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Abstract  

The Semantic Web is an extension of the current Web, in which information is given 

well-defined meaning, better enabling computers and people to work in cooperation. 

For the Semantic Web to function, computers must have access to structured 

collections of information and sets of inference rules that they can use to conduct 

automated reasoning. The development of the Semantic Web proceeds in layers, each 

layer being on top of other layers. At present, the highest layer that has reached 

sufficient maturity is the ontology layer in the form of the description logic based 

languages. The next step will be the logic and proof layer and rule systems appear to 

lie in the mainstream of such activities. 

Until now, most studies on this domain have focused on the development of 

monotonic rule systems. A logic is monotonic if the truth of a proposition does not 

change when new information (axioms) are added to the system - the set of 

conclusions can only monotonically grow. In contrast, a logic is non-monotonic if the 

truth of a proposition may change when new information (axioms) is added - the set 

of conclusions may either grow or shrink. The study of nonmonotonic rule systems 

seem also to be promising for the development of the Web, as nonmonotonic 

reasoning is closer to commonsense reasoning, compared to monotonic logics. 

In the current work, we are developing a nonmonotonic rule system, which is 

based on defeasible logic. The system can reason both with monotonic (strict) and 

nonmonotonic (defeasible) rules, and supports preferences between rules. It can treat 

facts in RDF form and ontologies in RDFS, and its user interface is compatible with 



   

 

RuleML, the main standardization effort for rules on the Semantic Web. The core of 

the system consists of a translation of defeasible knowledge into Prolog. However, the 

implementation is declarative because it interprets the not operator using Well-

Founded Semantics. 
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1 Introduction 

1.1 Motivation and Contribution of the Study 

The Semantic Web is an extension of the current Web, in which information is given 

well-defined meaning, better enabling computers and people to work in cooperation. 

For the Semantic Web to function, computers must have access to structured 

collections of information and sets of inference rules that they can use to conduct 

automated reasoning. The development of the Semantic Web 7[13] proceeds in layers, 

each layer being on top of other layers. At present, the highest layer that has reached 

sufficient maturity is the ontology layer in the form of the description logic based 

languages.  

The next step in the development of the Semantic Web will be the logic and proof 

layers, and rule systems appear to lie in the mainstream of such activities. Moreover, 

rule systems can also be utilized in ontology languages. So, in general rule systems 

can play a twofold role in the Semantic Web initiative: (a) they can serve as 

extensions of, or alternatives to, description logic based ontology languages; and (b) 

they can be used to develop declarative systems on top (using) ontologies.  

So far, most studies have focused on the employment of monotonic logics in the 

layered development of the Semantic Web. A logic is monotonic if the truth of a 

proposition does not change when new information (axioms) are added to the system - 

the set of conclusions can only monotonically grow. In contrast, a logic is non-

monotonic if the truth of a proposition may change when new information (axioms) is 

added - the set of conclusions may either grow or shrink. The study of nonmonotonic 

rule systems seem also to be promising for the development of the Web, as 

nonmonotonic reasoning is closer to commonsense reasoning, compared to monotonic 

logics. 

Several nonmonotonic logics have been proposed and studied during the last 

decades: default logic 7[85], autoepistemic logic 7[71], circumscription 7[69] etc. Our 

work is based on defeasible reasoning. Defeasible reasoning is a simple rule-based 

approach to reasoning with incomplete and inconsistent information. It can represent 

facts, rules, and priorities among rules. This reasoning family comprises defeasible 

logics 7[5]7[73]and Courteous Logic Programs 7[42]. The main advantage of this 
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approach is the combination of two desirable features: enhanced representational 

capabilities allowing one to reason with incomplete and contradictory information, 

coupled with low computational complexity compared to mainstream nonmonotonic 

reasoning. 

This thesis addresses the issues involved in the implementation of a defeasible 

reasoning system for reasoning on the Web. Its main characteristics are the following: 

� Its user interface is compatible with RuleML 7[88], the main standardization 

effort for rules on the Semantic Web.  

� It is based on Prolog. The core of the system consists of a translation of 

defeasible knowledge into Prolog. This translation enables reasoning on 

defeasible theories, using efficient logic programming systems, and exploits 

the well-founded semantics of logic programs.  

� The main focus was flexibility. Strict and defeasible rules and priorities are 

part of the interface and the implementation. Also, a number of variants were 

implemented (ambiguity blocking, ambiguity propagating, conflicting literals; 

see below for further details). 

� It can reason both with monotonic and nonmonotonic rules. It can also treat 

facts in RDF form and ontologies in RDFS. 

1.2 Thesis Organization 

This report is organized as follows:  

Chapter 2 presents the background in the domain of nonmonotonic reasoning: 

some classical nonmonotonic logics, the logic program semantics, argumentation 

systems, and systems with preferences.  

Chapter 3 describes the role of the rule systems in the development of the 

Semantic Web. Firstly, we present the layers of the Semantic Web Tower that have 

been so far implemented, and then we reason why rule systems, and especially the 

nonmonotonic ones, are expected to be part of the layered development of the 

Semantic Web. Finally, we report on some web rule languages, that have so far been 

proposed in this direction. 

In Chapter 4, we present the basic features, as well as some variants of Defeasible 

Logic. Specifically, we describe the ambiguity blocking variant and the ambiguity 
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propagation variant, as well as the use of conflicting literals. In this Chapter, we also 

present a proof theory for this logic. 

Chapter 5 is about the translation of defeasible theories into logic programs. We 

report on the rationale and some properties of the translation, in the case of each 

variant of defeasible logic. 

Chapter 6 reports on the implementation architecture of our system. Firstly, we 

give an overview of how the system works, and then we describe in detail the 

functionality of each of the parts of the system. 

In Chapter 7, we present a concrete example, showing in practice the abilities and 

the functionality of our system.  

Chapter 8, reports on the results of the performance evaluation. Firstly, we 

describe the test theories that we used to conduct the evaluation, and then we compare 

the performance of our system, with the performance of other similar systems, based 

on the results of the experiments. 

Finally, in Chapter 9 we present our conclusions and the plans of our future work. 





 

2 Nonmonotonic Reasoning 

Nonmonotonic reasoning is a subfield of Artificial Intelligence trying to find more 

realistic formal models of reasoning than classical logic. In common sense reasoning 

one often draws conclusions that have to be withdrawn when further information is 

obtained. The set of conclusions thus does not grow monotonically with the given 

information. It is this the phenomenon that nonmonotonic reasoning methods try to 

formalize.  

In a monotonic logic system, given a collection of facts D that entail some 

sentence s (s is a logical conclusion of D), for any collection of facts D’  such that 

D�D’, D’ also entails s. In other words: s is also a logical conclusion of any superset 

of D.  

In an nonmonotonic system, the addition of new facts can reduce the set of logical 

conclusions. So, if s is a logical conclusion of D, it is not necessarily a conclusion of 

any superset of D. Two of the basic characteristics of nonmonotonic systems are: 

adaptability (ability to deal with a changing environment), and the ability to reason 

under conditions of uncertainty. In other words, such systems are capable of adding 

and retracting beliefs as new sets of information is available, and reasoning with an 

incomplete set of facts. 

McCarthy 7[68] was perhaps the first individual to discuss the need for the 

automation of commonsense reasoning, before any theory existed on the subject. 

Initial formalizations were suggested by McCarthy and Hayes 7[70], who discussed 

philosophical problems from the standpoint of AI and introduced the frame problem, 

and by Sandewall 7[89] who attempted to find a solution to the frame problem. The 

frame problem deals with how one specifies that when an action that is restricted to a 

set of objects takes place, the action has no effect upon many other objects in the 

world.  

The Prolog language developed by Colmerauer and his students 7[27] and the 

PLANNER language developed by Hewitt 7[45] were the first languages to have a 

nonmonotonic component. The not operator in Prolog, and the THNOT capability in 

PLANNER provided default rules for answering questions about data where the facts 

did not appear explicitly in the program. 
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Reiter 7[83] set forth the rule of negation called the closed world assumption, 

(CWA). The CWA states that in Horn logic theories if we cannot approve an atom p, 

then we can assume not p. Clark 7[26] related negation to the only if counter-part of if 

statements in a logic program. The if-and-only-if (iff) statements form a theory in 

which negated atoms can be proven using a full theorem prover. The importance of 

Clark’s observation is that he showed that for ground atoms and hierarchical 

programs, an inference system called SLDNF resolution, operating on the if 

statements of logic programs was sufficient to find the ground negated atoms in the iff 

theory that can be assumed true. 

McCarthy first introduced his theory of circumscription in 1977 7[69], and Doyle 

developed his truth maintenance system in 1979 7[33]. Reiter gave preliminary 

material on default reasoning in 1978 7[84]. The initial theories of nonmonotonic logic 

were presented in the Artificial Intelligence Journal in 1980. 

Nonmonotonic logic has a rigorous mathematical basis. Although grounded in 

classical logic, it is a new discipline that extends classical logic and has become a 

mature part of logic. The main three classical approaches to nonmonotonic reasoning 

are Default Logic, Autoepistemic Logic and Circumscription. Recently research has 

also focused on an abstract study of nonmonotonicity, rather than the study of single 

approaches 7[53]7[65]. 

2.1 Classical Approaches 

In this section we describe the main three classical approaches of nonmonotonic 

reasoning: default logic, autoepistemic logic and circumscription. 

2.1.1 Default Logic 

Reiter’s default logic 7[85] is probably the most preeminent consistency-based 

nonmonotonic logic and has been used to formalize a number of different reasoning 

tasks, for instance, diagnosis from first principles 7[87] or inheritance 7[35].  

Default Logic assumes that knowledge is represented in terms of a default theory. 

A default theory is a pair (D,W). W is a set of first order formulas representing the 

facts which are known to be true with certainty. D is a set of defaults of the form  

C
BnBA ,...,1:  
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expel(X) 

where A, Bi, C are classical closed formulas. The default has the intuitive reading: if A 

is provable and, for all i (1�  i �  n), �Bi is not provable, then derive C. A is called 

the prerequisite, Bi a consistency condition or justification, and C the consequent of 

the default. We can make this clear by giving an example form the legal domain: 

According to the German law, a foreigner is usually expelled if he has committed a 

crime. One of the exceptions to this rule concerns political refugees. This information 

is expressed by the default  

criminal(X)  foreigner(X): expel(X) 

in combination with the rule 

politicalRefugee(X) �  � expel(X). 

Default rules act as mappings from some incomplete theory to a more complete 

extension of the theory. An extension is a maximal set of conclusions that can be 

drawn from the default theory. Extensions are defined by a fixed point construction. 

For any set of first-order sentences S, define �(S) to be the smallest set satisfying the 

following three properties: 

1. W �  �(S). 

2. �(S) is closed under first-order logical consequence. 

3. If  �
�	 :  is a default rule of D and 
	  �(S) and �� �S then 
�  �(S). 

Then E is defined to be an extension of the default theory (D,W) iff �(�) = �, that 

is, E is a fixed point of the operator �.  A theory consisting of general default rules 

does not always have an extension. A subclass consisting of default rules called 

normal defaults, and of the form, �:� / � always has en extension. Reiter develops a 

complete proof theory for normal defaults and shows how it interfaces with a top-

down resolution theorem prover.  

Reiter and Criscuolo 7[86] show that default rules may be normal when viewed in 

isolation, however they can interact in ways that lead to derivations of anomalous 

default assumptions. Non-normal defaults are required to deal with default 

interactions. In general, non-normal defaults are more difficult to implement and 

reason with. 



