact opposite path of

the query sequence. The response message will include an answer indicating the truth

value of the literal that the initial query was about, and depending on the strategy

additional relevant information; namely (a) in the case of Strict-Weak Answers, a sign

that indicates whether this is a strict or weak answer; (b) in the case of Propagating

Mapping Sets, a set of literals that corresponds to a reasoning chain that leads to the

computed answer; and (c) in the case of Complex Mapping Sets, a set of sets of literals,

each of which corresponds to a reasoning chain that leads to the computed answer.

Figure 6.2 depicts the information 
ow in such a hypothetical network.

6.1.2 Experimental Evaluation

The goal of the experiments was to compare the four di�erent strategies in terms of

actual computational time spent by a system peer to evaluate the answer to a single

query, and to test their scalability. Below we present the test theories that we used

and the setup of the experiments, and discuss the results of the evaluation of the four

strategies using systems with various peer populations.
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Figure 6.2: Network Formation.

Setup of the Experiments

Using a tool that we built for the needs of the experiments, we created theories that

correspond to the case that the evaluation of a single query requires the evaluation of

the truth values of all literals from all system nodes. For sake of simplicity, we did

not include the case of loops in the global knowledge base; hence, for each literal the

returned answer was either true or false The test theories have the following form:

rm1 : a2; a3; :::; an ⇒ a0

rm2 : a1; a3; :::; an ⇒ a0

:::

rmn=2 : a1; :::; an=2−1; an=2+1; :::; an ⇒ a0

rmn=2+1 : a1; :::; an=2; an=2+2; :::; an ⇒ ¬a0

:::

rmn : a1; a2; :::; an−1 ⇒ ¬a0

The above mapping rules are de�ned by C0 and associate the truth value of its local

literal a0 with the truth values of the literals from n other system peers. Half of them
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support a0 as their conclusion, while the remaining rules contradict a0 (¬a0 is in their

head). In case the answers returned for all foreign literals a1, a2,...,an are all true, then

all mapping rules are applicable and are involved in the computation of the truth value

of a0.

Number of Messages

As it has already been proved, the number of messages that are required for the com-

putation of a single query is the same for all alternative strategies. Speci�cally, for the

case that we describe above, given a query about ao and using the optimized algorithms

for query evaluation (P2P DRO), C0 will make one query for each of the foreign literals

that appear in the body of its mapping rules, sending in total n query messages, while

it will receive one response for each of the query messages. In total n response messages

will be received regardless of the followed strategy. In the same sense, assuming that

all system peers use theories of the same form, each of the peers that receive query

messages from C0 has to make (in the worst case) one query for each of the foreign

literals that appear in the body of its mapping rules (n query messages) and will receive

an equal number of query responses. Hence, totally, in the worst case that P2P DRO

uses all mapping rules from all system peer theories, the total number of messages that

need to be exchanged for the evaluation of the query about a0 are 2n2.

Size of Messages

A major di�erence between the four versions of P2P DR that implement respectively

the four alternative strategies for con
ict resolution, is in the size of messages exchanged

between the system contexts. Speci�cally, the size of the query messages is the same

for all strategies. Each such message will contain the queried literal, the ids of the

querying and the queried contexts and a set of literals representing the history of the

query. However, the size and form of the query responses largely depend on the con-


ict resolution strategy. Speci�cally, for the type of experiments that we conducted, a

response message for a literal ai has one of the following forms:

• In the case of P2P DR, which implements the Single Answers strategy, the re-

sponse message will contain only the truth value of ai; namely, one of the values

true and false (since there are no loops in the global knowledge base).
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Table 6.1: Size of Response Messages for the Four Strategies

SA SWA PS CS

1 1 2×(n−1)+1 2× (n−1)× (n−2)+1

• In the case of P2P DRSWA, which implements the Strict-Weak Answers strategy,

the response message will contain one of the values str(true), weak(true) and false.

• In the case of P2P DRPS , which implements the Propagating Mapping Sets strat-

egy, the response message will contain the truth value of ai (either true or false)

and two sets of literals - SSai representing the Supportive Set of ai and BSai
representing the Blocking Set of ai. By construction of the test theories, each

of the two sets will contain one literal from each of the peers (except Ci) in the

system. Therefore, the size of a response message is in this case 2× (n− 1) + 1,

where n is the total number of peers in the system.

• In the case of P2P DRCS , which implements the Complex Mapping Sets strategy,

the response message will contain the truth value of ai (either true or false)

and two sets of literals - SSai representing the Supportive Set of ai and BSai
representing the Blocking Set of ai. By construction of the test theories, each of

the two sets will contain n− 1 di�erent sets of literals, and each of these sets will

contain n − 2 literals. Therefore, the total size of each response message will be

2× (n− 1)× (n− 2) + 1, where n is the total number of peers in the system.

The results about the size of response messages are summarized in Table 6.1.

Processing Time

In order to exclude the communication overhead from the total time spent by C0 to

evaluate the truth value of a0, we �lled a local cache class with appropriate answers for

all the foreign literals. Speci�cally, for each version of P2P DR, this class is �lled with

answers for all foreign literals (a1; a2; :::; an) as follows:

1. P2P DR: Positive truth values (true) for all literals
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Table 6.2: Processing Time for the Four Strategies

] literals (n) SA SWA PS CS

10 78 80 1313 2532
20 469 540 1534 4305
40 2422 3102 3466 207828
60 5719 6390 7188 -
80 10437 10302 15484 -
100 16484 15550 27484 -

2. P2P DRSWA: Positive strict/weak answers (chosen randomly) for all literals.

3. P2P DRPS : Positive truth values with Supportive Sets that contain all other

foreign literals:

SSai = {a1; a2; :::; ai−1; aa+1; :::; an}

4. P2P DRPS : Positive truth values with Supportive Sets of the form:

SSai = {{a2; :::; ai−1; aa+1; :::; an}; {a1; a3; :::; ai−1; aa+1; :::; an};

:::; {a1; a2; :::; ai−1; aa+1; :::; an−1}

For each version of the algorithm, we conducted six experiments with a variant size

of the global knowledge base in terms of total number of literals, which in this case

coincides with the total number of system peers: 10, 20, 40, 60, 80, and 100. The test

machine was an Intel Celeron M at 1.4 GHz with 512 MB of RAM.

Table 6.2 shows in milliseconds the processing time for each version of P2P DR

(SA refers to P2P DR, which implements the Single Answers strategy, SWA refers

to P2P DRSWA, which implements Strict-Weak Answers, PS stands for P2P DRPS ,

which implements Propagating Mapping Sets, while CS refers to P2P DRCS , which

implements Complex Mapping Sets). For the case of P2P DRCS , we were able to

measure the computation time only for the cases where n = 10; 20; 40; in the other

cases the test machine ran out of memory.
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As it is obvious from Table 6.2, the results for the �rst three strategies are similar;

the computation time is proportional to the square of the number of system peers, ver-

ifying our expectations from the theoretical results presented in the previous chapters.

The Complex Sets strategy requires much more memory space and computation time

(exponential to the number of peers), which make it inapplicable in cases of very dense

systems. The results also verify the tradeo� between the computational complexity and

the extent of context information that each algorithm exploits to evaluate the quality

of the imported context information.

6.2 The Algorithms in Logic Programming

In this section we present the logic metaprograms that implement the four alternative

strategies for con
ict resolution. They are driven by the logic metaprogram of Defeasible

Logic, as the latter is described in [9]. We should note that for the negation operator

that we use in the metaprograms we have adopted the Well-Founded Semantics.

Overall, the goal of the translation of the context theories Ci in a Multi-Context

System C into a logic program P (C) is to show that in case there are no loops in C,

then for a literal p ∈ C:

p is justi�ed in C i�

p is included in the Well-Founded model of P (C)

To achieve this goal, for each of the context Ci in C, we add a fact of the form

context(ci). For each of the four strategies, we use the respective logic metaprogram,

and for each context theory Ci, we use facts representing the elements of the theory as

follows:

• For each strict local rule in Ci, rli : a1
i ; a2

i ; :::a
n−1
i → ani , we add a fact of the form:

strict(ri; Ci; lit(an; Ci); [lit(a1; Ci); :::; lit(an−1; Ci)]).

• For each defeasible local rule in Ci, rdi : a1
i ; a2

i ; :::a
n−1
i ⇒ ani , we add a fact of the

form: defeasible(ri; Ci; lit(an; Ci); [lit(a1; Ci); :::; lit(an−1; Ci)]).

• For each mapping rule in Ci, rmi : a1
i ; a2

j ; :::a
n−1
k ⇒ ani , we add a fact of the form:

mapping(ri; Ci; lit(an; Ci); [lit(a1; Ci); :::; lit(an−1; Ck)]).
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• The preference ordering of context Ci, Ti = [Ck; Cl; :::; Cn] is added as a fact of

the form pref(Ci; [Ck; Cl; :::; Cn]).

6.2.1 Single Answers metaprogram

The �rst three clauses of the metaprogram that implements the Single Answers strategy

de�ne the classes of rules used in a context theory.

c1: supportive_rule(Name,Context,Head,Body):-
strict(Name,Context,Head,Body).

c2: supportive_rule(Name,Context,Head,Body):-
defeasible(Name,Context,Head,Body).

c3: supportive_rule(Name,Context,Head,Body):-
mapping(Name,Context,Head,Body).

The following clauses de�ne local provability: a literal is locally provable in context C

if it is in the head of a strict local rule in C, the premises of which are locally provable

in C.

c4: locally(X,C):- strict(R,C,X,L), locally_provable(L,C).

c5: locally_provable([],C):- context(C).

c6: locally_provable([X1|X2],C):- locally(X1,C),
locally_provable(X2,C).

The next clauses de�ne provability of literals. Speci�cally, a literal lit(X;C) is provable

in context C in two cases:

1. If it is locally provable in C. In this case an empty set is assigned as the Supportive

Set of the literal (c7 ).

2. If it is in the head of an applicable rule in C, which is not blocked, and the

negation of the literal is not locally provable in C. In this case, the Supportive

Set of this rule (SSr) is assigned as the Supportive Set of the literal (c8 ).

c7: provable(X,C,[]):- locally(X,C).

c8: provable(X,C,SSr):- applicable_rule(R,C,X,L,SSr),
not(locally(~X,C)), not(blocked(R,C,X,SSr)).
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We use clause c9 to denote that if a literal lit(X;K) is provable in a context K in one

of the two ways described above, then we can also consider it provable in any other

context C. In this case [K] is assigned as the Supportive Set of lit(X;K) in C.

c9: provable(lit(X,K),C,[K]):- provable(lit(X,K),K,SSx), K\=C.

The next clause de�nes applicable rules. A supportive rule is applicable in C if all

its premises are provable. The Supportive Set of the rule (SSr) is the union of the

Supportive Sets in C of the literals in the body of the rule.

c10: applicable_rule(R,C,X,L,SSr):- supportive_rule(R,C,X,L),
provable_list(L,C,SSr).

The next clauses denote that a list of literals is provable in C if all the members of

the list are provable in C, and that the Supportive Set of the list is the union of the

Supportive Sets of the elements of the list. In clause c14, merge(SS1; SS2; SSL) creates

SSL as the union of sets SS1 and SS2.

c11: provable_list([],C,[]):- context(C).

c12: provable_list([X1|X2],C,SSL):- provable(X1,C,SS1),
provable_list(X2,C,SS2), merge(SS1,SS2,SSL).

Clause c13 de�nes when a rule is blocked. A rule R is blocked in C when there is an

applicable rule S with a contradictory conclusion in C, such that R is not stronger than

C according to the preference ordering de�ned by C.

c13: blocked(R,C,X,SSr):- applicable_rule(S,C,~X,L,SSs), pref(C,T),
not(stronger(SSr,SSs,T,SSr)).

Finally the last clauses de�ne how the strongest between two rule Supportive Sets (A,B)

is determined based on a preference ordering T .

stronger(A,B,T,B):- weakest(A,A1,T), weakest(B,B1,T),
weaker(A1,B1,T,A1).

stronger(A,B,T,A):- weakest(A,A1,T), weakest(B,B1,T),
weaker(A1,B1,T,B1).

weakest([X],X,_).
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weakest([X|Tail],M,T):- weakest(Tail,M1,T),
weaker(X,M1,T,M).

weaker(Y1,Y2,T,Y1):- ith(Pos1,T,Y1),ith(Pos2,T,Y2),Pos1>Pos2.
weaker(Y1,Y2,T,Y2):- ith(Pos1,T,Y1),ith(Pos2,T,Y2),Pos2>Pos1.