8  Nonmonotonic Reasoning 

 

Gelfond, Lifschitz, Przymusinska and Truszczynski 7[37] generalize Reiter’s 

default logic to handle disjunctive information. The generalization was motivated by a 

difficulty encountered in attempts to use defaults in the presence of disjunctive 

information. The difficulty has to do with the difference between a default theory with 

two extensions – one containing a sentence a, the other a sentence � – and the theory 

with a single extension, containing the disjunction a �  �. A disjunctive default is an 

expression of the form 

  
n1

m1

||
  ,,:

��
��





a
  

where �, ��, �� are quantifier free formulas. A disjunctive default theory (ddt)  is a set 

of disjunctive defaults. Gelfond et al. 7[37]  show that one cannot simulate a ddt with a 

standard default theory. 

Defaults can be used naturally to model the Closed World Assumption which is 

used in database theory, algebraic specification, and logic programming. According to 

this assumption, a ground fact is taken to be false in a problem domain if it does not 

follow from the axioms (in the form of relational facts, equations, rules etc.) 

describing the domain. The CWA has the simple default representation 

�
�

�

�:true
 

for each ground atom �. The explanation of the default is: if it is consistent to assume 

��  (which is equivalent to not having a proof for � then conclude �� ). 

In 7[25], it is reported that showing the existence of an extension has been proved 

to be �
p

2
- complete for semi-normal default theories. Skeptical default reasoning in 

the prerequisite-free normal case has been shown to be �
p

2
- complete. 

2.1.2 Autoepistemic Logic 

Moore’s 7[71] Autoepistemic Logic (AEL) is the most widely studied logic of a class 

called modal nonmonotonic logics. These logics use a modal operator to express 

explicitly that a certain formula is consistent or believed. Moore introduces the modal 

operator L into the logical language: in other words, if p is a (closed) formula then 

also Lp is. Lp stands for “p is believed”. The idea is to model an ideal introspective 
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agent reasoning about his beliefs. Introspective here means that the agent knows 

completely what he knows and, in particular, what he does not know. This means that  

� if a formula p belongs to the set of beliefs B of the agent, then also Lp has to 

belong to B, and 

� if p does not belong to B, then �Lp must be in B. 

Nonmonotonicity in this framework arises whenever the derivation of a formula 

depends on disbelief in a formula. Consider the following representation of the 

famous bird rule: 

Bird(Tweety) �  �L�Flies(Tweety) �  Flies(Tweety). 

Assume Bird(Tweety) is all the agent knows about Tweety. Then, since the negation 

of this formula �Flies(Tweety), is not believed, �L�Flies(Tweety) must be 

contained in the agent’s beliefs. Applying modus ponens to the bird rule, we thus can 

derive Flies(Tweety). On the other hand, if the agent obtains new information about 

Tweety is a non-flying bird, then �L�Flies(Tweety) will not be contained in his set 

of beliefs, and the former conclusion is withdrawn. 

As in Default Logic, conflicting AEL rules can lead to alternative stable sets of 

beliefs a reasoner may adopt. Moore called these sets expansions. Konolige 7[50] later 

introduced a somewhat different fixed point equation, called the fixed points 

extensions, and showed that Moore’s expansions and his extensions are equivalent. 

According to Konolige: 

Let A be a set of AEL formulas. T is an extension of A if 

  T = {p | A� Bel(T) � Disbel(T)  p}, 

where Bel(T) = {Lq | q
T}, and Disbel(T) = {�Lq | q�T}. 

Although the intuitions underlying DL and AEL seem very different at first sight, 

these two logics are actually much closer than one might expect. In 7[50], Konolige 

used the following translation from DL defaults to autoepistemic formulas: 

 A:B1,…,Bn / C �LA� �L�B1�…� �L�Bn �  C. 

Since on the other hand, every AEL formula can be transformed into an AEL 

implication of this kind shown above, the translation also works from AEL to DL.  
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Konolige showed that extensions to a default theory (D,W) correspond exactly to 

the objective part, that is the part not containing the modal operator L, of some of the 

extensions of the AEL translation of (D,W). He called these extensions strongly 

grounded extensions. The AEL extensions that do not correspond to DL extensions 

contain beliefs that depend on themselves. For instance, the AEL theory {Lp �  p} has 

two extensions, one containing Lp and p, and the other not containing p, and therefore 

containing �Lp. 

More recently other translations from DL to AEL have been investigated 7[66], 

7[97]. In the latter paper, the following translation is proposed. 

 A:B1,…,Bn / C �LA� L�L�B1�…� L�L�Bn �  C. 

It is shown that under this translation DL can be embedded into a whole range of 

nonmonotonic modal logics. However, this translation only works in one direction, 

from DL to AEL, since not every AEL formula can be equivalently transformed to the 

above form. 

One of the main limitations of autoepistemic logic is that quantification into the 

scope of the L operator is not allowed. 7[51] extends the logic in this direction. The 

same author developed the Hierarchic Autoepistemic Logic 7[52] to deal with some 

deficiencies of AEL: to allow priorities among formulae, and to increase 

computational efficiency. The main idea is to consider a collection of subtheories 

linked together in a hierarchy, and to use a set of L operators with restricted 

application scope. Though new representational problems arise, 7[8] shows an 

interesting application. 

In 7[25], it is reported that the results about the computational complexity of 

autoepistemic logic are exactly the same already obtained for default logic; the 

problem of deciding whether a set of premises A has a stable expansion is �
p

2
- 

complete, while skeptical autoepistemic reasoning is �
p

2
- complete. 

2.1.3 Circumscription 

Circumscription has generated a great deal of interest in the nonmonotonic reasoning 

community. McCarthy’s 1980 paper on circumscription is a formalization of the work 

he described first in 7[69]. Circumscription deals with the minimization of predicates 
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subject to restrictions expressed by predicate formulas. In circumscription, theories 

are written in classical first-order logic, however the entailment relation is not 

classical. A formula F is entailed by a circumscriptive theory T if it is true in all 

minimal models of T. A model M, of a theory, T, is called minimal with respect to 

some ordering, <, of models if there is no model, N, of T such that N < M. A 

circumscription policy is used to determine a particular partial ordering, <, used to 

circumscribe the theory. In the basic case a single predicate, P, is chosen to be 

circumscribed. Given two models, M1 and M2, which differ only in the interpretation 

of P, we say that M1 �  M2 if the extent of P in M1 is a subset of its extent in M2. We 

write circ(T; P) �  F to indicate that F is entailed form T by circumscription with the 

policy of minimizing P. Here circ(T; P) can be viewed as a second-order formula 

expressing the above definition.  

Below we apply this idea to a version of the flying birds example. We can express 

that Tweety is a bird and birds normally fly by first-order sentences 

T = {bird(tweety) ,  �X (bird(X) �� ab(X) �  fly(X))} 

where ab(X) means that X is abnormal with respect to flying. Obviously, classical 

first-order logic does not allow us to reach the desired common-sense conclusion that 

Tweety can fly. If, however, we use circumscription and circumscribe ab, then all 

minimal models under this policy contain fly(tweety) and hence  

circ(T; ab) �  fly(tweety). 

The basic form of circumscription is often too restrictive so many other 

circumscriptive policies have been formalized. One common policy is to specify 

certain predicates which are allowed to vary. In this case, models are comparable if 

they differ in the extent of the varied predicates as well as the circumscribed 

predicate. As before, the ordering of comparable models is based solely on the extent 

of the circumscribed predicate in models. Suppose we add to the above example the 

fact that penguins are birds which are abnormal with respect to flying 

(penguin(X) �  bird(X) and  penguin(X) �  ab(X)). 

Since a model, M0, in which Tweety is a penguin, is minimal with respect to ordering 

defined by the first policy we no longer have circ(T; ab) �  fly(tweety). If we modify 

the policy so that penguin can vary, the model M0 will not be minimal with respect to 
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the new ordering. It is easy to check that, under this policy, T concludes fly(tweety). 

Selection of the right circumscriptive policy lies at the heart of representing 

knowledge in circumscriptive theories. Even though computing consequences of 

circumscribed theories is generally intractable (even in propositional case), for some 

theories there are reasonably efficient algorithms based on reducing the circumscribed 

theory to a logic program or a set of first-order formulae. 

2.2 Extended Logic Program Semantics 

A (propositional) extended logic program consists of rules of the form 

c �a1,…,an, not b1,…, not bm 

where the ai,bj and c are propositional literals, i.e., either propositional atoms or such 

atoms preceded by the classical negation sign. The symbol not denoted negation by 

failure (weak negation), �  denotes classical (strong) negation. A rule schema is used 

to represent a set of propositional rules, namely the set of all ground instances of the 

schema. Extended logic programs are very useful for knowledge representation 

purposes. In 7[11] one can find a number of illustrative examples. Two major 

semantics for extended logic programs have been defined: answer set semantics 7[36], 

an extension of stable model semantics, and a version of well-founded semantics 7[82]. 

2.2.1 Answer set semantics �[36] 

We say a rule r
  P of the form above is defeated by a literal l if l = bi for some i
  

{1,…,m}. We say r is defeated by a set of literals X if X contains a literal that defeats 

r. Furthermore, we call the rule obtained by deleting weakly negated preconditions 

form r the monotonic counterpart of r and denote it with Mon(r). We also apply Mon 

to sets of rules with the obvious meaning. 

Definition 1 Let P be a logic program, X a set of literals. The X-reduct of P, denoted 

PX, is the program obtained form P by  

� deleting each rule defeated by X, and 

� replacing each remaining rule r with its monotonic counterpart Mon(r). 

Definition 2 Let R be a set of rules without negation as failure. Cn(r) denotes the 

smallest set of literals that is closed under R, and logically closed, i.e., either 

consistent or equal to the set of all literals. 
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Definition 3 Let P be a logic program, X a set of literals. Define an operator �P as 

follows: 

�P(X) = Cn(PX ) 

X is an answer set of P iff X = �P(X). 

A literal l is a consequence of a program P under answer set semantics, denoted 

l
Ans(P), if l is contained in all answer sets of P. 

For example, consider the following program 

              flies(X)   �     bird(X), not � flies(X) 

           � flies(X)   �     penguin(X), not flies(X) 

       bird(X)   �      penguin(X) 

 penguin(tweety)   �  

The program has two answer sets, namely: 

 I1  =  { flies(tweety), bird(tweety), penguin(tweety)} 

 I2  =  { � flies(tweety), bird(tweety), penguin(tweety)} 

An extended program is called contradictory with respect to the answer-set semantics 

if it has no consistent answer sets. For example, the program containing the two facts 

a and �a has a single answer-set { a, �a} which is inconsistent. So this program is 

contradictory. 

2.2.2 Well-founded Semantics �[82] 

Like answer set semantics the well-founded semantics for extended logic programs is 

based on the operator �P. However, the operator is used in a totally different way. 

Since �P is anti-monotone the function �P = (�P)2 is monotone. According to the 

famous Knaster-Tarski theorem 7[92] every monotone operator has a least fixpoint. 

The set of well-founded conclusions of a program P, denoted WFS(P), is defined to be 

this least fixpoint of �P. The fixpoint can be approached from below by iterating �P on 

the empty set. In case P is finite this iteration is guaranteed to actually reach the 

fixpoint. The intuition behind this use of the operator is as follows: whenever �P is 

applied to a set of literals X known to be true it produces the set of all literals that are 

still potentially derivable. Applying �P again to such a set of potentially derivable 
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literals it produces a set of literals known to be true, often larger than the original set 

X. Starting with the empty set and iterating until the fixpoint is reached thus produces 

a set of true literals. It can be shown that every well-founded conclusion is a skeptical 

conclusion under the answer set semantics. Well-founded semantics can thus be 

viewed as an approximation of answer set semantics. 

2.3 Argumentation Systems 

Argumentation systems are yet another way to formalise nonmonotonic reasoning, 

viz. as the construction and comparison of arguments for and against certain 

conclusions. In these systems the basic notion is not that of a defeasible conditional 

but that of a defeasible argument. The idea is that the construction of arguments is 

monotonic, i.e., an argument stays an argument if more premises are added. 

Nonmonotonicity, or defeasibility, is not explained in terms of the interpretation of a 

defeasible conditional, but in terms of the interactions between conflicting arguments: 

in argumentation systems nonmonotonicity arises from the fact that new premises 

may give rise to stronger counter-arguments, which defeat the original argument. So 

in case of Tweety we may construct one argument that Tweety flies because it is a 

bird, and another argument that Tweety does not fly because it is a penguin, and then 

we may prefer the latter argument because it is about a specific class of birds, and is 

therefore an exception to the general rule. 

Argumentation systems can be applied to any form of reasoning with 

contradictory information, whether the contradictions have to do with rules and 

exceptions or not. For instance, the contradictions may arise from reasoning with 

several sources of information, or they may be caused by disagreement about beliefs 

or about moral, ethical or political claims. Moreover, it is important that several 

argumentation systems allow the construction and attack of arguments that are 

traditionally called ‘ampliative’, such as inductive, analogical and abductive 

arguments; these reasoning forms fall outside the scope of most other nonmonotonic 

logics. 

Most argumentation systems have been developed in artificial intelligence 

research on nonmonotonic reasoning, although Pollock’s work 7[76], which was the 

first logical formalisation of defeasible argumentation, was initially applied to the 

philosophy of knowledge and justification (epistemology). The first artificial 
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intelligence paper on argumentation systems was 7[60]. Argumentation systems have 

been applied to domains such as legal reasoning, medical reasoning and negotiation. 

Below, we present an abstract approach to defeasible argumentation, developed in 

several articles by Bondarenko, Dung, Toni and Kowalski. We also give a brief 

description of some other interesting approaches. 

2.3.1 The Abstract Approach of Bondarenko, Dung, Kowalski and Toni 

Historically, this work came after the development by others of a number of 

argumentation systems (to be discussed below). The major innovation of the BDKT 

approach is that it provides a framework and vocabulary for investigating the general 

features of these other systems, and also of nonmonotonic logics that are not 

argument-based. 

The latest and most comprehensive account of the BDKT approach is Bondarenko 

et al. 7[15]. In this account, the basic notion is that of a set of “assumptions”. In their 

approach the premises come in two kinds: ‘ordinary’ premises, comprising a theory, 

and assumptions, which are formulas (of whatever form) that are designated (on 

whatever ground) as having default status. Bondarenko et al. 7[15] regard 

nonmonotonic reasoning as adding sets of assumptions to theories formulated in an 

underlying monotonic logic, provided that the contrary of the assumptions cannot be 

shown. What in their view makes the theory argumentation-theoretic is that this 

provision is formalised in terms of sets of assumptions attacking each other. In other 

words, according to Bondarenko et al. 7[15] an argument is a set of assumptions. This 

approach has especially proven successful in capturing existing nonmonotonic logics. 

Another version of the BDKT approach, presented by Dung 7[34], completely 

abstracts from both the internal structure of an argument and the origin of the set of 

arguments; all that is assumed is the existence of a set of arguments, ordered by a 

binary relation of ‘defeat’. Dung then defines various notions of so-called argument 

extensions, which are intended to capture various types of defeasible consequence. 

These notions are declarative, just declaring sets of arguments as having a certain 

status. Finally, Dung shows that many existing nonmonotonic logics can be 

reformulated as instances of the abstract framework. 
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2.3.2 Other Approaches 

Pollock. Another interesting approach is Pollock’s argumentation system 7[76]. In this 

system, the underlying logical language is standard first-order logic, but the notion of 

an argument has some non-standard features. What still conforms to accounts of 

deductive logic is that arguments are sequences of propositions linked by inference 

rules (or better, by instantiated inference schemes). However, Pollock’s formalism 

begins to deviate when we look at the kinds of inference schemes that can be used to 

build arguments. 

Inheritance systems. A forerunner of argumentation systems is work on so-called 

inheritance systems, especially of Horty et al. 7[48], which we shall briefly discuss. 

Inheritance systems determine whether an object of a certain kind has a certain 

property. Their language is very restricted. The network is a directed acyclic graph. Its 

initial nodes represent individuals and its other nodes stand for classes of individuals. 

There are two kinds of links and , depending on whether an individual does or 

does not belong to a certain class, or a class is or is not member of a certain class. 

Links from an individual to a class express class membership, and links between two 

classes express class inclusion. A path through the graph is an inheritance path iff its 

only negative link is the last one. Thus the following are examples of inheritance 

paths: 

 P1: Tweety Penguin �Canfly 

 P2 : Tweety  Penguin Canfly 

Another basic notion is that of an assertion, which is of the form  

x y        or        x y 

where  x is an individual and y is a class. Such an assertion is enabled by an 

inheritance path if the path starts with x and ends with the same link to y as the 

assertion. Above, an assertion enabled by P1 is Tweety � Canfly, and an assertion 

enabled by P2 is  Tweety Canfly. Two paths can be conflicting. They are compared 

on specifity, which is read off from the syntactic structure of the net, resulting in 

relations of neutralisation and preemption between paths. Although Horty et al. 
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present their system as a special-purpose formalism, it clearly has all the elements of 

an argumentation system. An inheritance path corresponds to an argument, and an 

assertion enabled by a path to a conclusion of an argument. Their notion of conflicting 

paths corresponds to rebutting attack. Furthermore, neutralisation and preemption 

correspond to defeat, while a permitted path is the same as a justified argument. 

Lin & Shoham. Before the BDKT approach, an earlier attempt to provide a unifying 

framework for nonmonotonic logics was made by Lin & Shoham 7[59]. They show 

how any logic, whether monotonic or not, can be reformulated as a system for 

constructing arguments. However, in contrast with the other theories in this section, 

they are not concerned with comparing incompatible arguments, and so their 

framework cannot be used as a theory of defeat among arguments. The basic elements 

of Lin & Shoham’s abstract framework are an unspecified logical language, only 

assumed to contain a negation symbol, and an also unspecified set of inference rules 

defined over the assumed language. Arguments can be constructed by chaining 

inference rules into trees. Inference rules are either monotonic or nonmonotonic.  

Vreeswijk. Like the BDKT approach and Lin & Shoham 7[59], Vreeswijk 7[99], 7[100] 

also aims to provide an abstract framework for defeasible argumentation. His 

framework builds on the one of Lin & Shoham, but contains the main elements that 

are missing in their system, namely, notions of conflict and defeat between 

arguments. As Lin&Shoham, Vreeswijk also assumes an unspecified logical language 

L, only assumed to contain the symbol � , denoting ‘falsum’ or ‘contradiction,’ and 

an unspecified set of monotonic and nonmonotonic inference rules (which Vreeswijk 

calls ‘strict’ and ‘defeasible’). This also makes his system an abstract framework 

rather than a particular system.  

Prakken & Sartor. Inspired by legal reasoning, Prakken & Sartor 7[80], 7[81] have 

developed an argumentation system that combines the language (but not the rest) of 

default logic with the grounded semantics of the BDKT approach. Actually, Prakken 

& Sartor originally used the language of extended logic programming, but Prakken 

7[79] generalised the system to default logic’s language. The main contributions to 

defeasible argumentation are a study of the relation between rebutting and assumption 

attack, and a formalisation of argumentation about the criteria for defeat. 
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2.4 Defeasible Logics 

A development closely related to defeasible argumentation is so-called ‘defeasible 

logic’, initiated by Donald Nute 7[73] . In both fields the notion of defeat is central. 

However, while in defeasible argumentation defeat is among arguments, in defeasible 

logic it happens between rules, resulting in lower computational complexity. 

Defeasible logics capture key ideas of inheritance networks in logical rule systems. 

Nute’s systems are based on the idea that defaults are not propositions but 

inference licenses. Thus Nute’s defeasible rules are, like Reiter’s defaults, one 

directional. In general, Nute’s defeasible rules correspond to normal default rules. 

However, unlike Reiter’s defaults they are twoplace; assumption attacks are dealt with 

by an explicit category of defeater rules.  

As for the underlying logical language, since Nute’s aim is to develop a logic that 

is efficiently implementable, he keeps the language as simple as possible. In general, a 

defeasible theory (a knowledge base in defeasible logic) consists of five different 

kinds of knowledge: facts, strict rules, defeasible rules, defeaters, and a superiority 

relation. 

Facts are indisputable statements, for example, “Tweety is an emu”. Written 

formally, this would be expressed as 

emu(tweety). 

Strict rules are rules in the classical sense: whenever the premises are indisputable 

(e.g., facts) then so is the conclusion. An example of a strict rule is “Emus are birds”. 

Written formally: 

emu (X ) 8  bird (X )

Defeasible rules are rules that can be defeated by contrary evidence. An example 

of such a rule is “Birds typically fly”; written formally: 

bird (X ) flies (X )

The idea is that if we know that something is a bird, then we may conclude that it 

flies, unless there is other, not inferior, evidence suggesting that it may not fly. 

Defeaters are rules that cannot be used to draw any conclusions. Their only use is 

to prevent some conclusions. In other words, they are used to defeat some defeasible 
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rules by producing evidence to the contrary. An example is “If an animal is heavy 

then it might not be able to fly”. Formally: 

heavy (X )  flies (X )

The main point is that the information that an animal is heavy is not sufficient 

evidence to conclude that it does not fly. It is only evidence that the animal may not 

be able to fly. In other words, we do not wish to conclude � flies (X ) if heavy (X ); we 

simply want to prevent a conclusion flies (X ). 

The superiority relation among rules is used to define priorities among rules, i.e., 

where one rule may override the conclusion of another rule. For example, 

given the defeasible rules 

r: bird (X ) flies (X ) 

s: brokenWing (X ) flies (X ) 

which contradict one another, no conclusive decision can be made about whether a 

bird with broken wings can fly. But if we introduce a superiority relation > with s > r, 

with the intended meaning that s is strictly stronger than r, then we can indeed 

conclude that the bird cannot fly. 

Notice that a cycle in the superiority relation is counterintuitive. In the above 

example, it makes no sense to have both r > s and s > r. Consequently, we focus on 

cases where the superiority relation is acyclic. 

Another point worth noting is that, in Defeasible Logic, priorities are local in the 

following sense: two rules are considered to be competing with one another only if 

they have complementary heads. Thus, since the superiority relation is used to resolve 

conflicts among competing rules, it is only used to compare rules with complementary 

heads; the information r s for rules r, s without complementary heads may be part 

of the superiority relation, but has no effect on the proof theory. 

A more formal definition of Defeasible Logic and a proof theory are given in 

Chapter 4.  
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2.5 Systems with Preferences 

The notion of preference is pervasive in commonsense reasoning, in part because 

preferences constitute a very natural and effective way of resolving indeterminate 

situations. In decision making, for example, one may have various desiderata, not all 

of which can be simultaneously satisfied; in such a situation, preferences among 

desiderata may allow one to come to an appropriate compromise solution. In legal 

reasoning, laws may conflict. Conflicts may be resolved by principles such as ruling 

that newer laws will have priority over less recent ones, and laws of a higher authority 

will have priority over laws of a lower authority. For a conflict among these 

principles, one may further decide that the “authority” preference takes priority over 

the “recency” preference. 