6.2.2 Strict-Weak Answers metaprogram

In order to support the features of Strict-Weak Answers strategy, the Single Answers

metaprogram is modi�ed as follows:

To support the two di�erent types of answers (strict and weak answers), clause c9 is

replaced with c9a and c9b. In clause c9a, loc(K) indicates that lit(X;K) is locally

provable in K, while in clause c9b, map(K) indicates that lit(X;K) is provable in K,

but not locally provable.

c9a: provable(lit(X,K),C,[loc(K)]):- locally(lit(X,K),K),K\=C.

c9b: provable(lit(X,K),C,[map(K)]):- provable(lit(X,K),K),K\=C,
not(locally(lit(X,K),K)).

The strength of an element of a Supportive Set (loc(K)/map(K)) in context C is deter-

mined primarily by the type of answer described in the element (loc/map), and secondly

by the rank of K in the preference ordering of C. To support this feature the clauses

that de�ne weaker are modi�ed as follows:

weaker(loc(Y1),map(Y2),_,map(Y2)).
weaker(map(Y1),loc(Y2),_,map(Y1)).

weaker(loc(Y1),loc(Y2),T,loc(Y1)):- ith(Pos1,T,Y1), ith(Pos2,T,Y2),
Pos1>Pos2.
weaker(loc(Y1),loc(Y2),T,loc(Y2)):- ith(Pos1,T,Y1),
ith(Pos2,T,Y2), Pos2>Pos1.

weaker(map(Y1),map(Y2),T,map(Y1)):- ith(Pos1,T,Y1), ith(Pos2,T,Y2),
Pos1>Pos2.
weaker(map(Y1),map(Y2),T,map(Y2)):- ith(Pos1,T,Y1),
ith(Pos2,T,Y2), Pos2>Pos1.
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6.2.3 Propagating Mapping Sets metaprogram

To implement the di�erences between Propagating Supportive Sets and Single Answers,

the Single Answers metaprogram is modi�ed as follows:

Clause c8, which describes the second way in which a literal is provable in a context C

is replaced with c8a.

c8a: provable(X,C,SSx):- canprove(X,C), supportive_set(X,C,SSx).

We add clause c14 to describe when a literal can be proved in C. This is the same with

the de�nition of provable in Single Answers with the di�erence that canprove carries

no information about the Supportive Set of the literal.

c14: canprove(X,C):- applicable_rule(R,C,X,L,SSr),
not(locally(~X,C)), not(blocked(R,C,X,SSr)).

Two clauses are added that de�ne the Supportive Set of a literal (SSx) in context

C. Clause c15 states that in case X is locally provable in C, its Supportive Set is an

empty set, while clause c16 states that in any other case the strongest (according to the

preference order of C) Supportive Set of the applicable supportive rules with head X

is assigned as the Supportive Set of X in C. In clause c16, findall creates SS as the

union of the Supportive Sets (SSr) of all applicable rules with head X.

c15: supportive_set(X,C,[]):- locally(X,C).

c16: supportive_set(X,C,SSx):- not(locally(X,C)),
findall(SSr,applicable_rule(R,C,X,L,SSr),SS), pref(C,T),
strongest_set(SS,SSx,T).

Clause c9 is replaced with clause c9c, which states that if a literal lit(X;K) is provable in

a context K then we can also consider it provable in any other context C, and the union

of [K] and SSx (the Supportive Set of lit(X;K) in K) is assigned as the Supportive

Set of lit(X;K) in C.

c9c: provable(lit(X,K),C,[K|SSx]):- provable(lit(X,K),K,SSx), K\=C.

Finally, the following two clauses are used to compute the strongest between a number

of Supportive Sets.

strongest_set([X],X,_).
strongest_set([X|Tail],M,T):-strongest_set(Tail,M1,T),
stronger(X,M1,T,M).
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6.2.4 Complex Mapping Sets metaprogram

To support the features of Complex Mapping Sets, the Single Answers metaprogram is

modi�ed as follows: Clause c7 is replaced with c7a, because Supportive Sets in this case

are actually sets of sets.

c7a: provable(X,C,[[]]):- locally(X,C).

Similarly with Propagating Mapping Sets clause c8 is replaced with c8a, and we add

clause c14.

c9a: provable(X,C,SSx):- canprove(X,C), supportive_set(X,C,SSx).

c16: canprove(X,C):- applicable_rule(R,C,X,L,SSr),
not(locally(~X,C)), not(blocked(R,C,X,SSr)).

We add the following two clauses (c15a and c16a) to de�ne the Supportive Set of literal.

In this case, the Supportive Set of a literal in C, which is not locally provable in C, is

de�ned as the union of the Supportive Sets of the applicable supportive rules in C.

c15a: supportive_set(X,C,[[]]):- locally(X,C).

c16a: supportive_set(X,C,SSx):- not(locally(X,C)),
findall(SSr,applicable_rule(R,C,X,L,SSr),SSx).

Clause c9 is replaced with clause c9d, which states that if a literal lit(X;K) is provable

in a context K then we can also consider it provable in any other context C, and the

union product of [[K]] and SSx (the Supportive Set of lit(X;K) in K) is assigned as

the Supportive Set of lit(X;K) in C. uproduct implements the union product operator

that we de�ned in Chapter 5.

c9d: provable(lit(X,K),C,SSxc):- provable(lit(X,K),K,SSx), K\=C,
uproduct([SSx,[[K]]],SSxc).

Clause c12 is replaced with c12a, which states that the Supportive Set of the union of

two sets of literals X1 and X2 is the union product of their Supportive Sets (SS1 and

SS2 respectively).

c12a: provable_list([X1|X2],C,SSL):- provable(X1,C,SS1),
provable_list(X2,C,SS2), uproduct([SS1,SS2],SSL).
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Finally, the stronger predicate in clause c13 is replaced by complex stronger, which

de�nes the stronger relation between two sets of sets.

complex_stronger(A,B,T,B):- strongest_set(A,A1,T),
strongest_set(B,B1,T), stronger(A1,B1,T,B1).

complex_stronger(A,B,T,A):- strongest_set(A,A1,T),
strongest_set(B,B1,T), stronger(A1,B1,T,A1).

strongest_set([X],X,_).
strongest_set([X|Tail],M,T):-strongest_set(Tail,M1,T),
stronger(X,M1,T,M).
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Chapter 7

Conclusion

To conclude this thesis, we summarize and discuss its main contributions, and propose

possible directions for future research.

7.1 Synopsis

The imperfect nature of context knowledge and the special characteristics of ambient

devices and Ambient Intelligence environments have introduced new challenges in the

�eld of Distributed Arti�cial Intelligence. Most current Ambient Intelligence systems

have not successfully addressed most of them, by relying on unrealistic simplifying as-

sumptions, such as perfect knowledge of context, centralized context, and unbounded

computational and communicating capabilities. The requirements, though, are much

di�erent in such environments. The uncertainty of context and its distribution to het-

erogeneous devices with restricted capabilities, impose the need for relaxing these as-

sumptions and for employing di�erent reasoning approaches.

This thesis describes a formal model for representing and reasoning with the im-

perfect and distributed context knowledge in Ambient Intelligence environments. The

proposed representation model is based on Multi-Context Systems; a formalism in which

the notions of distribution of the available knowledge, and interrelation between knowl-

edge possessed by di�erent ambient agents are naturally represented through contexts

and mappings between contexts. In order to handle cases of uncertain, missing or am-

biguous context, we extended the basic model of MCS, as this was introduced in [57],

with new features, such as defeasible mapping rules and a preference relation over the
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system contexts. On top of this model, we developed an argumentation framework,

which enables distributed reasoning with the available context and preference infor-

mation. The proposed framework extends the argumentation semantics of Defeasible

Logic, proposed in [61], which in turn is based on the grounded semantics of Dung's

abstract argumentation framework [45]. Speci�cally, it introduces the notions of rank

of an argument, which is determined according to the available preference information,

and of argumentation line, which accounts for the fact that arguments are interrelated

through the mappings de�ned by the system contexts.

In chapter 4, we described an operational model in the form of a distributed al-

gorithm for query evaluation. We studied the formal properties of the algorithm with

respect to termination, number of messages, and computational complexity. We also

proved that the algorithm is sound and complete with respect to the argumentation

framework, and that there is a standard process that uni�es the distributed context

theories in a global theory of Defeasible Logic, which produces the same results with

the algorithm under the proof theory of Defeasible Logic [8]. The latter result enables

resorting to centralized reasoning by collecting the distributed context theories in a

central entity and creating an equivalent defeasible theory.

In chapter 5, we described three alternative strategies for con
ict resolution, which

di�er in the extent and type of context information that is exploited to resolve con-


icts caused by the interaction of contexts through their mappings. Speci�cally, the

alternative strategies evaluate the imported knowledge taking into account not only

the preference rank of the source of the imported knowledge, but also how the source

derived this knowledge. In Strict-Weak Answers, we de�ne two types of derivation:

local derivation, which is based on the strict local rules of the source's context the-

ory, and distributed derivation, which also uses the source's mappings. In the other

two strategies (Propagating Mapping Sets and Complex Mapping Sets), the source, in

case of distributed derivation, returns also information about which other contexts are

involved in this derivation. We also discussed the tradeo� between the extent of con-

text knowledge that is exploited to conduct con
ict resolution, and the computational

overhead imposed to the context that resolves the con
ict.

Finally, in chapter 6, we presented two di�erent implementation of the four strate-

gies. The �rst one aimed at evaluating the four strategies in terms of computational

complexity, while the second one is based on the translation of context theories into logic
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programs, and on the use of four di�erent metaprograms, each of which implements one

of the four strategies.

7.2 Future Directions

Our study on defeasible contextual reasoning can be extended in various dimensions,

which are discussed below.

7.2.1 Extending our approach to multiple dimensions

In the introductory chapter, we already referred to a number of assumptions that our

reasoning methods depend on. It is among our plans to relax some of these assumptions

in order to generalize our reasoning methods, and enable their applicability in a greater

range of applications. Below, we discuss some main directions to which our approach

can be extended.

Overlapping Vocabularies

One of the main assumptions that we make is that each di�erent agent (context) uses a

distinct vocabulary to represent its context knowledge. However, this is not always the

case in real environments. There are some types of words, such as URIs, which may be

commonly used by di�erent agents, and this fact is in contrast with our assumption.

Without altering our approach, we can overcome this problem by adding a context

identi�er e.g. as a pre�x in each such word, add the modi�ed words in the vocabularies

of the contexts, and use appropriate mappings to associate them. E.g. assume that

uri is a word that both C1 and C2 wish to use in their local theories. C1 and C2 may

add c1 : uri and c2 : uri respectively in their vocabularies, while the following mapping

rules should be added in C1 and C2 respectively:

rm1 : c2 : uri⇒ c1 : uri

rm2 : c1 : uri⇒ c2 : uri

These two mapping rules express the equivalence between the two words, c1 : uri

and c1 : uri.
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Although this method does not provide a convenient solution, it does not require any

changes to our representation and reasoning models. An alternative more convenient

solution, which we plan to study in the future, would be to modify our models, so that

contexts may use overlapping vocabularies, with the overlapping parts containing such

types of words.

Study cases of reduced complexity

In Chapters 4 and 5, we proved that the worst case complexity (in terms of number of

messages) of the distributed algorithms for query evaluation that we propose is between

2n and n!2n, where n stands for the total number of system literals, while in acyclic

MCS the number of messages is proportional to n and to the total number of system

contexts. It is, however, also very interesting to de�ne the average case and study the

complexity of the algorithms in that case. It is also interesting to de�ne cases that are

more common in practice, based on real-world scenarios of Ambient Intelligence, and

study how much better our methods can perform in such situations.

Relevance with loop checking variants of Defeasible Logic

In Chapter 4, we studied a method for building a global defeasible theory using the

distributed context theories and their preference orderings. Through Propositions 7 and

8, we showed that in case there are no loops in the global knowledge base, the global

theory produces the same results as the application of P2P DR on a Multi-Context

System C under the proof theory of the ambiguity blocking version of Defeasible Logic

with superiority relation [8].

In Chapter 6, we also described how are reasoning methods are implemented in Logic

Programming, driven by the translation of Defeasible Logic in Logic Programming, as

the latter is described in [9]. We argued that the logic programs produce equivalent

results with our reasoning algorithms, in case there are no loops in the global knowledge

base.

It is among our future plans to extend these results for the case of non-acyclic

MCS; namely for systems with loops in the global knowledge base. Speci�cally, we plan

to study the relation between our reasoning approach and loop checking variants of

Defeasible Logic, such as those described by Nute in [88; 89]. For the translation into
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logic programs, we will extend the translation schemes proposed by Maier and Nute in

[82; 83].

Integration with Abstract Argumentation Frameworks

As we already stated in Chapters 2 and 3, the argumentation semantics that we pre-

sented in Chapter 3 extends the argumentation framework of Defeasible Logics proposed

by Governatori et al. in [61], with the notions of argumentation lines and ranks of argu-

ments, which are derived using the preference orderings de�ned by the system contexts.

Regarding the recent prominent studies on preference-based argumentation frame-

works that we discuss in Chapter 2, we argued that our approach is also closely related

to the abstract argumentation framework with contextual preferences of Amgoud et al.

[7], where each context also de�nes its own preference ordering on the set of arguments.

An interesting extension of our approach would be to integrate the concepts that we use

and our reasoning methods in this argumentation framework, as well as in other similar

frameworks proposed by Amgoud and her colleagues [4; 5; 6], which use a partial pre-

ordering on arguments, or in the value-based argumentation frameworks [14; 72], which

relate the preference over an argument with the preference over the value it promotes.

7.2.2 Extending Contextual Default Logic with Priorities

One of the main limitations of Contextual Default Logic [36] regarding its applicability

to Ambient Intelligence is that it does not include the notion of preference between

contexts. This is, however, an important context parameter, which can be used to

encode the con�dence that an ambient agent has in the knowledge imported by other

agents, to evaluate the quality of imported information, and to resolve inconsistencies

that arise when importing mutually inconsistent information.

One of the next steps of this work is to integrate such a preference relation in

Contextual Default Logic and implement strategies similar to those that we propose

in Chapter 5 for global con
icts resolution. This would require the use of versions of

Default Logic that introduce a priority relation in either the object or the meta language.

An extensive survey for such Logics is available at [43]. Two interesting examples of

deriving priorities for Default Logic using an external preference relation, are described

in [74] and [101]. The �rst approach takes as input a trust relation computed in a

Web-based Social Network and creates priorities between defaults in Prioritized Default
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Logic [13]. The limitation of this approach is that the trust relation is �xed and shared

between all system peers. The second approach deals with the problem of multiple

extensions that can be generated from a particular default theory using priorities that

are based on a learned con�dence function. An additional advantage, here, is that

the priority relation is not static. The second approach has been applied in reasoning

with partitioned default theories in Multi-Agent Systems with similar requirements with

Ambient Intelligence systems.

7.2.3 Deployment in Real Ambient Intelligence Environments

The �nal goal of this study is to deploy the proposed reasoning methods in real Ambient

Intelligence environments and implement application scenarios such as those described

in Chapter 1. The �rst steps towards this direction have already been completed. The

four algorithms described in Chapter 5 have already implemented in Java and Prolog,

as we already described in Chapter 6.

For the deployment of the logic programs, which implement the four algorithms for

query evaluation in various mobile devices, such as PDAs or mobile phones, we plan to

use Prolog machines that are speci�cally designed for mobile phones, such as JIProlog

(Java Internet Prolog [115]), which is is compliant with MIDP 1.0/2.0 or Symbian OS

mobile phones. For the communication of the various ambient devices, we plan to use

the IEEE 802.11 wireless network infrastructure of FO.R.T.H. The ambient environ-

ments will also include several sensory subsystems, such as the Collaborative Location

Sensing system [49] which exploits the IEEE 802.11 wireless network infrastructure for

positioning, and a multi-camera vision system supporting the development of wide-area

exertainment applications [120].

This deployment is expected to raise several issues that we will need to handle. These

challenges are inherent in ad-hoc systems in settings with wireless communications, and

include peer detection, message exchange, peers joining or leaving the network during

query evaluation, errors and delays in the communication and others.
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Proofs

Lemma 1. The sequences of sets of arguments JCi and RCi (T ) are monotonically in-

creasing.

Proof. We prove the Lemma by induction on i. The inductive base is trivial in both

cases since JC0 = ∅ and RC0 (T ) = ∅ and thus JC0 ⊆ JC1 and RC0 (T ) ⊆ RC1 (T ).

By de�nition strict local arguments are acceptable w.r.t. every set of arguments;

thus they are in every JCi .

Let A be an argument in JCn and let B be an argument defeating A. By de�nition,

B is undercut by JCn−1; namely for every argumentation line BL with head B, there is a

literal q and an argument D, such that D is supported by JCn−1 and D defeats a proper

subargument of B or an argument in BL−{B} at q. By inductive hypothesis JCn−1 ⊆ JCn ;

hence D is also supported by JCn . Consequently, B is undercut by JCn . Since A is an

argument in JCn , by de�nition A is supported by JCn−1, and by inductive hypothesis, A

is also supported by JCn . Therefore A is acceptable w.r.t. JCn , and A ∈ JCn+1.

We consider now the sequence of rejected arguments. Let A be an argument is

RCn (T ). By de�nition, A is not a strict local argument and one of the three follow-

ing conditions hold: (a) A proper subargument of A, A′ is in RCn−1(T ). By inductive

hypothesis RCn−1(T ) ⊆ RCn (T ); hence A′ ∈ RCn (T ) and A ∈ RCn+1(T ); (b) for every

argumentation line AL with head A, a subargument A′ of an argument in AL − {A} is

in RCn−1(T ), and by inductive hypothesis A′ ∈ RCn (T ) ⇒ A ∈ RCn+1(T ); or (c) a proper

subargument of A or an argument in AL − {A} is defeated by an argument supported
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by T . In this case A ∈ RCi (T ) for every i, and therefore A ∈ RCn+1(T )

Lemma 2. In a Multi-Context System C:

1. No argument is both justi�ed and rejected.

2. No literal is both justi�ed and rejected.

Proof Suppose that there is an argument that is both justi�ed and rejected. Let n

be the smallest index such that for some argument A, A ∈ RArgsC(JArgsC) and

A ∈ JCn . Since A ∈ JCn , it holds that either (a) A is a strict local argument; or (b)

A is supported by JCn−1 and every argument defeating A is undercut by JCn−1. Since

A ∈ RArgsC(JArgsC), (a) does not hold. Hence, there is an argumentation line A′L
with head A such that for every subargument of A or argument in A′L−{A}, A′, it holds

that A′ ∈ JCn−1, and by Lemma 1 A′ ∈ JCn . By de�nition, every argument defeating A′

is undercut by JCn−1.

Since A ∈ RArgsC(JArgsC), it holds by de�nition that for every argumentation line

AL with head A either (c) there exists an argument B that is supported by JArgsC and

defeats a subargument of A or an argument in AL − {A}; or (d) a subargument of A

or an argument in AL − {A} is in RArgsC(JArgsC). However, we have already proved

that A′ ∈ JCn−1, and by supposition n is the smallest index such that for some argument

A, A ∈ RArgsC(JArgsC) and A ∈ JCn ; therefore (d) does not hold.

By (b) and (c), there exists an argumentB′, such thatB′ defeatsA′, and is supported

by JArgsC and undercut by JCn−1. Hence, for every argumentation line BL with head B′

there is an argument D that is supported by JCn−1 and defeats an argument in BL−{B′}
or a proper subargument of B′. By de�nition of supported, there is an argumentation

line B′L with head B′ such that every argument defeating an argument in B′L − {B} or

a proper subargument of B′ is undercut by JArgsC . Hence D is undercut by JArgsC ;

namely, for every argumentation line DL with head D there is an argument E that is

supported by JArgsC and defeats an argument in DL−{D} or a proper subargument of

D. Since D is supported by JCn−1, there is an argumentation line D′
L with head D s.t. for

every subargument of D or argument in D′
L−{D}, D′, D′ ∈ JCn−1. However, since D is

undercut by JArgsC , D′ is defeated by an argument E′ supported by JArgsC ; therefore

D′ ∈ RArgsC(JArgsC) and D′ ∈ JCn−1, which contradicts the assumed minimality of n.

Hence the original supposition is false, and no argument is both justi�ed and rejected.
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The second part follows easily from the �rst: if p is justi�ed there is an argument

A for p in JArgsC . From the �rst part, A ∈ ArgsC − RArgsC(JArgsC). Thus if p is

justi�ed then it is not rejected.

Lemma 3. If the set of justi�ed arguments of C, JArgsC contains two arguments with

con
icting conclusions, then both are strict local arguments.

Proof. Let the two arguments be A and B. Suppose B is a strict local argument. Then,

for A to be acceptable with respect to every S, A must also be a strict local argument

(otherwise B would defeat A, and B cannot be undercut by S). Thus, by symmetry,

either A and B are both strict local arguments, or they are both defeasible local or

mapping arguments. Suppose that both are defeasible local or mapping arguments and

B defeats A. Then A must be rejected because it is defeated by an argument supported

by JArgsC , and is justi�ed by assumption. By Lemma 2, this is not possible. Similarly,

if we assume that A defeats B, we will conclude that B is both justi�ed and rejected.

Therefore, the two arguments are strict local arguments.

Proposition 1. P2P DR terminates in �nite time returning one of the values true,

false and unde�ned as an answer for the queried literal.

Proof. At each recursive call, P2P DR makes at most two calls of local alg (for pi and

∼ pi), two calls of Support (for pi and ∼ pi) and two calls of Stronger.

local alg checks the local answers for all literals in the bodies of all strict local rules

with head pi (or ∼ pi). By de�nition, all such rules are de�ned by context Ci, and are

�nite in number. Since Vi (the vocabulary used by Ci) is a �nite set of literals, each

local rule contains a �nite set of literals in its body. Therefore, one call of local alg

induces a �nite number of operations. Since, one type of such operations involves a

recursive call of local alg, we also have to prove that the total number of recursive

calls of local alg is not inde�nite. Assume that one call of local alg induces inde�nite

recursive calls of local alg. Since we have assumed that there are no loops in a context

theory, each such call would be for a di�erent literal in Vi. However, by the fact that

there is a �nite number of literals in Vi, the total number of recursive calls of local alg

is bounded by the number of literals in Vi. Therefore, no call of local alg can induce
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inde�nite recursive calls of local alg. Consequently, local alg terminates in �nite time

returning either true or false as a local answer for the queried literal.

Support checks the answers for all literals in the bodies of all rules with head pi
(or ∼ pi). By de�nition, all such rules are de�ned by context Ci, and are �nite in

number. Since each literal in the bodies of these rules is in the vocabulary Vj of a

context Cj ∈ C, and by the facts that there is a �nite number of contexts in C, and

that each vocabulary is a �nite set of literals, each such rule contains a �nite set of

literals in its body. Therefore, one call of Support induces a �nite number of checking

operations. Since, one type of such operations involves a recursive call of P2P DR, we

also have to prove that the total number of recursive calls of P2P DR is not inde�nite.

Assume that one call of P2P DR induces through Support inde�nite recursive calls of

P2P DR and Support. At each recursive call, the structure that keeps track of the

history of the query (Hist) is augmented with a literal qj , where qj belongs to the

vocabulary Vj of a context Cj ∈ C, and qj is not already contained in Hist. As the

total number of contexts in C is �nite, and the vocabulary of each context is a �nite

set of literals, the total number of recursive calls of P2P DR and Support is bounded

by the total number of literals in V =
⋃
Vi. Therefore, no call of Support can induce

inde�nite recursive calls of P2P DR and Support. Since, Support additionally induces

at most two calls of Stronger, we also have to prove that Stronger also terminates in

�nite time.

Stronger requires checking the preference ranks of the contexts that have de�ned

the literals contained in two Supportive/Blocking Sets. A Supportive/Blocking Set is a

set of literals derived by contexts in C. Since, we have already proved that there is a

�nite number of literals de�ned in C, each such set contains a �nite number of elements.

Therefore, given two sets A and B, and a preference order Ti, Stronger terminates in

�nite time, returning either A, B or none.

Consequently, since local alg, Support and Stronger terminate in �nite time, P2P DR

also terminates in �nite time. By de�nition of the algorithm, it is trivial to verify, that

one of the values true, false and unde�ned is returned as an answer for pi upon termi-

nation.

Proposition 2. For a MCS C and a literal pi in Ci ∈ C, local alg returns:

1. localAnspi = true i� there is a strict local argument for pi in JArgsC
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2. localAnspi = false i� there is no strict local argument for pi in JArgsC

Proof (1, ⇒). We use induction on the number of calls of local alg that are required

to produce the answer for pi.

Inductive Base. Suppose that local alg returns localAnspi = true in one call. This

means that there is a local strict rule with head pi in Ci, ri, such that body(ri) = ∅.
Using ri we can build a strict local argument for pi.