Preference has a decidedly nonmonotonic flavour. Or, more accurately, it may be 

considered as having a fundamental nonmonotonic aspect. Given a preference 

ordering, however constituted, and some basic or case-specific information, � , one 

may come up with a set of desired outcomes. However, a superset of this case-specific 

information, � �� , may lead to a different set of desired outcomes. For example, 

imagine feeding information into an automated financial advisor: that one is a 

relatively cautious investor, that one has a long-term horizon, etc. Given these 

preferences, a set of recommended mutual funds may be suggested by the automated 

advisor. If the user subsequently states that they also prefer that their funds invest in 

environmentally and socially responsible companies, then a different set of 

suggestions may well result. 

The source of information about preference in a knowledge modelling system may 

be varying: 

� Preferences may be part of the domain being modelled. For example, the 

legal domain contains principles, regulations, rules with exceptions 

etc.7[78]. 

� Preferences may arise dynamically during the deductive process. Consider 

for example, a dynamic preference between two rules r1 and r2, inferred by 

another rule of the form: if A then r1 is superior to r2 7[18]7[19]. 

� Information about preference may be extracted form the knowledge base, 

e.g. based on specifity 7[77]7[94]7[96]. 
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In logic-based AI, a standard approach to handling preferences is to take an 

existing system of nonmonotonic reasoning and, in one fashion or another, equip it 

with preferences. For example, preferences are added in such a manner to default 

logic 7[22],7[32] autoepistemic logic 7[52], circumscription 7[58], and logic programming 

7[103], 7[21]. However, although the notion of “preference” is intuitively 

straightforward, there is a surprising variety in how this notion is realised in various 

approaches. Thus, some approaches take a preference ordering as expressing a 

“desirability” that a property be adopted while in others the ordering expresses the 

order in which properties (or whatever) are to be considered. Some approaches 

conflate the notion of inheritance of properties with the general notion of preference. 

The outcome of course is that, depending on how the notion of preference is 

interpreted, different conclusions may be forthcoming. At the same time, while logical 

preference handling already constitutes an indispensable means for legal reasoning 

systems 7[79], it is also being used in other application areas such as intelligent agents 

and e-commerce 7[41], and the resolution of grammatical ambiguities 7[29]. 

In 7[31], Delgrande et. al present an overview and classification for approaches to 

dealing with preference. They classify the approaches based on a set of criteria. These 

criteria include: 

� the host system, meaning the system that is extended to support preferences. 

In most approaches, default logic is selected, as it is considered to be the 

most popular reasoning formalism. More recently, systems use extended 

logic programs as the “underlying” system. 

� meta-level vs. object-level preferences: whether the preference ordering is 

imposed “externally” on rules of the system, or it is imposed at the object-

level. In the first case, the underlying host system is used more or less as a 

black box by an enveloping preference system. In contrast, an object-level 

approach to preference allows the use of preferences within the object 

theory. The advantage of the first approach is that it is much easier to realise. 

On the other hand the object-level approach is more flexible, and the 

preferences are formalized within a theory, instead of about a theory. 
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� static vs. dynamic preferences: whether the preferences are static, or fixed at 

the time the theory is specified, or dynamic, and so can be determined “on 

the fly”. 

� properties of the preference ordering: whether the superiority relation is a 

partial or a total order. 

� the specific kind of objects that the superiority relation is applied upon: the 

rules themselves or the name of the rules. 

� prescriptive vs. descriptive preferences: In the first case, the ordering of the 

preferences specifies the order in which the rules are applied. In the latter 

one, the preference order represents a ranking on desired outcomes: the 

desirable situation is one where the most preferred rules are applied. 

Their classification includes interesting approaches, such as: 

� the Brewka & Eiter approach 7[22]. This is a default logic – based, meta-level, 

semi-perspective approach, which uses static preferences on rules and strict 

partial order, with complexity equal to the complexity of default logic. 

� the Delgrande & Schaub approach 7[32]. This approach is also based on 

default logic. It uses dynamic meta-level  preferences with strict partial order, 

and its complexity is equal to the complexity of the host system. 

� the Konolige approach 7[52]. It uses autoepistemic logic as its host system. It is 

a met-level descriptive approach, where the preferences are expressed as 

layered sets of formulas. 

� the Lifschitz approach 7[58]. It is based on circumscription, and uses meta-

level static preferences on special-purpose predicates. 

� the Zhang and Foo approach 7[103]. Its host system is extended logic 

programs under answer sets. The strategy that it uses is modified answer sets. 

The preferences, which are meta-level and dynamic, are applied on rules. Its 

complexity is higher than that of the host system. 

� the Brewka & Eiter approach 7[21]. This approach is also based on extended 

logic programs under answer sets. It uses meta-level, semi-prescriptive, static 
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preferences with partial order. Its complexity is equal to the complexity of the 

host system. 

� the Alferes & Pereira approach 7[2]. Its host system is dynamic logic 

programs. It uses semi-perspective, meta-level preferences with strict partial 

order. The preferences are applied on rules, and its complexity is equal to that 

of its host system. 

� the defeasible logic approach 7[73],7[14],7[4]. This approach is based on 

defeasible logic. It uses meta-level, perspective and static preferences in an 

arbitrary order. The preferences are applied on rules. 

 





 

3 Rules for the Semantic Web 

“The Semantic Web is an extension of the current web in which information is given 

well-defined meaning, better enabling computers and people to work in cooperation”. 

This is an informal definition for the Semantic Web, given by Berner-Lee in the May 

2001 American article “The Semantic Web” 7[13]. The Semantic Web is an extension 

of the World Wide Web in which both data and its semantic definition can be 

processed by computer programs. The next generation of the Web will combine 

existing Web technologies with knowledge representation formalisms in order to 

provide an infrastructure allowing data to be processed, discovered and filtered more 

effectively on the Web. A set of new languages organized in a layered architecture 

will allow users and applications to write and share information in a machine-readable 

way, and will enable the development of a new generation of technologies and 

toolkits. This layered architecture of the Semantic Web is often referred to as the 

Semantic Web tower 7[13].  

3.1 The Semantic Web Tower 

The Semantic Web tower (Figure 73.1) is a work in progress, where the layers are 

developed in a bottom-up manner. The so far defined languages in the bottom-up 

order include: XML, RDF, RDF Schema and Web Ontology Language OWL. The 

next step in the development of the Semantic Web will be the logic and proof layer. In 

the next sections we will briefly describe the basic layers of the tower. 

 

Figure -3.1: The Semantic Web Tower 
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3.1.1 The Representation Layer 

The base language of the Semantic Web tower is XML 7[17], the dominant standard 

for data encoding and exchange on the web. Essentially the data represented in XML 

can be seen as labelled ordered trees. Such trees are encoded as XML documents with 

the parenthesis structure marked by tags. In the context of the Semantic Web XML 

will be used for encoding any kind of data, including the meta-data, describing the 

meaning of application data. Such meta-data will be described by the languages of the 

next layers of the Semantic Web tower. 

Several mechanisms have been proposed for defining sets of XML documents. A 

standard one is the XML Schema language 7[93]. The elements of this language, called 

XML schemas, are XML documents. Thus, an XML schema is an XML document 

defining a (usually infinite) set of XML documents. This makes possible automatic 

validation of a given XML document d with respect to a given schema s, that is 

automatic check, whether or not d is in the set of documents defined by s. 

The syntax of the languages of the next layers of the Semantic Web is also defined 

in XML. This means that the constructs of these languages are encoded as XML 

documents, and can be validated against the language definitions by standard 

validators. However, alternative syntaxes, better suitable for the human, can be 

provided and can be used as a starting point for defining the semantics of these 

languages.  

The XML Namespaces 7[16] and Uniform Resource Identifiers 7[12] are important 

standards used in XML and therefore also in the upper layers of the Semantic Web, 

which are encoded in XML. They make it possible to create unique names for web 

resources. In the upper layers of the Semantic Web such names may be used as logical 

constants. 

3.1.2 RDF and Ontology Languages 

The idea of the Semantic Web is to describe the meaning of web data in a way 

suitable for automatic reasoning. This means that a descriptive data (meta-data) in 

machine readable form is to be stored on the web and used for reasoning. The 

simplest form of such description would assert relations between web resources. A 

more advanced description, called ontology, to be shared by various applications, 

would define concepts in the domain of these applications. Usually an ontology 
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defines an hierarchy of classes of objects in the described domain and binary 

relations, called properties. 

The Semantic Web tower introduces language layers for describing resources and 

for providing ontologies: 

The Resource Description Framework (RDF) 7[54] makes it possible to assert 

binary relations between resources (identified by URI’s), and between resources and 

literals, which are strings. Such assertions have the form of triples, called statements. 

The elements of a triple are called subject, predicate (or property), and object. Usually 

they are URI references; the object may also be a literal. A triple can be seen as a kind 

of an atomic formula with a binary predicate. However, the vocabulary of RDF does 

not distinguish predicate symbols from logical constants: the predicates of RDF 

sentences may also appear as subjects and objects. In addition, RDF allows reification 

of a statement which can then for example be used as the subject of another statement. 

For describing hierarchies of concepts RDF is extended with some built-in 

properties interpreted in a special way. The extension is called RDF Schema 7[23]. 

Statements of RDF Schema (RDFS) make it possible to define hierarchies of classes, 

hierarchies of properties and to describe domains and ranges of the properties. RDFS 

allows defining simple ontologies without using advanced features of RDF, like 

reification.  

The emerging Web Ontology Language OWL 7[75] builds-up on RDFS 

introducing more expressive description constructs. However, as explained in 7[74], 

defining an expressive ontology language as a semantic extension of RDFS may lead 

to paradoxes. The design of OWL takes this into account. OWL has three increasingly 

expressive sublanguages: OWL Lite, OWL DL and OWL Full. OWL Lite supports 

those users primarily needing a classification hierarchy and simple constraints. For 

example, while it supports cardinality constraints, it only permits cardinality values of 

0 or 1. It should be simpler to provide tool support for OWL Lite than its more 

expressive relatives, and OWL Lite provides a quick migration path for thesauri and 

other taxonomies. The complexity of computing ontology entalment is also lower for 

OWL Lite, than OWL DL. OWL DL supports those users who want the maximum 

expressiveness while retaining computational completeness (all conclusions are 

guaranteed to be computable) and decidability (all computations will finish in finite 
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time). OWL DL includes all OWL language constructs, but they can be used only 

under certain restrictions (for example, while a class may be a subclass of many 

classes, a class cannot be an instance of another class). OWL DL is so named due to 

its correspondence with description logics 7[10]. OWL Full is meant for users who 

want very high expressiveness and the syntactic freedom of RDF with no 

computational guarantees. For example, in OWL Full a class can be treated 

simultaneously as a collection of individuals and as an individual in its own right. 

OWL Full allows an ontology to augment the meaning of the pre-defined (RDF or 

OWL) vocabulary. 

3.1.3 The Top Layers 

The top three layers of the Semantic Web tower are: the logic layer, the proof layer 

and the trust layer. The logic layer is used to enhance the ontology language further, 

and to allow to write application-specific declarative knowledge. The proof layer 

involves the actual deductive process, as well as the representation of proofs in Web 

languages and proof validation. Finally trust will merge through the use of digital 

signatures, and other kinds of knowledge, based on recommendations by agents we 

trust, on rating and certification agencies and on consumer bodies. Being located at 

the top of the pyramid, trust is a high-level and crucial concept: The Web will only 

achieve its full potential when users have trust in its operations (security) and the 

quality of the information provided. 

3.2 The Role of the Rules 

Rules constitute the next, not yet developed language level over the ontology 

languages in the Semantic Web tower. The arguments supporting the need of rules in 

the Semantic Web include the following: 

� Rules appear naturally in many applications, e.g. business rules, policy 

specifications, service descriptions, database queries and many others. It is 

desirable to have a web rule language for expressing them for web 

applications. 

� Rules provide a high-level description, abstracting from implementation 

details; they are concise and simple to write. They are well-known, understood 
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by non-experts, and well integrated in the mainstream Information 

Technology. 

� The ontology languages are designed to describe concepts of the application 

domains, but are not sufficiently expressive for describing some aspects of 

applications, expressible in rule languages, e.g. composition of relations, 

extensively used in database query languages. 

The ongoing discussion on rules for the Semantic Web seems to indicate that a 

family of rule languages may be needed rather than one language, since different 

applications require different kind of rules. The effort to define such languages and to 

enable Web-based interoperability between various rule systems and applications has 

been undertaken by the RuleML Initiative 7[88], which is further discussed below. 

In general, the role that the rule systems are expected to have in the development 

of the Semantic Web is twofold:  

(a) they can serve as extensions of, or alternatives to, description logic based 

ontology languages; and  

(b) they can be used to develop declarative systems on top (using) ontologies. 

Possible interactions between description logics and monotonic rule systems were 

studied in 7[43]. Based on that work and on previous work on hybrid reasoning 7[55], it 

appears that the best one can do at present is to take the intersection of the expressive 

power of Horn logic and description logics; one way to view this intersection is the 

Horn-definable subset of OWL. 

3.2.1 The Role of Nonmonotonic Rule Systems 

One of the issues that have recently attracted the concentration of the developers of 

the Semantic Web, is the nature of the rule systems that should be employed in the 

logic layer of the Semantic Web tower. Monotonic rule systems have already been 

studied and accepted as an essential part of the layered development of the Semantic 

Web. Nonmonotonic rule systems, on the other hand, seem also to be a good solution, 

especially due to their expressive capabilities. The basic motives for using such 

systems are: 

Reasoning with Incomplete Information: 7[3] describes a scenario where business 

rules have to deal with incomplete information: in the absence of certain information 
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some assumptions have to be made which lead to conclusions not supported by 

classical predicate logic. In many applications on the Web such assumptions must be 

made because other players may not be able (e.g. due to communication problems) or 

willing (e.g. because of privacy or security concerns) to provide information. This is 

the classical case for the use of nonmonotonic knowledge representation and 

reasoning 7[67]. 

Rules with Exceptions: Rules with exceptions are a natural representation for 

policies and business rules 7[6]. Priority information is often implicitly or explicitly 

available to resolve conflicts among rules. Potential applications include security 

policies 7[9]7[57] , business rules 7[3] , personalization, brokering, bargaining, and 

automated agent negotiations7[39]. 

Default Inheritance in Ontologies: Default inheritance is a well-known feature of 

certain knowledge representation formalisms. Thus it may play a role in ontology 

languages, which currently do not support this feature. 7[44] presents some ideas for 

possible uses of default inheritance in ontologies.   

The following example is used to represent default inheritance in ontologies: 

Elephants are grey, with the exception of the royal elephants, which are white. We can 

restate the previous statement by saying that: 

� Elephants are grey, except for royal elephants. 

� Royal elephants are white. 

� All royal elephants are elephants. 

By applying a strict form of inheritance we should infer that any instance of the 

class royal elephant should be grey because it is a subclass of the class elephant. 

However, we know that the property, color, should be filled with the value, white, for 

any instance of the class royal elephant. This situation leads naturally to the idea of 

inheritance by default. We can model inheritance by default by means of non–

classical logic. For instance, the above statement can represented in Default Logic as: 

)(
)(:)(

xgrey
xantroyalElephxelephant �
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A natural way of representing default inheritance is rules with exceptions, plus 

priority information. Thus, nonmonotonic rule systems can be utilized in ontology 

languages. 

Ontology Merging: When ontologies from different authors and/or sources are 

merged, contradictions arise naturally. Predicate logic based formalisms, including all 

current Semantic Web languages, cannot cope with inconsistencies. 

Some of the mismatches that may occur when someone tries to crate a single 

ontology by merging two different ontologies with overlapping parts are: 

� Same concepts are represented by different names (synonym terms); e.g. 

term “car” in one ontology and term “ automobile ” in another ontology. 

� The same term is used with different meaning (homonym terms); e.g. term 

“conductor” has different meaning in music domain than in electrical 

engineering domain. 

� Values in ontologies may be encoded in different formats; e.g. distance 

may be described as miles or kilometers, or date may be represented as 

“dd/mm/yyyy” or as “ mm-dd-yy” 

� Mismatch between part of the domain that is covered by the ontology, or 

the level of detail to which that domain is modeled, e.g. one ontology 

might model cars but not trucks. Another one might represent trucks but 

only classify them into a few categories. 

If rule-based ontology languages are used (e.g. DLP 7[43]) and if rules are 

interpreted as defeasible (that is, they may be prevented from being applied even if 

they can fire) then we arrive at nonmonotonic rule systems. A sceptical approach, as 

adopted by defeasible reasoning, is sensible because does not allow for contradictory 

conclusions to be drawn. Moreover, priorities may be used to resolve some conflicts 

among rules, based on knowledge about the reliability of sources or on user input. 

Thus, nonmonotonic rule systems can support ontology integration. 
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3.3 Existing Web Rule Languages 

3.3.1 RuleML Markup Language 

RuleML 7[88] is an XML-based markup language that is intended to support rule 

exchange and interoperation across disparate domains. RuleML allows rules to be 

expressed as modular components in a declarative way, and uses distinct, standard 

XML tags to define a rule base, composed of facts and rules. 

 RuleML encompasses a hierarchy of rules, including reaction rules (event-

condition-action rules), transformation rules (functional-equational rules), derivation 

rules (implicational-inference rules), also specialized to facts ('premiseless' derivation 

rules) and queries ('conclusionless' derivation rules), as well as integrity-constraints 

(consistency-maintenance rules).  

The RuleML hierarchy of general rules branches into the two direct categories of 

reaction rules and transformation rules. On the next level, transformation rules 

specialize to the subcategory of derivation rules. Then, derivation rules have further 

subsubcategories, namely facts and queries. Finally, queries specialize to integrity 

constraints. More subdivisions are being worked out, especially for reaction rules. A 

graphical view of RuleML rules is shown in Figure 73.2. 

 

Figure -3.2: The RuleML hierarchy of rules. 

Reaction rules can be reduced to general rules that return no value. Transformation 

rules can be reduced to general rules whose 'event' trigger is always activated. 
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Derivation rules can be reduced to transformation rules that like characteristic 

functions on success just return true. Facts can be reduced to derivation rules that 

have an empty (hence, 'true') conjunction of premises. Queries can be reduced to 

derivation rules that have - similar to refutation proofs - an empty (hence, 'false') 

disjunction of conclusions or - as in 'answer extraction' - a conclusion that captures the 

derived variable bindings. Integrity constraints can be reduced to queries that are 

'closed' (i.e., produce no variable bindings).  

Integrity Rules: Integrity rules, also known as integrity constraints, consist of a 

logical sentence (in some logical language such as predicate logic or temporal logic). 

They express assertions that must hold in all evolving states and state transition 

histories of the discrete dynamic system for which they are defined. The enforcement 

of constraint rules can be implemented with the help of Event – Condition – Action 

rules whose event condition refers to state changes that would violate the constraint 

and whose action would be an alert or some kind of repair action.  

Derivation Rules: Derivation rules, in general, consist of one ore more conditions 

and a conclusion. (Expressions with no condition or no conclusion are called “facts” 

and “denial constraints”). For specific type of derivation rules, such as definite Horn 

clauses or normal logic programs, the types of condition and conclusion are 

specifically restricted. In RuleML, a derivation rule has two roles, _Condition and 

_Conclusion; the latter being an atomic predicate logic formula and the former a 

quantifier-free logical formula with weak and strong negation. 

Reaction Rules: Reaction rules consist of a  mandatory triggering event term, an 

optional condition, and a triggered action term or a post-condition (or both). While the 

condition of a reaction rule is, exactly like the condition of a derivation rule, a 

quantifier-free formula, the post condition is restricted to a conjunction of possibly 

negated atoms. The post-condition of a reaction rule is either an atomic formula, a 

negation of an atomic formula or a conjunction of these. Reaction rules can only be 

applied in the forward direction in a natural fashion, observing / checking events / 

conditions and performing an action if and when all events / conditions have been 

perceived or fulfilled. There are basically two types of reaction rules: those that do not 

have a postcondition, which are the well-known Event-Condition-Action rules, and 

those that do have a postcondition, which are called ECAP rules. 
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Transformation Rules: Transformation rules consist of a transformation invoker, a 

condition, and a transformation return. In RuleML, while these rules generally reuse 

the same concrete syntax as other rule types, and specifically the condition part, they 

also introduce new constructs. The <trans> element is the top-level element denoting 

a transformation rule. It uses the transformation invoker role _headf, optionally 

followed by a condition role _body, followed by the transformation return role _foot. 

The element <trans>_headf _body _foot</trans> stands for: “if _body holds then 

_headf is transformed to _foot”. Without the optional _body part, the transformation 

is performed unconditionally. 

The application direction for each category of rules is: Reaction rules can only be 

applied in the forward direction in a natural fashion, observing/checking 

events/conditions and performing an action if and when all events/conditions have 

been recognized/fulfilled. For transformation rules, on the other hand, the backward 

direction is normally preferred. Derivation rules can be equally applied in the forward 

direction as well as in the backward direction, the latter reducing the proof of a goal 

(conclusion) to proofs of all its subgoals (premises). Since in different situations 

different application directions of derivation rules may be optimal (forward, 

backward, or mixed), RuleML does not prescribe any one of these. For facts or 'unit 

clauses' there is no notion of an application direction. For queries there is the 

following notion of application direction: as top-down goals, they are proved 

backward; but they can also be proved forward via 'goal-directed' bottom-up 

processing. Integrity constraints are usually forward-oriented, i.e. triggered by update 

events, mainly for efficiency reasons. But they can instead be backward-oriented, 

trying to show (in)consistency by fulfilling certain conditions (without need for 

recognizing any event). 

The latest XSD version that has been released is RuleML version 0.87. Several 

rule languages that have recently been developed for the Web, are designed to 

integrate with RuleML. One of them is SWRL, which is described in the next section. 

3.3.2 A Semantic Web Rule Language (SWRL) 

SWRL 7[47] is based on a combination of OWL DL and OWL Lite sublanguages of 

the OWL Web Ontology Language with the Unary / Binary Datalog RuleML 
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sublanguages of the RuleML Markup Language. It extends the set of OWL axioms to 

include Horn-like rules. It thus enables Horn-like rules to be combined with an OWL 

knowledge base. It provides a high-level abstract syntax that extends the OWL 

abstract syntax described in the OWL Semantics and Abstract Syntax document 7[75] . 

It also extends the OWL model-theoretic semantics to provide a formal meaning for 

OWL ontologies including rules written in this abstract syntax.  