Inductive Step. Suppose that n+1 calls of local alg are required to compute localAnspi =

true. This means that there is a strict local rule with head pi (say ri) such that

∀ai ∈ body(ri), local alg returns localAnspi = true in n or less calls. By inductive

hypothesis, for every ai there is a strict local argument for ai in ArgsC . Using the

arguments for ai and rule ri we can build a strict local argument for pi.

(1, ⇐). We prove the left to right part of (1) using induction on the height of strict

local arguments for pi in ArgsC .

Inductive Base. Suppose that there is a strict local argument for pi in ArgsC (say A)

with height 1. This means that there is a strict local rule with head pi with empty body

in Ci; hence local alg will return localAnspi = true.

Inductive Step. Suppose that A is a strict local argument for pi with height n + 1 in

ArgsC . Then, there is a strict local rule with head pi (ri) in Ci, such that for every

literal ai in its body there is a strict local argument with height ≤ n in ArgsC . By

inductive hypothesis, local alg returns localAnsai = true for every ai ∈ body(ri). Con-

sequently local alg will return localAnspi = true.

(2, ⇒). By the de�nition of local alg it is trivial to verify that local alg cannot re-

turn both true and false as an answer for a literal pi. Suppose that local alg returns

localAnspi = false. Suppose that there is a strict local argument for pi in ArgsC . Then

(by the �rst part of the Proposition) localAnspi = true, which contradicts our original
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hypothesis. Consequently there is no strict local argument for pi in ArgsC .

(2, ⇐). Similarly (for the right to left part) we suppose that there is no strict local

argument for pi in ArgsC . Supposing that local alg returns localAnspi = true, we

conclude (by the �rst part of the Proposition) that there is a strict local argument for

pi in ArgsC , which contradicts our original hypothesis.

Auxiliary Lemma 1. For a MCS C and a literal pi in C:

1. If P2P DR returns Anspi = true and SSpi = Σ, then there is an argument A for

pi in ArgsC , such that A uses applicable rules, and R(A;Ci) equals 0 in case Σ = ∅, or

maxa∈Σ(R(a;Ci)) otherwise, and for any other argument B for pi in ArgsC , such that

B uses applicable rules: R(A;Ci) ≤ R(B;Ci).

2. If P2P DR returns Anspi = true or Anspi = undefined and BSpi = Σ, then

there is an argument A for pi in ArgsC , such that A uses unblocked rules, and R(A;Ci)

equals 0 in case Σ = ∅, or maxa∈Σ(R(a;Ci)) otherwise, and for any other argument B

for pi in ArgsC , such that B uses unblocked rules: R(A;Ci) ≤ R(B;Ci).

Proof (1). We use induction on the number of calls of P2P DR that are required to

compute Anspi and SSpi .

Inductive Base. Anspi = true derives in one call of P2P DR. This means that either

(a) localAnspi = true and SSpi = ∅, and by Proposition 2, there is a strict local ar-

gument A for pi in ArgsC . For all literals a in the body of the rules contained in A,

localAns� = true. Hence, A uses only applicable rules. Since A is a local argument,

R(A;Ci) = 0. Hence, there is no argument B such that R(B;Ci) < R(A;Ci); or (b)

there is a local defeasible rule with empty body and head pi in Ci. Using this rule, we

can build an argument A for pi such that R(A;Ci) = 0; therefore, there is no argument

B such that R(B;Ci) < R(A;Ci).

Inductive Step. Anspi = true and SSpi = Σ derives in n + 1 calls of P2P DR. This

means that there is a rule ri with head pi in Ci, such that ∀� ∈ body(ri): P2P DR

returnsAns� = true and SS� in at most n calls, and Σ = SSri . By inductive hypothesis,

for all � there is an argument A� for � in ArgsC such that A� uses applicable rules,
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and R(A�; Cj) equals 0 in case SS� = ∅ or maxa′∈SS�(R(a′; Cj)) otherwise (where Cj
is the context such that � ∈ Vj), and for any other argument B� for � in ArgsC that

uses applicable rules: R(B�; Cj) ≥ R(A�; Cj).

Using the arguments A� and rule ri we build an argument A for pi as follows: The

subset of the arguments A� that support local literals of Ci (denoted as A�i) are used

as proper subarguments of A, and ri is used in A to support pi, which labels the root

of A. By the de�nition of rank of arguments:

R(A;Ci) = max(maxA�i (R(A�i ; Ci));maxaj (R(aj ; Ci)))

where aj are the literals in the body of ri such that aj =∈ Vi. By inductive hypothesis:

R(A;Ci) = max(maxa′∈⋃
SS�i (R(a′; Cj));maxaj (R(aj ; Ci)))

⇒ R(A;Ci) = maxd∈(
⋃
SS�i )∪(

⋃
�j)(R(d; Ci))

⇒ R(A;Ci) = maxd∈SSri (R(d;Ci))

and for any other argument A′ for pi in ArgsC that uses rule ri and applicable rules to

support pi, R(A;Ci) ≤ R(A′; Ci). In case Σ = SSri = ∅, which means that there is no

foreign literal in the body of ri, and for every ai ∈ body(ri): SSai = ∅, using inductive

hypothesis it is easy to verify that R(A;Ci) = 0.

By the de�nition of P2P DR, it also holds that for any other rule ti with head

pi in Ci, either (a) there is a literal 
 in the body of ti such that P2P DR returns

either Ans
 = undefined or Ans
 = false - in this case ti is not applicable; or (b)

∀
 ∈ body(ti): Ans
 = true and Stronger(Σ; SSti ; Ti) 6= SSti . The latter results are

obtained in n or less calls of P2P DR. By inductive hypothesis, the argument for pi
that uses rule ti and applicable rules to support pi with the lowest rank w.r.t. Ci is F

with rank: R(F;Ci) = maxf∈SSti (R(f; Ci)), and by the de�nition of Stronger it holds

that there is a literal f ′ in SSti such that for all d in Σ = SSri , R(f ′; Ci) ≥ R(d; Ci).

Therefore R(A;Ci) ≤ R(F;Ci). Overall, the rank of A is equal or lower than the rank

of any other argument in ArgsC that uses applicable rules to support pi.

(2). We use induction on the number of calls of P2P DR that are required to compute

Anspi and BSpi .
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Inductive Base. As there are no loops in the local context theories, at least two calls

of P2P DR are required to return unde�ned as an answer for pi. Hence, the Inductive

Base for the case that Anspi = true is that this answer is returned by P2P DR in one

call. Similarly with the �rst part of the Lemma, we can prove that BSpi = ∅, and there

is an argument A ∈ ArgsC for pi, such that R(A;Ci) = 0, and A uses only applicable

(and therefore unblocked) rules.

The Inductive Base for the case that Anspi = undefined and BSpi = Σ is two calls

of P2P DR. Since we assume that there are no loops in the local context theories,

there are no rules such that the literal in their head also belongs to the body of the rule.

Hence, the following conditions must hold: (a) localAnspi = false; by Proposition 2

this means that there is no strict local argument for pi in ArgsC ; (b) there is no rule

with head ∼ pi in Ci; and (c) there is only one rule ri with head pi in Ci, with one literal

in its body (say qj), for which it holds (c1) qj =∈ Vi; (c2) there is no rule with head ∼ qj
in Cj ; and (c3) there is only one rule with head qj (say rj) in Cj , such that pi is the only

literal in the body of tj . Hence, the only argument for pi (A) can be obtained using rule

ri, and the only argument for qj (A′) can be obtained using rule rj . Neither ri nor rj are

blocked since there are no rules with contradictory conclusions, and Σ = BSri = {qj}.
Therefore A uses unblocked rules, R(A;Ci) = R(qj ; Ci) = maxa∈ΣR(a; Ci) and there is

no other argument for pi in ArgsC .

Inductive Step. Anspi = true or Anspi = undefined and BSpi = Σ derive in n + 1

calls of P2P DR. This means that there is a rule ri with head pi in Ci, such that

∀� ∈ body(ri): P2P DR returns either Ans� = true or Ans� = undefined and BS� in

at most n calls, and Σ = BSri . By inductive hypothesis, for all � there is an argument

A� for � in ArgsC such that A� uses unblocked rules, and R(A�; Cj) equals 0 in case

SS� = ∅ or maxa′∈SS�(R(a′; Cj)) otherwise, and for any other argument B� for � in

ArgsC that uses unblocked rules: R(B�; Cj) ≥ R(A�; Cj).

Similarly with the �rst part of the Lemma, using the arguments for a and rule ri,

we can build an argument A for pi, such that A uses unblocked rules, and

⇒ R(A;Ci) = maxd∈BSri (R(d; Ci))

and for any other argument A′ for pi in ArgsC that uses unblocked rules to support pi,

R(A;Ci) ≤ R(A′; Ci). In case Σ = BSri = ∅, using inductive hypothesis it is easy to
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verify that R(A;Ci) = 0.

Proposition 3. For a MCS C and a literal pi in Ci, P2P DR returns:

1. Anspi = true i� pi is justi�ed

2. Anspi = false i� pi is rejected by JArgsC

3. Anspi = undefined i� pi is neither justi�ed nor rejected by JArgsC

Proof. (⇒). We prove the left to right part of the proposition using induction on the

calls of P2P DR.

Inductive Base. (1) P2P DR returns Anspi = true in one call. This means that either

(a) localAnspi = true - then, by Proposition 2, there is a strict local argument A for pi
in ArgsC . Hence, A ∈ JArgsC and pi is justi�ed; or (b) there is a local defeasible rule

ri in Ci such that body(ri) = ∅ and there is no rule with head ∼ pi in Ci. Therefore,

there is an argument A for pi in ArgsC with root pi, which contains only rule ri, and

there is no argument attacking A. Since A has no proper subarguments and it is not

attacked by any argument, A ∈ JArgsC ; therefore pi is justi�ed.

(2). P2P DR returns Anspi = false in one call. This means that localAnspi = false

(by Proposition 2 this means that there is no strict local argument for pi in ArgsC) and

either (a) localAns∼pi = true - there is a strict local argument B for ∼ pi in ArgsC ,

which by de�nition is supported by JArgsC , defeats any non-strict argument for pi in

ArgsC , and is not undercut by JArgsC , and therefore pi is rejected by JArgsC ; or (b)

there is a local defeasible rule si with head ∼ pi in Ci, such that body(si) = ∅. Therefore,

there is an argument B for ∼ pi in ArgsC , with root pi, which contains only rule si.

For B it holds that it has no proper subarguments - therefore it is supported and not

undercut by JArgsC - and R(B;Ci) = 0 - therefore it defeats any non-strict argument

for pi. Since there is no strict local argument for pi in ArgsC , every argument for pi is

defeated by B; therefore pi is rejected by JArgsC .

(3). At least two calls of P2P DR are required to compute unde�ned as an answer for

pi. Since we assume that there are no loops in the local context theories, there are no

rules such that the literal in their head also belongs to the body of the rule. Hence, the
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following conditions must hold: (a) localAnspi = false; by Proposition 2 this means

that there is no strict local argument for pi in ArgsC ; (b) there is no rule with head

∼ pi in Ci, which means that there is no argument in ArgsC attacking the arguments

for pi at their root; and (c) there is only one rule ri with head pi in Ci, with one literal

in its body (say qj), for which it holds (c1) qj =∈ Vi; (c2) there is no rule with head ∼ qj
in C; and (c3) there is only one rule with head qj (say rj) in C, such that pi is the only

literal in the body of tj . Hence, the only argument for pi (A) can be obtained using

rule ri, and the only argument for qj (A′) can be obtained using rule rj . None of the

two arguments is neither justi�ed by JArgsC nor rejected by JArgsC (since there are

not attacking arguments). Therefore, pi is neither justi�ed nor rejected by JArgsC .

Inductive Step. (1). P2P DR returns Anspi = true in n + 1 calls. The following

conditions must hold:

(a) there is a rule ri with head pi in Ci, such that for all literals � in its body it holds

that Ans� = true is returned by P2P DR in at most n calls. By inductive hypothesis,

for every �, there is an argument Aa with conclusion a in JArgsC . Therefore, for every

Aa it holds that either Aa is a local argument, or it is the head of an argumentation line

ALa, such that every argument in ALa is in JArgsC . Using arguments Aa, argumentation

lines ALa and rule ri, we can build an argument A for pi and an argumentation line AL
with head A, such that every proper subargument of A and every argument in AL−{A}
are in JArgsC - in other words, A is supported by JArgsC .

(b) localAns∼pi = false - by Proposition 2, there is no strict local argument for

∼ pi in ArgsC
(c) for all rules si with head ∼ pi in Ci, either (c1) there is a literal b in the body

of si for which P2P DR returns Ansb = false in n calls. By inductive hypothesis, b is

rejected by JArgsC , which means that every argument for b is defeated by an argument

supported by JArgsC . Hence, every argument B using rule si in ArgsC is undercut by

JArgsC ; or (c2) ∀b ∈ body(si): P2P DR returns either true or unde�ned as an answer

for b (in at most n calls) and Stronger(SSri ; BSsi ; Ti) = SSri . By Auxiliary Lemma

1, we conclude that there is an argument A for pi in ArgsC , which uses rule ri and

applicable rules to support pi, and has rank R(A;Ci) = maxd∈SSri (R(d;Ci)), and for

every argument B for ∼ pi in ArgsC that uses unblocked rules and rule si to support
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∼ pi, it holds that R(A;Ci) < R(B;Ci); therefore every such argument B does not

defeat A at pi.

Suppose that one of these arguments B defeats a proper subargument of A, D at qi.

Since A uses applicable rules, for qi P2P DR returns Ansqi = true in n or less calls.

Therefore, by inductive hypothesis, there is an argument D′ for qi in JArgsC . B is not

a strict local argument, as in that case qi would be rejected. Suppose B defeats D′

at qi. Since D′ is in JArgsC , B is undercut by JArgsC . In case B attacks but cannot

defeat D′, by de�nition it holds that R(D′; Ci) < R(B;Ci). But since we have already

supposed that B defeats D; R(B;Ci) ≤ R(D;Ci). Therefore, R(D′; Ci) < R(D;Ci) and

R(A′; Ci) < R(A;Ci), where A′ is the argument for pi that derives from A by replacing

D with D′. Following the same process for every subargument D of A, we can obtain an

argument A′ for pi, such that A′ is supported by JArgsC and every argument B, such

that B uses unblocked rules and B defeats a proper subargument of A′, B is undercut

by JArgsC . And since R(A′; Ci) < R(A;Ci), it holds that for every such argument B,

R(A′; Ci) < R(B;Ci); therefore B does not defeat A neither at its inner nodes nor at

its root.

Suppose that an argument B for ∼ pi in ArgsC uses a rule si that is not unblocked.

By inductive hypothesis, for some literal b in B, it holds that b is rejected; hence B is

undercut by JArgsC .

Overall, using A′ and the justi�ed argumentation lines for the foreign literals in the

body of ri, we can obtain an argument for pi, which is supported by JArgsC , and every

argument defeating A′ is undercut by JArgsC ; therefore A′ is acceptable w.r.t. JArgsC ,

and pi is justi�ed.

(2). P2P DR returns Anspi = false in n+ 1 calls. The following two conditions must

hold: (a) localAnspi = false; hence there is no strict local argument for pi in ArgsC ;

and (b) for every rule ri with head pi, either (b1) there is a literal a in the body of ri,

such that P2P DR returns Ansa = false in at most n calls. By inductive hypothesis,

this means that a is rejected, and therefore if a ∈ Vi, every argument A using ri is

defeated by an argument supported by JArgsC , while if a =∈ Vi, every argumentation

line with head A contains an argument that is defeated by an argument supported by

JArgsC . In any of the two cases, the arguments using ri are rejected by JArgsC ; or (b2)

there is a rule si with head ∼ pi in Ci, such that P2P DR returns Ansb = true for any
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literal b in the body of si, and for all literals a in the body of ri, P2P DR returns true

or unde�ned as an answer for a in at most n calls, and Stronger(BSri ; SSsi ; Ti) 6= BSri .

By inductive hypothesis and Auxiliary Lemma 1, in the same way with before, using

rule si we can build an argument B for ∼ pi such that B is supported by JArgsC and

has lower or equal rank than any argument A for pi that uses unblocked rules and rule

ri; therefore B defeats any such argument for pi.

Consider now the arguments for pi in ArgsC that use at least one rule that is not

unblocked. In the same way with before, we can prove that these arguments are defeated

by an argument supported by JArgsC .

Therefore, for every argument A for pi it holds that either A or an argument in ev-

ery argumentation line with head A is defeated by an argument supported by JArgsC ;

therefore pi is rejected by JArgsC .

(3). P2P DR returns Anspi = undefined in n+1 calls. The following conditions must

hold:

(a) localAnspi = false and localAns∼pi = false; by Proposition 2, there are no

strict local arguments for pi and ∼ pi in ArgsC ;

(b) for all rules ri with head pi in C either (b1) there is a literal a in the body

of ri such that P2P DR returns either false or unde�ned as an answer for a in n or

less calls; or (b2) for all a, P2P DR returns true as an answer for a in n or less calls,

but there is a rule si with head ∼ pi in Ci, such that for every literal b in the body

of si, P2P DR returns either true or unde�ned as an answer for b in n or less calls,

and Stronger(SSri ; BSsi ; Ti) 6= SSri . For the case described in (b1), using inductive

hypothesis, a is not justi�ed; therefore there is no argument for pi in ArgsC that is

supported by JArgsC . For the case of (b2), by inductive hypothesis and Auxiliary

Lemma 1, there is an argument B in ArgsC that uses si to support ∼ pi, such that B

uses unblocked rules, and for every argument A in ArgsC that uses applicable rules and

ri to support pi, it holds that R(B;Ci) ≤ R(A;Ci), which means that B defeats A at

pi. In the same way with before, we can prove that there is an argument B′ in ArgsC ,

which also uses rule si, and has lower rank than B w.r.t. Ci, and an argumentation

line BL with head B′, such that no subargument of B or argument in BL is defeated

by an argument supported by JArgsC . Therefore B′ is not undercut by JArgsC , and

defeats any non-strict argument with applicable rules with head pi. Since there is no
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strict local argument for pi, and for the arguments for pi that use rules that are not

applicable w.r.t. C, it is easy to verify that they are not supported by JArgsC , we reach

to the conclusion that for every argument A for pi in ArgsC , A is either not supported

by JArgsC , or it is attacked by an argument in ArgsC , which is not undercut by JArgsC ;

therefore pi is not justi�ed.

(c) for all rules si with head ∼ pi in Ci either (c1) there is a literal b in the body

of si, such that P2P DR returns either false or unde�ned as an answer for b in n or

less calls; or (c2) for all b, P2P DR returns true as an answer for b in n or less calls,

but there is a rule ri with head pi in Ci, such that for every literal a in the body of

ri, P2P DR returns either true or unde�ned as an answer for a in n or less calls, and

Stronger(BSri ; SSsi ; Ti) = BSri . In the same way with before, we can reach to the

conclusion that there is an argument A in ArgsC , which uses rule ri, and an argumen-

tation line AL with head A, such that there is no argument B that is supported by

JArgsC and defeats an argument in AL. Therefore pi is not rejected by JArgsC .

⇐ (1). We use induction on the stage of acceptability of arguments with conclusion pi
in ArgsC .

Inductive Base. Suppose that an argument A for pi in ArgsC is acceptable w.r.t. JC0 .

This means that either: (a) A is a strict local argument for pi; in this case, by Propo-

sition 2, P2P DR will return localAnspi = true, and therefore Anspi = true; or (b) A

is a defeasible local argument in ArgsCi that is supported by JC0 , and every argument

defeating A is undercut by JC0 . Since A is supported by JC0 , A contains one defeasible

rule with head pi (say ri) with empty body. Suppose that there is a rule si with head

∼ pi in Ci, such that for all literals b in its body, P2P DR returns either Ansb = true

or Ansb = undefined and Stronger(SSri ; BSsi ; Ti) = BSsi . This means, by Auxiliary

Lemma 1, that for all arguments for pi using applicable rules and rule ri, there is an ar-

gument B′ that uses rule si and unblocked rules, which has lower rank than A in Ci. But,

since R(A;Ci) = 0 (A is a local argument of Ci), R(B′; Ci) < 0, which is not possible.

Therefore for every rule si with head ∼ pi in Ci, either (c) there is a literal b in the body

of si for which P2P DR returns Ansb = false, or (d) Stronger(SSri ; BSsi ; Ti) 6= SSsi .

Suppose that (d) holds and Stronger(SSri ; BSsi ; Ti) = none. By de�nition of Stronger

and Auxiliary Lemma 1, this means that there is an argument B for ∼ pi in ArgsC that

119



A. PROOFS

uses unblocked rules and rule si and R(B;Ci) = 0. Therefore B defeats A, and for every

rule used in B it holds that for all literals in its body Ansb 6= false. By the �rst part of

the Proposition, this means that there is an argumentation line BL with head B, such

that and no argument in BL is defeated by an argument supported by JC0 . However,

since B defeats A, B is undercut by JC0 . Hence for every argumentation line BL with

head B, there is an argument D that is supported by JC0 and defeats a proper subargu-

ment of B or an argument in BL − {B}; the latter conclusion contradicts our previous

conclusion that no argument in BL is attacked by JC0 . Therefore our supposition that

Stronger(SSri ; BSsi ; Ti) = none does not hold. Consequently, for every rule si with

head ∼ pi in Ci, either (a) there is a literal b in the body of si for which P2P DR

returns Ansb = false, or (b) Stronger(SSri ; BSsi ; Ti) = SSri . Overall, P2P DR will

compute suppi = true, and either unb∼pi = false or Stronger(SSpi ; BS∼pi ; Ti) = SSpi ,

and eventually will return true as an answer for pi.

Inductive Step. Suppose that A is an argument for pi in ArgsC that is acceptable w.r.t.

JCn+1. This means that either: (a) A is a strict local argument for pi - in this case, by

Proposition 2, P2P DR will return localAnspi = true, and Anspi = true; or (b) A is

supported by JCn+1 and every argument defeating A is undercut by JCn+1. That A is

supported by JCn+1 means that every proper subargument of A is acceptable w.r.t. JCn ,

and there is an argumentation line AL with head A such that every argument in AL
is acceptable w.r.t. JCn . By inductive hypothesis, there is a rule ri with head pi in Ci,

such that for every literal a in the body of ri, P2P DR returns Ansa = true. Suppose

that B is an argument in ArgsC that defeats A. By de�nition, B is undercut by JCn+1;

namely, for every argumentation line BL with head B, there is an argument D in ArgsC ,

which is supported by JCn+1, and defeats a proper subargument of B or an argument in

BL − {B}. Since D is supported by JCn+1, every subargument of D is acceptable w.r.t.

JCn , and there is an argumentation line DL with head D, such that every argument

in DL is acceptable w.r.t. JCn . Suppose that D defeats B′ at qj (where B′ is either a

proper subargument of B or an argument in an argumentation line with head B). By

inductive hypothesis, there is a rule tj for qj in Cj , such that for all literals d in the

body of tj , P2P DR returns Ansd = true. It also holds that R(D;Cj) ≤ R(B′; Cj).

Suppose that there is a rule sj with head qj in Cj such that for all literals b in the

body of sj , P2P DR returns Ansb 6= false and Stronger(BSsj ; SStj ; Ti) = BSsj . By
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Auxiliary Lemma 1, for every argument D′ for ∼ qj in ArgsC that uses applicable rules

and rule tj , there is an argument E for qj in ArgsC , which uses unblocked rules and rule

sj s.t. R(E;Cj) < R(D′; Cj). As E uses unblocked rules, it easy to verify by the �rst

part of the Proposition, that E contains no literals that are rejected by JArgsC , and

that there is an argumentation line EL for qj such that no argument in EL is defeated

by an argument supported by JArgsC . Following the same process, for every literal

that B′ is undercut at, we can build an argumentation line BL for ∼ pi, such that no

argument in BL is defeated by an argument supported by JArgsC . This contradicts the

fact that every argument defeating A is undercut by JArgsC . Therefore, for all rules sj
with head qj in Cj , either there is a literal b′ in the body of sj , such that Ans′b = false,

or there is a rule tj with head qj in Cj , such that for all literals d in the body of tj ,

P2P DR returns Ansd = true and Stronger(BSsj ; SStj ; Ti) 6= BSsj . These conditions

su�ce for P2P DR to return false as an answer for qj . Therefore, for rule si, which is

used in B to support ∼ pi, it holds that there is a literal b in the body of si, such that

Ansb = false.

Consider now a rule si with head ∼ pi in Ci, which is contained in an argument

in ArgsC , which does not defeat A. Suppose that for all literals b in the body of si,

P2P DR returns either true or unde�ned as an answer for b, and Stronger(SSri ; BSsi ; Ti) 6=
SSri . Then, by Auxiliary Lemma 1 and by the �rst part of the Proposition, we can ver-

ify that there is an argument B and an argumentation line BL with head B, such that no

argument in BL is defeated by an argument supported by JArgsC , and for every argu-

ment A′ that uses applicable rules and ri to support pi, R(A′; Ci) ≥ R(B;Ci). Using the

same reasoning with before, we conclude that pi is not justi�ed, which contradicts our

original supposition. Therefore, for every rule si with head ∼ pi in Ci, which is contained

in an argument B that does not defeat A, either there is a literal b in the body of si,

such that P2P DR returns false as an answer for b, or Stronger(SSri ; BSsi ; Ti) 6= SSri .