The proposed rules are of the form of an implication between an antecedent (body) 

and consequent (head). The intended meaning can be read as: whenever the conditions 

specified in the antecedent hold, then the conditions specified in the consequent must 

also hold. Both the antecedent (body) and consequent (head) consist of zero or more 

atoms. An empty antecedent is treated as trivially true (i.e., satisfied by every 

interpretation), so the consequent must also be satisfied by every interpretation; an 

empty consequent is treated as trivially false (i.e., not satisfied by any interpretation), 

so the antecedent must also not be satisfied by any interpretation. Multiple atoms are 

treated as a conjunction. Note that rules with conjunctive consequents could easily be 

transformed (via the Lloyd-Topor transformations) into multiple rules each with an 

atomic consequent. The syntax of the rules, as specified by means of EBNF is: 

 rule ::= 'Implies(' { annotation } antecedent consequent ')' 

 antecedent ::= 'Antecedent(' { atom } ')' 

   consequent ::= 'Consequent(' { atom } ')'  

Atoms in these rules can be of the form C(x), P(x,y), sameAs(x,y) or 

differentFrom(x,y), where C is an OWL description, P is an OWL property, and x,y 

are either variables, OWL individuals or OWL data values. The syntax used for the 

atoms, is: 

 atom ::= description '(' i-object ')' 

   | individualvaluedPropertyID '(' i-object i-object ')' 

   | datavaluedPropertyID '(' i-object d-object ')' 

   | sameAs '(' i-object i-object ')' 

   | differentFrom '(' i-object i-object ')' 

 i-object ::= i-variable | individualID 

 d-object ::= d-variable | dataLiteral 

 i-variable ::= 'I-variable(' URIreference ')' 

 d-variable ::= 'D-variable(' URIreference ')' 
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Informally, an atom C(x) holds if x is an instance of the class description C, an 

atom P(x,y) holds if x is related to y by property P, an atom sameAs(x,y) holds if x is 

interpreted as the same object as y, and an atom differentFrom(x,y) holds if x and y 

are interpreted as different objects. Atoms may refer to individuals, data literals, 

individual variables or data variables. Variables are treated as universally quantified, 

with their scope limited to a given rule. 

An XML syntax is also given for these rules based on RuleML and the OWL 

XML presentation syntax. The Ontology root element of the OWL XML Presentation 

Syntax is extended to include "imp" (implication rule) and "var" (variable declaration) 

axioms as found under the rulebase root of RuleML. Furthermore, an RDF concrete 

syntax based on the OWL RDF/XML exchange syntax is presented. 

3.3.3 TRIPLE 

TRIPLE 7[90] is a rule language for the Semantic Web which is based on Horn logic 

and borrows many basic features form F-Logic 7[49] but is especially designed for 

querying and transforming RDF models. TRIPLE can be viewed as a successor of 

SiLRI (Simple Logic-based RDF Interpreter 7[30]). One of the most important 

differences to F-Logic and SiLRI is that TRIPLE does not have fixed semantics for 

object-oriented features like classes and inheritance. Its modular architecture allows 

such features to be defined for object-oriented and other data models like UML, Topic 

Maps, or RDF Schema. Description logic extensions of RDF (Schema) like OIL, 

DAML+OIL, and OWL that cannot be fully handled by Horn logic are provided as 

modules that interact with a description logic classifier, e.g. FaCT 7[46], resulting in a 

hybrid rule language. The main features of TRIPLE include: 

Namespaces and Resources: TRIPLE has special support for namespaces and 

resource identifiers. Namespaces are declared via clause-like constructs of the form 

nsabbrev : =  namespace, e.g.: rdf : = http://www.w3.org/1999/02/22-rdf-syntax-ns#. 

Resources are written as nsabbrev:name, where nsabrev is a namespace abbreviation 

and name is the local name of the resource. 

Statements and Molecules: Inspired by F-Logic object syntax, an RDF statement 

(triple) is written as: subject[predicate �  object]. Several statements with the same 

subject can be abbreviated as “molecules”: 

 stefan[hasAge�  33; isMarried� yes;…]. 
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RDF statements (and molecules) can be nested, e.g.: 

 stefan[marriedTo�birgit[hasAge�32]]. 

Models: RDF models, i.e., sets of statements, are made explicit in TRIPLE. 

Statements, molecules, and also Horn atoms that are true in a specific model are 

written as atom@model, where atom is a statement, molecule, or Horn atom and 

model  is a model specification. 

Logical Formulae: TRIPLE uses the usual set of connectives and quantifiers for 

building formulae from statements/molecules and Horn atoms, i.e., ���� ,,,  , etc. All 

variables must be introduced via quantifiers, therefore marking them is not necessary 

(i.e. TRIPLE does not require variables to start with an uppercase letter as in Prolog). 

Clauses and Blocks: A TRIPLE clause is either a fact or a rule. Rule heads may only 

contain conjunctions of molecules and Horn atoms and must not contain (explicitly or 

implicitly) any disjunctive or negated expressions. To assert that a set of clauses is 

true in a specific model, a model block is used: @model{clauses}, or if the model 

specification is parameterized: �  Mdl@model(Mdl) {clauses}. 

It is very interesting to see the basic features of RDF Schema, described in the 

TRIPLE language (Figure 73.3). 

 

Figure -3.3: RDF Schema in TRIPLE 
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3.4 Choice of Formalism 

After presenting some existing web rule languages in the previous section, and several 

approaches to nonmonotonic reasoning in Chapter 2, in this section we justify the 

choice of Defeasible Logic as the rule language for our system. The main reasons are 

basically three: 

a) Defeasible logic offers more reasoning capabilities than the other existing web 

rule languages, as it can reason with both monotonic and nonmonotonic rules. SWRL, 

TRIPLE and most of the other existing rule languages that have been designed for 

web applications are based on monotonic rule systems. Nonmonotonic rule systems 

offer more expressive capabilities, allowing to reason with incomplete and 

inconsistent information, and with rules with exceptions. In section 3.2.1 we 

described the reasons why such systems should also be used in the develpoment of 

web applications.  

b) Defeasible logic is preferred to the classical approaches of nonmonotonic 

reasoning as default logic, autoepistemic logic etc., as it embodies the concept of 

preference. Preferences helps to resolve possible conflicts between rules of a theory, 

and add to the expressive power of the rule language. The sources of information 

about preference and the importance of preference in web application are described in 

detail in Section 2.5. In the same section, we refer to some extensions of the classical 

nonmonotonic logics, which are equipped with preferences. However these extensions 

add more computational complexity to the logics, making them unsuitable for real-

world web applications. 

c) Compared to other nonmonotonic logics, defeasible logic has the additional 

very important advantage of its relatively low computational complexity, making it 

preferable for applications that use very large rule sets. According to Maher 7[62], 

inference in propositional defeasible logic has linear complexity, which is much lower 

than the computational complexity of sceptical default reasoning, sceptical 

autoepistemic reasoning and propositional circumscription, which is �
p

2
- complete.       

 



 

4 Defeasible Logic 

In Chapter 2, we presented the basic characteristics of Defeasible Logic, as it was 

introduced by Donald Nute 7[73]. In this chapter, we give a more formal definition, a 

proof theory and some theorems concerning Defeasible Logic. At the end of the 

chapter we present two different variables, the ambiguity blocking and the ambiguity 

propagation variant, and we describe an additional feature, the use of conflicting 

literals. 

4.1 Formal Definition 

In this report we restrict attention to essentially propositional Defeasible Logic. Rules 

with free variables are interpreted as rule schemas, that is, as the set of all ground 

instances. If q is a literal � q denotes the complementary literal (if q is a positive literal 

p then � q is � p; and if q is � p, then � q is p).  

Rules are defined over a language (or signature) �, the set of propositions (atoms) 

and labels that may be used in the rule. In cases where it is unimportant to refer to the 

language of D, 	 will not be mentioned. 

A rule r: A(r)  C(r) consists of its unique label r, its antecedent A(r) (A(r) may be 

omitted if it is the empty set) which is a finite set of literals, an arrow (which is a 

placeholder for concrete arrows to be introduced in a moment), and its head (or 

consequent) C(r) which is a literal. In writing rules we omit set notation for 

antecedents, and sometimes we omit the label when it is not relevant for the context. 

There are three kinds of rules, each represented by a different arrow. Strict rules use 

8  , defeasible rules use , and defeaters use . 

Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of 

strict and defeasible rules in R by Rsd , the set of defeasible rules in R by Rd , and the 

set of defeaters in R by Rdft . R[q] denotes the set of rules in R with consequent q. 

A superiority relation on R is a transitive relation > on R. When r1 > r2, then r1 is 

called superior to r2, and r2 inferior to r1. Intuitively, r1 > r2 expresses that r1 

overrules r2, should both rules be applicable. Typically we assume > to be acyclic 

(that is, the transitive closure of > is irreflexive). 
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A defeasible theory D is a triple (F, R, >) where F is a finite set of literals (called 

facts), R a finite set of rules, and > an acyclic superiority relation on R. D is called 

decisive if the atom dependency graph of D is acyclic. 

4.2 Proof Theory 

A conclusion of D is a tagged literal and can have one of the following four forms: 

� + 9 q which is intended to mean that q is definitely provable in D. 

� − 9 q which is intended to mean that we have proved that q is not definitely 

provable  in D. 

� +
 q which is intended to mean that q is defeasibly provable in D. 

� −
 q which is intended to mean that we have proved that q is not defeasibly 

provable in D. 

If we are able to prove q definitely, then q is also defeasibly provable. This is a direct 

consequence of the formal definition below. It resembles the situation in, say, default 

logic: a formula is sceptically provable from a default theory T = (W, D) (in the sense 

that it is included in each extension) if it is provable from the set of facts W. 

Provability is defined below (Figure 74.1). It is based on the concept of a derivation 

in D = (F,R,>). A derivation is a finite sequence P = (P(1),…,P(n)) of tagged literals 

satisfying the following conditions (P(1..i) denotes the initial part of the sequence P 

of length i): 

+ � : If P(i + 1) = +� q then either 

q 
  F or 

� r 
  Rs[q] � a 
  A(r):+� a 
  P(1..i). 

Figure -4.1: Definite Provability in Defeasible Logic. 

That means, to prove + 9 q we need to establish a proof for q using facts and strict 

rules only. This is a deduction in the classical sense — no proofs for the negation of q 

need to be considered (in contrast to defeasible provability below, where opposing 

chains of reasoning must be taken into account, too). 

To prove − 9 q, i.e., that q is not definitely provable, q must not be a fact. In 

addition, we need to establish that every strict rule with head q is known to be 
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inapplicable. Thus for every such rule r there must be at least one antecedent a for 

which we have established that a is not definitely provable (− 9 a, Figure 74.2).  

− �: If P(i + 1) = −� q then 

q �  F and 

� r 
  Rs[q] �a 
A(r):− � a 
  P(1..i). 

Figure -4.2: Definite Non-provability in Defeasible logic. 

It is worth noticing that this definition of nonprovability does not involve loop 

detection. Thus if D consists of the single rule p 8  p, we can see that p cannot be 

proven, but Defeasible Logic is unable to prove − 9 p. 

+
: If P(i + 1) = +
q then either 

            (1) + � q  
  P(1..i) or 

            (2) (2.1) � r  
  Rsd [q] � a  
A(r): + 
a 
P(1..i) and 

                 (2.2) −� � q  
P(1..i) and 

                 (2.3) � s  
  R[ � q] either 

                        (2.3.1) �a  
  A(s):−
a  
  P(1..i) or 

                        (2.3.2) � t  
  Rsd [q] such that 

                                   � a  
  A(t):+
a  
P(1..i) and t > s. 

Figure -4.3: Defeasible Provability in Defeasible Logic. 