Overall, there is a rule ri with head pi in Ci, such that for every literal a in the

body of ri, P2P DR returns true as an answer for a, and for for every rule si for ∼ pi
in Ci, either there is a literal b in the body of si, such that P2P DR returns false as

an answer for b, or Stronger(SSri ; BSsi ; Ti) 6= SSri . Therefore, P2P DR will compute

suppi = true, and either unb∼pi = false or Stronger(SSpi ; BS∼pi ; Ti) = SSpi , and

eventually will return true as an answer for pi.
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⇐ (2). Suppose that for a literal pi that is rejected by JArgsC , it holds that P2P DR re-

turns either true or unde�ned as an answer for pi. By de�nition, either (a) localAnspi =

true, which means there is a strict local argument for pi in ArgsC , and leads to the

conclusion that pi is justi�ed, which by Lemma 2 contradicts our original supposition

that pi is rejected by JArgsC ; or (b) there is a rule ri with head pi in Ci, such that for

all literals a in the body of ri, P2P DR returns either true or unde�ned as an answer

for a, and for all rules si with head ∼ pi in Ci, either there is a literal b in the body of

si, such that Ansb 6= true or Stronger(BSri ; BSsi ; Ti) = BSri . By Auxiliary Lemma 1

and the �rst part of the Proposition, this implies that there is an argument A for pi in

ArgsC and an argumentation line AL with head A, such that no argument in AL−{A}
and no proper subargument of A is defeated by an argument supported by JArgsC ,

and for every argument B for ∼ pi in ArgsC , either B is not supported by JArgsC , or

there is an argument D for pi in ArgsC and an argumentation line DL with head D,

such that no argument in DL−{D} and no proper subargument of D is defeated by an

argument supported by JArgsC , and R(D;Ci) < R(B;Ci). This leads to the conclusion

that pi is not rejected, which contradicts our original supposition. Therefore, P2P DR

will return false as an answer for pi.

⇐ (3). This is trivial to prove using the �rst part of the theorem. For a literal pi, which

is neither justi�ed nor rejected by JArgsC , suppose that Anspi = true. By the �rst

part of the theorem, pi is justi�ed (contradiction). Suppose that Anspi = false. By

the �rst part of the theorem, this means that pi is rejected by JArgsC (contradiction).

Therefore, for pi, P2P DR will return Anspi = undefined.

Proposition 5. The total number of calls of P2P DRO that are required for the eval-

uation of a single query is in the worst case O(n × ∑
P (n; k)) (exponential), where

n stands for the total number of literals in the system,
∑

expresses the sum over

k = 0; 1; :::; n, and P (n; k) stands for the number of permutations with length k of n

elements. If each of the literals in the system is de�ned by a di�erent context, then the

total number of messages exchanged between the system contexts for the evaluation of

a query is O(2× n×∑
P (n; k)).
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Proof. In the worst case in a distributed query evaluation process with P2P DRO, each

context has to call P2P DR once for each of the literals that appear in its local theory

and mappings and for each di�erent history of the query. Assume that all contexts use

all system literals in their theories. Obviously, two di�erent calls of P2P DRO for a lit-

eral pj with same query history cannot be made by two di�erent contexts. This means,

that overall for each literal in the system and for each di�erent history of a query for

that literal, at most one (and in the worst case exactly one) call of P2P DRO will be

made. Hence, the total number of calls of P2P DRO will be proportional to the total

number of system literals, and to the number of di�erent histories that may appear in

one call. One query history is actually a permutation of a subset of the system literals.

One literal cannot appear more than once in a query history, as in this case P2P DRO

will have already detected a loop (cycle), and will not permit a recursive call. Since, the

number of di�erent permutations of the system literals is equal to
∑
P (n; k)), where n

stands for the total number of system literals,
∑

expresses the sum over k = 0; 1; :::; n,

and P (n; k) stands for the number of permutations with length k of n elements, the

total number of calls of P2P DRO is O(n×∑
P (n; k)). With regard to the number of

messages, if each literal is de�ned by a di�erent context, then each call of P2P DRO

actually is implemented as a query message between two di�erent contexts. Taking into

account also the response messages, the total number of messages for the evaluation of

a query is O(2× n×∑
P (n; k)).

Proposition 6. In acyclic MCS, the total number of calls of P2P DRO that are re-

quired for the evaluation of a single query is in the worst case O(c× n), where c stands

for the total number of contexts in the system, and n stands for the total number of

literals in the system. If each of the literals in the system is de�ned by a di�erent

context, then the total number of messages exchanged between the system contexts for

the evaluation of a query is O(2× c× n).

Proof. In acyclic MCS, there are no loops in the global knowledge base, and therefore

there is no case for P2P DR to detect a cycle during query evaluation. In this case,

the process and outcome of a query evaluation do not depend on the history of the

query. Therefore, for P2P DRO we need structures for incoming and outgoing queries

with only one record for each of the literals that a query about them has already been
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evaluated. In the worst case, that each context uses all system literals in its mappings,

and the evaluation of a query involves all mapping rules from all contexts, P2P DRO

is called at most (and in the worst case exactly) once by each context for each literal in

the system. Therefore the number of calls of P2P DRO is in the worst case c×n, where

c is the total number of contexts and n is the total number of literals in the system.

With regard to the number of messages, if each literal is de�ned by a di�erent context,

then each call of P2P DRO actually is implemented as a query message between two

di�erent contexts. Taking into account also the response messages, the total number of

messages for the evaluation of a query is in the worst case 2× c× n.

Lemma 5. For a literal pi in Vi, local alg computes

(1) localAnspi = true i� Spi ∈ Pr(1:::n) and Spi = {s}
(2) localAnspi = false i� Spi ∈ Pr(1:::n) and Spi 6= {s}

Proof. (⇒). We use induction on the number of calls of local alg that are required

to compute the answer for pi.

Inductive Base. (1) Suppose that local alg returns localAnspi = true in one call. This

means that there is a local strict rule with head pi in Ci, ri, such that body(ri) = ∅.
By Lemma 4, it holds that ri is a strict rule in T�(C) and body(ri) = ∅; therefore

Spi ∈ Pr(1:::n) and Spi = {s}.

(2) Suppose that local alg returns localAnspi = false in one call. This means that

there is no strict local rule with head pi in Ci. By Lemma 4, there is no strict rule with

head pi in T�(C); therefore Spi ∈ Pr(1:::n) (since pi ∈ V ) and Spi 6= {s}.

Inductive Step. (1) Suppose that n + 1 calls of local alg are required to compute

localAnspi = true. This means that there is a strict local rule ri with head pi in Ci,

such that ∀ai ∈ body(ri), local alg returns localAnspi = true in n or less calls. By in-

ductive hypothesis, for every ai it holds that Sai ∈ Pr(1:::n) and Sai = {s}. By Lemma

4, it also holds that ri is a strict rule in T�(C). Therefore, Spi ∈ Pr(1:::n) and Spi = {s}.
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(2) Suppose that n + 1 calls of local alg are required to compute localAnspi = false.

This means that for every strict local rule ri with head pi in Ci, there is a literal ai
in the body of ri, such that localAnsai = false is returned by local alg in n or less

calls. By Lemma 4 and inductive hypothesis, for every strict rule ri with head pi in

T�(C), there is one literal ai in the body of ri such that Sai 6= {s}. Therefore, Spi 6= {s}.

(⇐). We use induction on the derivation steps in Pr(1:::n).

Inductive Base. (1) Suppose that Pr(2) = Spi = {s} (Spi can be derived in the �rst step

of Pr(1:::n) only if there is no rule with head pi in T�(C), and in that case Spi = {w}).
This means that there is a strict rule ri with head pi in T�(C), such that body(ri) = ∅.
By Lemma 4, ri is a strict local rule with head pi in Ci; therefore local alg will compute

localAnspi = true.

(2) Suppose that Pr(1) = Spi 6= {s}. This means that there is no strict rule ri with

head pi in T�(C). By Lemma 4, there is no local strict rule with head pi in Ci; therefore

local alg will compute localAnspi = false.

Inductive Step. (1) Suppose that Pr(n + 1) = Spi = {s}. This means that there

is a strict rule ri with head pi in T�(C), such that for all literals ai in the body

of ri, Sai = {s} ∈ Pr(1:::n). By inductive hypothesis, for every ai it holds that

localAnsai = true. By Lemma 4, ri is a strict local rule with head pi in Ci; there-

fore local alg will compute localAnspi = true.

(2) Suppose that Pr(n+ 1) = Spi 6= {s}. This means that for every strict rule ri with

head pi in T�(C), there is one literal ai in the body of ri, such that Sai 6= {s}. By

Lemma 4 and inductive hypothesis, for every rule ri with head pi in Ci, there is a literal

ai in the body of ri, such that localAnsai = false; therefore local alg will compute

localAnspi = false.

Lemma 6. For a literal pi in Vi, P2P DR computes

(1) localAnspi = false, Anspi = true and SSpi = Σ i� Spi ∈ Pr(1:::n) and Spi = Σ

and Σ 6= {s}, Σ 6= {w}.
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(2) Anspi = false i� Spi ∈ Pr(1:::n) and Spi 6= {w}

Proof. (⇒). We use induction on the number of calls of P2P DR that are required to

compute the answer for pi.

Inductive Base (1). Suppose that P2P DR computes (a) localAnspi = false and (b)

Anspi = true in its �rst call. By Lemma 5, (a) implies that Spi 6= {s}. (b) implies

that there is a local defeasible rule ri in Ci, such that body(ri) = ∅ and SSri = ∅,
and there is no rule with head ∼ pi in Ci. By Lemma 4, ri is a defeasible rule T�(C),

and since body(ri) = ∅, Sri = ∅ ∈ Pr(1:::n), and Stronger(Sri ; Sti ; Ti) 6= Sti for ev-

ery rule ti and preference order Ti. Therefore, Spi ∈ Pr(1:::n) and Spi = Sri = ∅ = SSpi .

(2). Suppose that P2P DR computes Anspi = false in its �rst call. This means that

localAnspi = false and either (a) localAns∼pi = true or (b) there is no rule with

head pi in Ci. By Lemma 5, (a) implies that Snegpi = {s} ∈ Pr(1:::n) ⇒; hence

Spi = {w} ∈ Pr(1:::n). (b) also implies Spi = {w} ∈ Pr(1:::n).

Inductive Step (1). Suppose that localAnspi = false and P2P DR returns Anspi =

true and SSpi = Σ in n+ 1 calls. By Lemma 5, Spi 6= {s}. It also holds that:

(a) there is a rule ri with head pi in Ci, such that for all literals � in its body,

it holds that Ans� = true is returned by P2P DR in at most n calls, and SSri =

(bigcupai∈ViSSai)∪ (
⋃
aj =∈Vi aj) = Σ, where

⋃
ai ∪

⋃
aj = body(ri). For every a it holds

that either (a) localAnsa = true and SSa = ∅ - in this case, by Lemma 5, it holds

that Sa ∈ Pr(1:::n) and Sa = {s} - or (b) localAnsa = false, which (by Inductive

Hypothesis) means that Sa ∈ Pr(1:::n) and Sa = SSa. Therefore, (
⋃
ai∈Vi SSai) ∪

(
⋃
aj =∈Vi aj) = (

⋃
a′i
Sa′i) ∪ (

⋃
aj), where a′i are the literals in the body of ri s.t. a′i ∈ Vi

and Sa′i 6= {s}, and Sri = Σ.

(b) localAns∼pi = false - by Lemma 5, S∼pi 6= {s}
(c) for all rules si with head ∼ pi in Ci, either (c1) there is a literal b in the body of

si for which P2P DR returns Ansb = false in n or less calls. By inductive hypothesis,

Sb ∈ Pr(1:::n) and Sb 6= {w}, which means that w ∈ Ssi , or (c2) ∀b ∈ body(si):

P2P DR returns either true or unde�ned as an answer for b (in at most n calls) and

Stronger(SSri ; BSsi ; Ti) = SSri . Since there are no loops in the global knowledge base,
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for all b: Ansb = true, which means that BSsi = SSsi , and by Inductive Hypothesis

Ssi ∈ Pr(1:::n) and Ssi = SSsi . Therefore, it holds that Stronger(Sri ; Ssi ; Ti) = Sri .