To show that q is provable defeasibly (Figure 74.3) we have two choices: (1) We 

show that q is already definitely provable; or (2) we need to argue using the defeasible 

part of D as well. In particular, we require that there must be a strict or defeasible rule 

with head q which can be applied (2.1). But now we need to consider possible 

“attacks”, i.e., reasoning chains in support of � q. To be more specific: to prove q 

defeasibly we must show that � q is not definitely provable (2.2). Also (2.3) we must 

consider the set of all rules which are not known to be inapplicable and which have 

head � q. Essentially each such rule s attacks the conclusion q. For q to be provable, 

each such rule s must be counterattacked by a rule t with head q with the following 

properties: (i) t must be applicable at this point, and (ii) t must be stronger than s. 

Thus each attack on the conclusion q must be counterattacked by a stronger rule. 

The definition of the proof theory of Defeasible Logic is completed by the 

condition −
 (Figure 74.4). It is nothing more than a strong negation of the condition 

+
. 



42  Defeasible Logic 

 

−
: If P(i + 1) = −
q then 

            (1) − � q 
  P(1..i) and 

            (2) (2.1) � r 
  Rsd [q] �a 
  A(r):−
a 
  P(1..i) or 

                 (2.2) + � � q 
  P(1..i) or 

                 (2.3) � s 
  R[ � q] such that 

                        (2.3.1) � a 
  A(s):+
a
P(1..i) and 

                        (2.3.2) � t 
  Rsd [q] either 

                                    �a 
  A(t):−
a 
  P(1..i) or t �  s. 

Figure -4.4: Defeasible Non-provability in Defeasible Logic. 

To prove that q is not defeasibly provable, we must first establish that it is not 

definitely provable. Then we must establish that it cannot be proven using the 

defeasible part of the theory. There are three possibilities to achieve this: either we 

have established that none of the (strict and defeasible) rules with head q can be 

applied (2.1); or � q is definitely provable (2.2); or there must be an applicable rule s 

with head � q such that no possibly applicable rule t with head q is superior to s (2.3). 

The elements of a derivation P in D are called lines of the derivation. We say that 

a tagged literal L is provable in D = (F, R, >), denoted D L, iff there is a derivation 

in D such that L is a line of P. When D is obvious from the context we write L. 

It is instructive to consider the conditions +
 and −
 in the terminology of teams, 

borrowed from Grosof 7[42]. At some stage there is a team A consisting of the 

applicable rules with head q, and a team B consisting of the applicable rules with head 

� q. These teams compete with one another. Team A wins iff every rule in team B is 

overruled by a rule in team A; in that case we can prove +
q. Another case is that 

team B wins, in which case we can prove +
� q. But there are several intermediate 

cases, for example one in which we can prove that neither q nor � q are provable. And 

there are cases where nothing can be proved (due to loops). 

Proposition 1. 7[14] If D is decisive, then for each literal p: 

(a) either D +�p or D  -�p 

(b) either D -
p or D  +
p 
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Not every defeasible theory satisfies this property. For example, in the theory 

consisting of the single rule p p neither -
p nor +
p is provable. The proof of the 

proposition can be found in 7[14]. 

Proposition 2. 7[5]Consider a defeasible theory D. 

(1) If D -9 p and D +9p then D 
p. 

(2) If D +9 p and D -9p then D -
p. 

(3) If D +
 p and D -9p and D 
p then D is cyclic. 

Theorem 3. 7[5] If D is an acyclic defeasible theory, then D is conclusion equivalent 

to a theory D’ that contains no use of the superiority relation, nor defeaters. If D is a 

cyclic defeasible theory, then D is conclusion equivalent to a theory D’ that contains 

no use of defeaters, and if D’ contains cycles then they have length 2, and each cycle 

involves the only two rules for a literal and its complement. 

Proposition 4. 7[5] Let D be an acyclic defeasible theory. 

 If D +
p and D +
 p then  D +9p and D +9 p. 

Consequently, if D contains no strict rules and no facts and D +
q, then D -
 q. 

The proves for the Propositions 2, 4 and for the Theorem 3 can be found in 7[5]. 

Governatori et. al 7[40] describe Defeasible Logic and its variants in 

argumentation-theoretic terms. Under the argumentation semantics, proof trees are 

grouped together as arguments, and conflicting arguments are resolved by notions of 

argument defeat that reflect defeat in defeasible logic. 

Maher 7[61] gives a denotational-style semantics to Defeasible Logic in , providing 

another useful analysis of this logic. The semantics is compositional, and fully 

abstract in all but one syntactic class. 

A model-theoretic semantics semantics of Defeasible Logic is given by Maher in 

7[63]. This semantics follows Nute’s semantics for LDR 7[72] in that models represent a 

state of mind or “belief state” in which definite knowledge (that which is “known”) is 
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distinguished from defeasible knowledge (that which is “believed”). A major 

difference from 7[72] is that adopts partial models as the basic from which to work. 

4.3 Ambiguity Blocking and Ambiguity Propagating Behavior 

A literal is ambiguous if there is a chain of reasoning that supports a conclusion that p 

is true, another that supports that � p is true, and the superiority relation does not 

resolve this conflict. We can illustrate the concept of ambiguity propagation through 

the following example. 

Example: Consider the defeasible theory from Chapter 

r1: quaker(X) pacifist(X) 

r2: republican(X) � pacifist(X) 

r3: pacifist(X) � hasGun(X) 

r4: livesInChicago(X) hasGun(X) 

quaker(a) 

republican(a) 

livesInChicago(a) 

 r3 > r4 

Here pacifist(a) is ambiguous. The question is whether this ambiguity should be 

propagated to the dependent literal hasGun(a). In one defeasible logic variant it is 

detected that rule r3 cannot fire, so rule r4 is unopposed and gives the defeasible 

conclusion hasGun(a). This behavior is called ambiguity blocking, since the 

ambiguity of pacifist(a) has been used to block r3 and resulted in the unambiguous 

conclusion hasGun(a). 

On the other hand, in the ambiguity propagation variant, although rule r3 cannot 

lead to the conclusion � hasGun(a) (as pacifist(a) is not provable), it opposes rule r4 

and  the conclusion hasGun(a) cannot also be drawn. 

In the following we present the proof theory for the ambiguity propagation variant 

of defeasible logic. The first step is to determine when a literal is “supported” in a 

defeasible theory D (Figure 74.5). Support for a literal p (+� p) consists of a monotonic 

chain of reasoning that would lead us to conclude p in the absence of conflicts. This 

leads to the following inference conditions: 
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+ 	 : If P(i + 1) = +	 q then either 

 (1) p 
F  or 

(2) � r 
  Rsd[q]  � a 
  A(r):+	 a 
  P(1..i). 

−	 : If P(i + 1) = −	 q then 

 (1) p �F and 

(2) � r 
  Rsd[q] �a 
  A(r):− 	 a 
  P(1..i). 

Figure -4.5: Supporting Literals in Defeasible Logic. 

A literal that is defeasibly provable is supported, but a literal may be supported 

even though it is not defeasibly provable. Thus support is a weaker notion than 

defeasible provability. For example, given two rules q and � q, both q and � q are 

supported, but neither is defeasibly provable. 

We can achieve ambiguity propagation behavior by making a minor change to the 

inference condition for +
: instead of requiring that every attack on p be inapplicable 

in the sense of −
, now we require that the rule for � p be inapplicable because one of 

its antecedents cannot be supported. By making attack easier we are imposing a 

stronger condition for proving a literal defeasibly. Here is the formal definition: 

+
ap: If P(i + 1) = +
qap then either 

            (1) + � q  
  P(1..i) or 

            (2) (2.1) � r  
  Rsd [q] � a  
A(r): + 
apa 
P(1..i) and 

                 (2.2) −� � q  
P(1..i) and 

                 (2.3) � s  
  R[ � q], either 

                         (2.3.1) �a  
  A(s):−	a  
  P(1..i) or 

                        (2.3.2) � t  
  Rsd [q] such that 

                                     � a  
  A(t):+
apa  
P(1..i) and t > s. 

−
ap: If P(i + 1) = −
qap then 

            (1) − � q 
  P(1..i) and 

            (2) (2.1) � r 
  Rsd [q] �a 
  A(r):−
apa 
  P(1..i) or 

                 (2.2) + � � q 
  P(1..i) or 

                 (2.3) � s 
  R[ � q] such that 

                         (2.3.1)  � a 
  A(s): +	a
P(1..i) and 

                          (2.3.2) � t 
  Rsd [q] either 

                                      �a 
  A(t):−
aap 
  P(1..i) or t �  s. 

Figure -4.6: Defeasible provability in the Ambiguity Propagating Variant of Defeasible Logic. 
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A preference for ambiguity blocking or ambiguity propagating behavior is one of 

the properties of nonmonotonic inheritance nets over which intuitions can clash 7[95]. 

Ambiguity propagation results in fewer conclusions being drawn, which might make 

it preferable when the cost of an incorrect conclusion is high. For these reasons an 

ambiguity propagating variant of DL is of interest.  

4.4 Conflicting Literals 

So far only conflicts among rules with complementary heads were detected and used. 

We considered all rules with head L as supportive of L, and all rules with head � L as 

conflicting. However, in applications often literals are considered to be conflicting, 

and at most one of a certain set should be derived. For example, the risk an investor is 

willing to take may be classified in one of the categories low, medium, and high. The 

way to solve this problem is to use constraint rules of the form 

 conflict :: low, medium 

 conflict :: low, high 

 conflict :: medium, high 

Now if we try to derive the conclusion high, the conflicting rules are not just those 

with head � high, but also those with head low and medium. Similarly, if we are trying 

to prove � high, the supportive rules include those with head low or medium. 

In general, given a conflict :: L, M, we augment the defeasible theory by: 

ri: q1,q2,…,qn 8  � L for all rules ri: q1,q2,…,qn 8  M 

 ri: q1,q2,…,qn 8  � M for all rules ri: q1,q2,…,qn 8  L 

 ri: q1,q2,…,qn � L for all rules ri: q1,q2,…,qn M 

 ri: q1,q2,…,qn � L for all rules ri: q1,q2,…,qn M 

The superiority relation among the rules of the defeasible theory is propagated to 

the “new” rules. For example, if the defeasible theory includes the following two rules 

and a superiority relation among them: 

 r1: q1,q2,…,qn 8  L 

 r2: p1,p2,…,pn 8  M 
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 r1 > r2 

we will augment the defeasible theory by : 

 r1’: q1,q2,…,qn 8  � M 

 r2’: p1,p2,…,pn 8  � L 

 r1 > r2’  r1’ > r2 

4.5 Exisiting Defeasible Logic Implementations 

4.5.1 d-Prolog 

d-Prolog 7[28] is a query-answering interpreter for defeasible logic implemented in 

about 300 lines of Prolog. Its intended input is mostly small, non-recursive inheritance 

problems. The strict rules are implemented directly as Prolog rules. Unfortunately, the 

d-Prolog implementation of defeasible logic is flawed. The interpreter follows the 

Prolog computation rule and consequently has the same incompleteness that Prolog 

has. It cannot deal with theories that contain cyclic dependencies, so we could not test 

the system in the case of cyclic theories. Other deficiencies of d-Prolog, compared to 

our system are that it does not implement the ambiguity propagation variant of 

defeasible logic, and does not deal with user-defined conflicting literals. Finally, it 

does not integrate with Semantic Web (it does not treat RDF data, nor does it use an 

XML-based / RDF-based syntax). 