(d) for all rules ti 6= ri with head pi in Ci, either (d1) there is a literal d in the

body of ti for which P2P DR returns Ansd = false in n calls or (d2) ∀d ∈ body(ti):

P2P DR returns either true or unde�ned as an answer for d (in at most n calls) and

Stronger(SSri ; SSti ; Ti) 6= SSti . Similarly with (c), we can prove that Sti ∈ Pr(1:::n)

and either w ∈ Sti or Stronger(Sri ; Sti ; Ti) 6= Sti .

The consequences of (a),(b),(c) and (d) su�ce to prove that Spi = Pr(1:::n) and

Spi = Σ, and Σ does not contain neither s nor w.

(2) Suppose that P2P DR returns Anspi = false in n + 1 calls. The following two

conditions must hold:

(a) localAnspi = false; by Lemma 5, this implies that either Spi 6= {s};
(b) for all rules ri with head pi in Ci, either (b1) there is a literal a in the body of

ri for which P2P DR returns Ansa = false in n or less calls. By inductive hypothe-

sis, Sa ∈ Pr(1:::n) and Sa = {w}, which means that w ∈ Sri , or (b2) ∀a ∈ body(ri):

P2P DR returns either true or unde�ned as an answer for a (in at most n calls) and

there is a rule si with head ∼ pi in Ci, for which it holds that ∀b ∈ body(si), P2P DR

returns true as an answer for b (in at most n calls) and Stronger(BSri ; SSsi ; Ti) 6= BSri .

By Inductive Hypothesis, and by the fact that there are no loops in the global knowl-

edge base, similarly with before we can prove that for all a: Ansa = true, which means

that BSri = SSri , and Sri ; Ssi ∈ Pr(1:::n) and Sri = SSri , Ssi = SSsi . Therefore, it

holds that Stronger(Sri ; Ssi ; Ti) 6= Sri . Hence, by (b1) and (b2), it holds that Spi = {w}.

(⇐). We use induction on the number of calls of derivation steps in Pr(1:::n)

Inductive Base (1). Suppose that Pr(2) = Spi = Σ and Σ 6= {s}, Σ 6= {w} (Spi can be

derived in the �rst step of Pr(1:::n) only if there is no rule with head pi in T�(C), and

in that case Spi = {w}). This means that there is a defeasible rule ri with head pi in

T�(C), such that body(ri) = ∅, and there is no strict rule with head pi and no rule with

head ∼ pi in T�(C), which means that Σ = ∅. By Lemma 4, ri is a local defeasible rule

in Ci, and there is no strict rule with head pi and no rule with head ∼ pi in Ci. There-

fore, by Lemma 5, Spi ; S∼pi 6= {s} and P2P DR will compute SSri = ∅, suppi = true,
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and unb∼pi = false, and will eventually return Anspi = true and SSpi = ∅ = Σ.

(2). Suppose that Pr(1) = Spi = Σ and Σ = {w}. By de�nition, this means that there

is no rule with head pi in T�(C), which by Lemma 4 implies that there is no rule with

head pi in Ci. Therefore, P2P DR will compute unbpi = false and will eventually

return Anspi = false.

Inductive Step (1) Suppose that Pr(n+ 1) = Spi and Σ = Spi , and Σ 6= {s}, Σ 6= {w}.
By Lemma 5, Spi 6= {s} implies that localAnspi = false. It also holds that there is a

rule ri with head pi in T�(C), such that Sri = Σ ∈ Pr(1:::n) and w =∈ Sri . By Lemma

4, ri ∈ Ci. The following conditions must also hold:

(a) for all rules si with head ∼ pi in T�(C) (and therefore in Ci), (a1) Ssi ∈ Pr(1:::n)

and Ssi 6= {s}, which, by Lemma 5, implies that localAns∼pi = false and either

(a2) w ∈ Ssi , which means that there is a literal b in the body of si such that Sb ∈
Pr(1:::n) and Sb = {w}. By inductive hypothesis, this implies that P2P DR will return

Ansb = false or (a3) w =∈ Ssi and Stronger(Sri ; Ssi ; Ti) = Sri . Since Sri ; Ssi 6= {s} and

w =∈ Sri ; Ssi , it holds that for all literals a ∈ body(ri) and b ∈ body(si), Sa; Sb ∈ Pr(1:::n)

and Sa; Sb 6= w and Sa; Sb 6= {s}. Therefore by inductive hypothesis, for all these

literals, P2P DR will return Ansa = true, SSa = Sa and Ansb = true, SSb = Sb. For

the literals for which Sa = {s} (Sb = {s}, by Lemma 5, SSa = ∅ (SSa = ∅). Hence,

SSri = Sri and SSsi = Ssi , and BSsi = SSsi (since for all literals b in the body of si:

Ansb = true), and Stronger(SSri ; BSsi ; Ti) = SSri .

(b) for all rules ti with head pi in T�(C) (and therefore in Ci), (b1) Sti ∈ Pr(1:::n)

and Sti 6= {s} and either (b2) w ∈ Ssi or (b3) w =∈ Ssi and Stronger(Sri ; Sti ; Ti) 6= Sti .

In the same way with (a), we can prove that for every rule ti with head pi in Ci, either

there is a literal d in the body of ti such that Ansd = false or for all d, Ansd = true

and Stronger(SSri ; SSti ; Ti) 6= SSti .

The above conditions su�ce to prove that P2P DR will compute suppi = true, and

SSpi = SSri = Sri = Σ, and either unb∼pi = false or Stronger(SSpi ; BS∼pi ; Ti) =

SSri , and will eventually return Anspi = true and SSpi = Σ.

(2) Suppose that Pr(n+ 1) = Spi and Σ = Spi = {w}. This means that either:
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(a) for all rules ri with head pi in T�(C), Sri ∈ Pr(1:::n) and w ∈ Sri . This means

that there is a literal a in the body of ri, such that Sa ∈ Pr(1:::n) and Sa = w.

By Lemma 4 and inductive hypothesis, for all rules ri ∈ Ci it holds that P2P DR

will return Ansa = false. Therefore, P2P DR will compute unbpi = false and will

eventually return Anspi = false.

(b) there is a rule si with head ∼ pi in T�(C), such that Ssi = Σ ∈ Pr(1:::n) and

w =∈ Ssi . By Lemma 4, ri ∈ Ci. It also holds that for all rules ri with head pi in T�(C)

(and therefore in Ci), (b1) Sri ∈ Pr(1:::n) and Sri 6= {s}, and either (b2) w ∈ Sri , or

(b3) w =∈ Ssi and Stronger(Sri ; Ssi ; Ti) = Sri . In the same way with (1), we can prove

that for all literals b in the body if si, Ansb = true and for all rules ri with head pi in Ci,

either there is a literal a in the body of ri such that Ansa = false or for all literals a,

Ansa = true and Stronger(SSri ; SSsi ; Ti) 6= SSri . Therefore, P2P DR will compute

sup∼pi = true, and either unbpi = false or Stronger(BSpi ; SS∼pi ; Ti) = SS∼pi , and

will eventually return Anspi = false.

(c) S∼pi ∈ Pr(1:::n) and S∼pi = {s}. By Lemma 5, this implies that localAns∼pi =

true; therefore for pi, P2P DR will return Anspi = false.

Proposition 7. For a literal pi in Vi, local alg computes

(1) localAnspi = true i� T�(C) ` +∆pi
(2) localAnspi = false i� T�(C) ` −∆pi

Proof (1,2 ⇒). We use induction on the number of calls of local alg that are required

to compute the answer for pi.

Inductive Base. (1) Suppose that local alg returns localAnspi = true in one call. This

means that there is a local strict rule ri with head pi in Ci, such that body(ri) = ∅.
By Lemma 4, it holds that ri is a strict rule in T�(C) and body(ri) = ∅. Therefore

T�(C) ` +∆pi (according to the proof theory of Defeasible Logic presented in Appendix

B.

(2) Suppose that local alg returns localAnspi = false in one call. This means that

there is no strict local rule with head pi in Ci. By Lemma 4, there is no strict rule with

head pi in T�(C); therefore T�(C) ` −∆pi.
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Inductive Step. (1) Suppose that n + 1 calls of local alg are required to compute

localAnspi = true. This means that there is a strict local rule with head pi (say

ri) such that ∀ai ∈ body(ri), local alg returns localAnspi = true in n or less calls. By

inductive hypothesis, for every ai it holds that T�(C) ` +∆ai. By Lemma 4, it also

holds that ri is a strict rule in T�(C). Therefore, T�(C) ` +∆pi.

(2) Suppose that n + 1 calls of local alg are required to compute localAnspi = false.

This means that for every strict local rule ri with head pi in Ci, there is a literal ai
in the body of ri, such that localAnsai = false is returned by local alg in n or less

calls. By Lemma 4 and inductive hypothesis, for every strict rule ri with head pi in

T�(C), there is one literal ai in the body of ri such that T�(C) ` −∆ai. Therefore,

T�(C) ` −∆pi.

(1,2 ⇐). We use induction on the number of derivation steps in P (1:::n) (as this is

de�ned in Appendix B) taking as input the global defeasible theory T�(C).

Inductive Base. (1) Suppose that P (1) = +∆pi. Then there is a strict rule ri with

head pi in T�(C), such that body(ri) = ∅. By Lemma 4, ri is a strict local rule in Ci;

therefore local alg will return localAnspi = true.

(2). Suppose that P (1) = −∆pi. Then, there is no strict rule with head pi in T�(C).

By Lemma 4, there is no local strict rule with head pi in Ci; therefore local alg will

return localAnspi = false.

Inductive Step. (1) Suppose that P (n+ 1) = +∆pi. Then there is a strict rule ri with

head pi in T�(C), such that for all literals ai in the body of ri: +∆ai ∈ P (1:::n). By

Lemma 4 and inductive hypothesis, ri is a strict local rule in Ci and for all literals ai
in the body of ri, local alg returns localAnsai = true; therefore local alg will return

localAnspi = true.

(2) Suppose that P (n+1) = −∆pi. Then for every strict rule ri with head pi in T�(C),

there is a literal ai in the body of ri such that −∆ai ∈ P (1:::n). By Lemma 4 and

inductive hypothesis, for all local strict rules with head pi in Ci, there is a literal ai in
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the body of ri, such that local alg returns localAnsai = false; therefore local alg will

return localAnspi = false.

Proposition 8. For a literal pi in Vi, P2P DR computes

(1) Anspi = true i� T�(C) ` +@pi
(2) Anspi = false i� T�(C) ` −@pi

Proof. (⇒). We use induction on the number of calls of P2P DR that are required to

produce the answer for pi.

Inductive Base (1). Suppose that P2P DR computes Anspi = true in its �rst call.

Then, either

(a) local alg returns localAnspi = true, which by Proposition 7, implies T�(C) `
+∆pi, therefore T�(C) ` +@pi; or

(b) there is a local defeasible rule ri in Ci such that body(ri) = ∅ and there is no

rule with head ∼ pi in Ci. By Lemma 4, ri is a defeasible rule T�(C), and there is no

rule with head ∼ pi in T�(C). Therefore, T�(C) ` +@pi.

(2) Suppose that P2P DR computes Anspi = false in its �rst call. This means

that localAnspi = false and either (a) localAns∼pi = true or (b) there is no rule

with head pi in Ci. By Proposition 7, (a) implies T�(C) ` +∆ ∼ pi; therefore

T�(C) ` −@pi. By Lemma 4, (b) implies that there is no rule with head pi in T�(C);

therefore T�(C) ` −@pi.

Inductive Step (1) Suppose that P2P DR returns Anspi = true and SSpi = Σ in n+ 1

calls. The following conditions must hold:

(a) localAnspi = false (in case localAnspi = true then Anspi = true would be

returned by P2P DR in its �rst call). Therefore, by Proposition 7: T�(C) ` −∆pi.

(b) localAns∼pi = false, which, by Proposition 7, implies T�(C) ` −∆ ∼ pi.

(c) there is a rule ri with head pi in Ci (by Lemma 4, ri is also in T�(C)), such

that for all literals � in its body, it holds that Ans� = true is returned by P2P DR

in at most n calls, and SSri = (bigcupai∈ViSSai) ∪ (
⋃
aj =∈Vi aj) = Σ, where

⋃
ai ∪

⋃
aj

= body(ri). For every a, by inductive hypothesis, it holds that T�(C) ` +@a and
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either (a) localAnsa = true and SSa = ∅ - in this case, by Lemma 5, it holds that

Sa ∈ Pr(1:::n) and Sa = {s} - or (b) localAnsa = false, which by Lemma 6, implies

that Sa ∈ Pr(1:::n) and Sa = SSa and w; s =∈ Sa. Therefore, (
⋃
ai∈Vi SSai)∪ (

⋃
aj =∈Vi aj)

= (
⋃
a′i
Sa′i)∪(

⋃
aj), where a′i are the literals in the body of ri s.t. a′i ∈ Vi and Sa′i 6= {s},

w; s =∈ Sri and Sri = Σ.

(d) for all rules si with head ∼ pi in Ci (and therefore in T�(C)), either (d1) there

is a literal b in the body of si for which P2P DR returns Ansb = false in n calls - by

inductive hypothesis, T�(C) ` −@b - or (c2) ∀b ∈ body(si): P2P DR returns either true

or unde�ned as an answer for b (in at most n calls) and Stronger(SSri ; BSsi ; Ti) = SSri .

Since there are no loops in the global knowledge base, for all b: Ansb = true, which

means that BSsi = SSsi . By inductive hypothesis, for all b it holds T�(C) ` +@b.

By Lemma 6, Ssi ∈ Pr(1:::n) and Ssi = SSsi and w; s =∈ Ssi , which means that

Stronger(Sri ; Ssi ; Ti) = Sri , and therefore ri > si ∈ Pr(1:::n).

Overall, it holds that: (i) T�(C) ` −∆ ∼ pi; (ii) there is a rule ri with head pi in

T�(C), such that for all literals a in its body: T�(C) ` +@a; and (iii) for all rules with

head ∼ pi in T�(C) either there is a literal b in the body of si, such that T�(C) ` −@b,
or r > s. These three conditions su�ce to prove: T�(C) ` +@pi.

(2) Suppose that P2P DR returns Anspi = false in n + 1 calls. The following two

conditions must hold:

(a) localAnspi = false; by Proposition 7, this implies that T�(C) ` −∆pi;

(b) for all rules ri with head pi, either (b1) there is a literal a in the body of ri for

which P2P DR returns Ansa = false in n calls. By inductive hypothesis, T�(C) ` −@a,

or (b2) ∀a ∈ body(ri): P2P DR returns either true or unde�ned as an answer for a

(in at most n calls) and there is a rule si in Ci with head ∼ pi, for which it holds

that ∀b ∈ body(si), P2P DR returns true as an answer for b (in at most n calls)

and Stronger(BSri ; SSsi ; Ti) 6= BSri . By Inductive Hypothesis, and by the fact that

there are no loops in the global knowledge base, similarly with before we can prove

that for all a: T�(C) ` +@a, BSri = SSri , and Sri ; Ssi ∈ Pr(1:::n), Sri = SSri and

Ssi = SSsi , and w, s are not contained neither in Sri nor in Ssi . Therefore, it holds

that Stronger(Sri ; Ssi ; Ti) 6= Sri and ri > si =∈ Pr(1:::n).

The above conditions su�ce to prove that T�(C) ` −@pi.
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(1,2 ⇐). We use induction on the number of derivation steps in P (1:::n).

Inductive Base. (1) Suppose that P (2) = +@pi (according to the proof theory of

Defeasible Logic, a defeasible conclusion cannot be derived in one step). This means

that either:

(a) P (1) = +∆pi, which, by Proposition 7, implies that localAnspi = true will be

returned by local alg; therefore P2P DR will return Anspi = true; or

(b) there is a defeasible rule ri with head pi in T�(C), such that body(ri) = ∅ - by

Lemma 4, ri is a local defeasible rule in Ci; and there is no rule with head ∼ pi in

T�(C), which, by Lemma 4, implies that and there is no rule with head ∼ pi in Ci,

hence unbsimpi = false. Therefore, P2P DR will return Anspi = true.

(2) Suppose that P (1) = −@pi. This means that P (1) = −∆pi, which by Proposition

7, implies that localAnspi = false, and either:

(a) there is no rule with head pi in T�(C), which, by Lemma 4, implies that there

is no rule with head pi in Ci (therefore unbpi = false); or

(b) P (1) = +∆ ∼ pi, which, by Proposition 7, implies that localAns∼pi = true.

In both cases, P2P DR will return Anspi = false.

Inductive Step. (1) Suppose that P (n + 1) = +@pi. This means that either: (a)

+∆pi ∈ P (1:::n), which by Proposition 7, implies that localAnspi = true; therefore

P2P DR will return Anspi = true; or (b) the following three conditions must hold:

(b1) −∆ ∼ pi ∈ P (1:::n), which by Proposition 7, implies that localAnssimpi =

false;

(b2) there is a rule ri with head pi in T�(C), such that for all literals a in its body

+@a ∈ P (1:::n). By Lemma 4 and inductive hypothesis, this implies that there is a

rule ri with head pi in Ci, such that for all literals a in its body P2P DR returns

Ansa = true;

(b3) for all rules si with head ∼ pi in T�(C) (and therefore in Ci), either there

is a literal b in the body of si, such that −@b ∈ P (1:::n) - in this case, by inductive

hypothesis, P2P DR returns Ansb = false - or there is a rule ti with head pi in T�(C),

such that for all literals d in its body +@d ∈ P (1:::n), and ti > si. Similarly with (b2),

we can prove for ti that ti ∈ Ci, and for all literals d in its body P2P DR returns
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Ansd = true. That ti > si means that Sti ; Ssi ∈ Pr(1:::n), w, s are not contained

neither in Sti nor in Ssi , and Stronger(Sti ; Ssi ; Ti) = Sti . By Lemma 6, SSti = Sti ,

SSsi = Ssi , and since there are no loops in the global knowledge base BSsi = SSsi .

Therefore, it holds that: Stronger(SSti ; BSsi ; Ti) = SSti .

By the de�nition of Stronger it holds that if for every si such that for every literal

in its body P2P DR returns true as an answer, there is a rule ti that satis�es the same

conditions, and Stronger(SSti ; SSsi ; Ti) = SSti , then there is a rule ri that satis�es the

same conditions, for which it holds that Stronger(SSri ; SSsi ; Ti) = SSri , for every si.

Overall, we have proved that localAnssimpi = false, and there is a rule ri with head

pi in Ci, such that for all literals a in its body P2P DR returns Ansa = true, and for

every rule si with head ∼ pi in Ci, either there is a literal b in the body of si, such

that Ansb = true or Stronger(SSti ; BSsi ; Ti) = SSti . Hence, suppi = true, and either

unb∼pi = false or Stronger(SSpi ; BS∼pi ; Ti) = SSpi , and therefore P2P DR returns

Anspi = true.

(2) Suppose that P (n + 1) = −@pi. This means that −∆pi ∈ P (1:::n), which by

Proposition 7, implies that localAnspi = false, and one of the following conditions

hold:

(a) +∆ ∼ pi ∈ P (1:::n), which by Proposition 7, implies that localAns∼pi = true;

therefore P2P DR will return Anspi = false; or

(b) for all rules ri with head pi in T�(C), there is a literal a in the body of ri such

that −@a ∈ P (1:::n). By Lemma 4 and inductive hypothesis, this implies that for every

rule ri with head pi in Ci, there is a literal a in the body of ri such that Ansa = false;

therefore unbpi = false and P2P DR will return Anspi = false.

(c) there is a rule si with head ∼ pi in T�(C) (by Lemma 4 si ∈ Ci), such that for

all literals b in its body, +@d ∈ P (1:::n) - by Inductive Hypothesis, this implies that

P2P DR returns Ansb = true, and therefore sup∼pi = true - and for all rules ti with

head pi in T�(C) (and therefore in Ci) either there is a literal d in the body of ti such

that −@d ∈ P (1:::n) - by Inductive Hypothesis, P2P DR returns Ansd = false - or

for all literals d, +@d ∈ P (1:::n) (by inductive hypothesis P2P DR returns Ansd =

true) and ti > si =∈ Pr(1:::n). The latter case implies that Stronger(Sti ; Ssi ; Ti) 6=
Sti . In the same way with before, we can prove that BSti = Sti , SSsi = Ssi , and

therefore Stronger(BSti ; SSsi ; Ti) 6= BSti . Similarly with before, it is easy to verify
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that Stronger(BSpi ; SS∼pi ; Ti) 6= BSpi . Overall, for this case, it holds that sup∼pi =

true and either unbpi = false or Stronger(BSti ; SSsi ; Ti) 6= BSti , which means that

P2P DR will return Anspi = false.
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Appendix B

Defeasible Logic

Below, we describe the syntax and proof theory of the ambiguity version of Defeasible

Logic, as these were originally presented in [8].

B.1 Syntax

A defeasible theory is a triple (F, R, >), where F is a set of literals (called facts), R a

�nite set of rules, and > a superiority relation on R. In expressing the proof theory we

consider only propositional rules. Rules containing free variables are interpreted as the

set of their variable-free instances.

There are two kinds of rules (fuller versions of defeasible logics include also de-

featers): Strict rules are denoted by A→ p, where A is a �nite set of literals and p is a

literal, and are interpreted in the classical sense: whenever the premises are indisputable

(e.g. facts) then so is the conclusion. An example of a strict rule is \Professors are

faculty members". Written formally:

professor(X) → faculty(X)

Inferences from facts and strict rules only are called de�nite inferences. Facts and

strict rules are intended to de�ne relationships that are de�nitional in nature. Thus

defeasible logics contain no mechanism for resolving inconsistencies in de�nite inference.

Defeasible rules are denoted by A ⇒ p, and can be defeated by contrary evidence.

An example of such a rule is

professor(X) ⇒ tenured(X)
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which reads as follows:\Professors are typically tenured".

A superiority relation is an acyclic relation > on R (that is, the transitive closure

of > is irre
exive). Given two rules r1 and r2, if we have that r1 > r2, then we will say

that r1 is superior to r2, and r2 inferior to r1. This expresses that r1 may override r1.

For example, given the rules

r1 : professor(X) ⇒ tenured(X)

r2 : visiting(X) ⇒ ¬tenured(X)

which contradict each other, no conclusive decision can be made about whether a visiting

professor is tenured. But if we introduce a superiority relation > with r2 > r1, then we

can indeed conclude that he/she cannot be tenured.

B.2 Proof Theory

Informally, a conclusion q is defeasibly derivable given a defeasible theory D = (F;R;>)

when (a) q is a fact; or (b) there is an applicable strict or defeasible rule for q, and

either all the rules for q-complementary literals are discarded or every rule for a q-

complementary literal is weaker than an applicable rule for q.

Formally, a conclusion of a defeasible theory D is a tagged literal and can have one

of the following four forms:

• +∆q which is intended to mean that q is a de�nite consequence of D

• −∆q which is intended to mean that we have proved that q is not a de�nite

consequence of D

• +@q which is intended to mean that q is defeasible provable in D

• −@q which is intended to mean that we have proved that q is not defeasible

provable in D

Provability is based on the concept of a derivation in D [8]. A derivation is a �nite

sequence P = (P (1); ; P (n)) of tagged literals satisfying the following conditions (P (1::i)

denotes the initial part of the sequence P of length i, Rs[q] the set of strict rules that

support q and Rd[q] the set of defeasible rules that support q):
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+∆: If P (i+ 1) = +∆q then either

q ∈ F or

∃r ∈ Rs[q]∀� ∈ body(r): +∆� ∈ P (1:::i)

−∆: If P (i+ 1) = +∆q then either

q =∈ F and

∀r ∈ Rs[q]∃� ∈ body(r): −∆� ∈ P (1:::i)

+@: If P (i+ 1) = +@q then either

(1) +∆q ∈ P (1:::i) or

(2) (2.1) ∃r ∈ Rsd[q]∀� ∈ body(r):
+@� ∈ P (1:::i) and

(2.2) −∆ ∼ q ∈ P (1:::i) and

(2.3) ∀s ∈ R[∼ q]

(2.3.1) ∃� ∈ body(s): −@� ∈ P (1:::i) or

(2.3.2) ∃t ∈ Rsd[q]:
∀� ∈ body(t): +@� ∈ P (1:::i) and t > s

−@: If P (i+ 1) = −@q then

(1) −∆q ∈ P (1:::i) and

(2) (2.1) ∀r ∈ Rsd[q]∃� ∈ body(r):
−@� ∈ P (1:::i) or

(2.2) +∆ ∼ q ∈ P (1:::i) or

(2.3) ∃s ∈ R[∼ q] such that

(2.3.1) ∀� ∈ body(s): +@� ∈ P (1:::i) and

(2.3.2) ∀t ∈ Rsd[q] either

∃� ∈ body(t): −@� ∈ P (1:::i) or t ≯ s

Governatori et. al describe in [61] Defeasible Logic and its variants in argumentation-

theoretic terms. A model theoretic semantics is discussed in [81].
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