4.5.2 Deimos 

Deimos 7[64] is a flexible, query processing system based on Haskell. It does not 

support variables, and accepts only propositional rules. It implements several variants, 

but not conflicting literals. The centre of the system is the prover. It implements 

backward-chaining theorem prover for defeasible logic based almost directly on the 

inference rules. The system also includes a program (DTScale) that generates the 

scalable theories used as test case in our experimental evaluation. Deimos performs a 

depth-first search, with memorization and loop-checking, for a proof in defeasible 

logic. Memorization allows the system to recognize that a conclusion has already been 

proved (or disproved), while loop checking also detects when a conclusion occurs 

twice in a branch of the search tree. Loop-checking is necessary for the depth-first 

search to be complete, whereas memorization is purely a matter of efficiency. Deimos 
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does not also integrate with Semantic Web. Comparing to our system, it has the 

additional feature that it also treats defeaters. 

4.5.3 DR-Device 

This is another effort on implementing defeasible reasoning, albeit with a different 

approach. DR-DEVICE 7[98] is implemented in Jess, and integrates well with RuleML 

and RDF. It is a system for query answering. Its architecture is based on the rule 

system CLIPS, and is in fact an extension of R-Device: a system for rules on RDF 

data. The rules are expressed using the rule language of CLIPS, or the OO-RuleML 

syntax. Compared to our system, DR-DEVICE supports only one variant, ambiguity 

blocking, and does not also treat user-defined conflicting literals, thus it does not offer 

the flexibility of our implementation. Moreover, it is based on a translation of 

defeasible theories into a non-logical language, and thus lacks in declarativity. 

  

 



 

5 Translation into Logic Programs 

There are two approaches for translating defeasible theories into logic programs. The 

first one uses a meta-program to express defeasible logic in logic programming terms. 

This approach was followed in various studies, including 7[20]. The second approach, 

upon which we base our work, is more direct, and was first presented in 7[7]. In 

general, for the translation of defeasible theories into logic programs, two logic 

program semantics can be used: Kunen semantics and Well-Founded semantics. The 

latter has the advantage that it can detect cycles in the theories (it does not run into 

infinite loops). Under the second approach, the translation of a defeasible theory D 

into a logic program P(D) has a certain goal: to show that 

 p is defeasibly provable in D � 

 p is included in the Well-Founded model of P(D) 

To achieve this goal, the rules of a defeasibly theory D are translated into logic 

program clauses, using control literals that carry meaning regarding the applicability 

status of the rules. The features of Defeasible Logics which are supported by that 

translation are: facts, strict rules, and defeasible rules that may support conflicting 

conclusions. We have made some extensions to support superiority relations among 

rules, and to support both ambiguity blocking and ambiguity propagation behavior. 

The translation has two versions: the ambiguity blocking version and the ambiguity 

propagation version. 

5.1 Translation of Ambiguity Blocking Behavior 

Given a fact p we translate it into the program clause 

a(p): definitely(p). 

Given a strict rule 

 r: q1,q2,…,qn 8 p 

we translate it into the program clause 

 b(r): definitely(p):- definitely(q1),definitely(q2),…,definitely(qn). 

Additionally, we introduce the clause 
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 c(p): defeasibly(p):- definitely(p). 

for every literal p. This last clause corresponds to the condition of the defeasible 

theory: a literal p is defeasibly provable if it is strictly (definitely) provable. 

Given a defeasible rule 

 r: q1,q2,…,qn   p 

we translate it into the following set of clauses: 

d1(r): defeasibly(p):- defeasibly(q1),defeasibly(q2),…,defeasibly(qn), 

                                       not1 definitely(¬p),ok(r,p). 

 d2(r): ok(r,p):- ok’(r,s1,p),…,ok’(r,sm,p). 

where {s1,…,sm} = {the set of defeasible rules with head: ¬p} 

 d3(r,si,p): ok’(r,si,p):- blocked(si,p).     for all si 
 {s1,…,sm} 

 d4(r,si,p): ok’(r,si,p):- defeated(si,p).     for all si 
 {s1,…,sm} 

 d5(r,qi,p): blocked(r,p):- not defeasibly(qi).    for all i 
 {1,2,…,n} 

 d6(r,si,p): defeated(r,p):- not blocked(si,p), sup(si,r).  for all si 
 {s1,…,sm} 

Given a superiority relation r > s  we translate it into the program clause 

 e(r,s): sup(r,s). 

� d1(r) says that to prove p defeasibly by applying r, we must prove all the 

antecedents of r, the negation of p should not be strictly (definitely) provable, 

and it must be ok to apply r. 

� d2(r) says when it is ok to apply a rule r with head p: we must check that it is 

ok to apply r w.r.t. every rule with head ¬p. 

� d3(r,si,p) says that it is ok to apply r w.r.t. si is blocked.  

� d4(r,si,p) says that it is ok to apply r w.r.t. si is blocked. 

� d5(r,qi,p) specifies the only way a rule can be blocked: it must be impossible to 

prove one of its antecedents. 

                                                

1 For the implementation of the translation, we use sk_not as the negation operator. The use of this operator is 

described in Chapter 6. 
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� d6(r,si,p) specifies the only way a rule r can be defeated: there must be at least 

one rule s with complementary head (conflicting rule), which is not blocked 

and is superior to r. 

For a defeasible theory with ambiguity blocking behavior D we define P(D) to be the 

union of all clauses a(p), b(r), c(p), d1(r), d2(r), d3(r,si,p), d4(r,si,p), d5(r,qi,p), 

d6(r,si,p), e(r,s). 

Example: Consider the defeasible theory D from the example of Chapter 4. 

Assuming ambiguity blocking behavior, D is translated into the logic program P(D), 

which consists of the following clauses: 

r1 

defeasibly(pacifist(X)):- defeasibly(quaker(X)),sk_not 
definitely(~(pacifist(X))). 
ok(r1,pacifist(X)):- okk(r1,r2,pacifist(X)). 
okk(r1,r2,pacifist(X)):- blocked(r2,~(pacifist(X))). 
okk(r1,r2,pacifist(X)):- defeated(r2,~(pacifist(X))). 
defeated(r1,pacifist(X)):- sk_not blocked(r2,~(pacifist(X))),sup(r1,r2). 
blocked(r1,pacifist(X)):- sk_not defeasibly(quaker(X)). 
 

r2 

defeasibly(~(pacifist(X))):- defeasibly(republican(X)),sk_not 
definitely(pacifist(X)),ok(r2,~(pacifist(X))). 
ok(r2,~(pacifist(X))):- okk(r2,r1,~(pacifist(X))). 
okk(r2,r1,~(pacifist(X))):- blocked(r1,pacifist(X)). 
okk(r2,r1,~(pacifist(X))):- defeated(r1,pacifist(X)). 
defeated(r2,~(pacifist(X))):- sk_not blocked(r1,pacifist(X)),sup(r1,r2). 
blocked(r2,~(pacifist(X))):- sk_not defeasibly(republican(X)). 
 

r3 

defeasibly(~(hasGun(X))):- defeasibly(pacifist(X)),sk_not 
definitely(hasGun(X)),ok(r3,~(hasGun(X))). 
ok(r3,~(hasGun(X))):- okk(r3,r4,~(hasGun(X))). 
okk(r3,r4,~(hasGun(X))):- blocked(r4,hasGun(X)). 
okk(r3,r4,~(hasGun(X))):- defeated(r4,hasGun(X)). 
defeated(r3,~(hasGun(X))):- sk_not blocked(r4,hasGun(X)),sup(r4,r3). 
blocked(r3,~(hasGun(X))):- sk_not defeasibly(pacifist(X)). 
 

r4 

defeasibly(hasGun(X)):- defeasibly(livesInChicago(X)),sk_not 
definitely(~(hasGun(X))),ok(r4,hasGun(X)). 
ok(r4,hasGun(X)):- okk(r4,r3,hasGun(X)). 
okk(r4,r3,hasGun(X)):- blocked(r3,~(hasGun(X))). 
okk(r4,r3,hasGun(X)):- defeated(r3,~(hasGun(X))). 
defeated(r4,hasGun(X)):- sk_not blocked(r3,~(hasGun(X))),sup(r3,r4). 
blocked(r4,hasGun(X)):- sk_not defeasibly(livesInChicago(X)). 
 

 definitely(quaker(a)). 
defeasibly(quaker(a)):- definitely(quaker(a)). 
 

 definitely(republican(a)). 
defeasibly(republican(a)):- definitely(republican(a)). 
 

 definitely(livesInChicago(a)). 
defeasibly(livesInChicago(a)):- definitely(livesInChicago(a)).  

 
sup(r3,r4). 

 

Under the above translation, defeasibly(hasGun(a)) is included in the answer set of 

the logic program P(D). This comes in agreement with the ambiguity blocking 
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behavior of the defeasible theory D, according to which, a rule with ambiguous 

premises cannot fire, and override the conflicting rules (even if it superior to them). 

So the ambiguity of a literal is blocked, and is not propagated to its dependent 

conclusions. Thus, this logic program corresponds exactly to the ambiguity blocking 

behavior of the defeasible theory D. 

5.2 Translation of Ambiguity Propagation Behavior 

We must make some changes to the procedure of the translation that we describe 

above to support ambiguity propagation behavior. Our goal is to ensure that the 

ambiguity of a conclusion is propagated to its dependents. To achieve this we must 

define a new predicate: supported.  

The program clauses a(p), b(r), c(p) remain unchanged. In this version we add a 

new program clause s(p): 

 s(p): supported(p):- definitely(p). 

for every literal p. This clause says that p is supported if it is strictly (definitely) 

provable. 

The program clauses d1(r), d2(r), d4(r,si,p), d5(r,qi,p), d6(r,si,p), e(r,s) also remain 

the same. In order to support the ambiguity propagation behavior,  we must change 

d3(r,si,p) and add two more program clauses for the defeasible rules. So, given a 

defeasible rule  

 r: q1,q2,…,qn   p 

we translate it into the following set of clauses: 

d1(r), d2(r), 

d3’(r,si,p): ok’(r,si,p):- obstructed(si,p).    for all si 
 {s1,…,sm} 

d4(r,si,p), d5(r,qi,p), d6(r,si,p), 

d7(r,qi,p): obstructed(r,p):- not supported(qi).        for all i 
 {1,2,…,n}, 

d8(r): supported(p):- supported(q1),…,supported(qn), not defeated(r,p). 

� d3’(r,si,p) says that it is ok to apply r w.r.t. si is obstructed.  

� d7(r,qi,p) specifies the only way a rule can be obstructed: at least one of its 

antecedents must not be supported. 
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� d8(r) says that p is supported by applying r, if all the antecedents of r are 

supported, and r is not defeated.  

For a defeasible theory with ambiguity propagation behavior D we define P(D) to be 

the union of all clauses a(p), b(r), c(p), d1(r), d2(r), d3’(r,si,p), d4(r,si,p), d5(r,qi,p), 

d6(r,si,p), d7(r,qi,p), d8(r), e(r,s). 

Example: Consider the defeasible theory D from the example of Chapter 4. 

Assuming ambiguity propagation behavior, D is translated into the logic program 

P(D), which consists of the following clauses: 

r1 

defeasibly(pacifist(X)):- defeasibly(quaker(X)),sk_not 
definitely(~(pacifist(X))). 
ok(r1,pacifist(X)):- okk(r1,r2,pacifist(X)). 
okk(r1,r2,pacifist(X)):- obstructed(r2,~(pacifist(X))). 
okk(r1,r2,pacifist(X)):- defeated(r2,~(pacifist(X))). 
defeated(r1,pacifist(X)):- sk_not blocked(r2,~(pacifist(X))),sup(r1,r2). 
blocked(r1,pacifist(X)):- sk_not defeasibly(quaker(X)). 
obstructed(r1,pacifist(X)):- sk_not supported(quaker(X)). 
supported(pacifist(X)):- supported(quaker(X)),sk_not 
defeated(r1,pacifist(X)). 
 

r2 

defeasibly(~(pacifist(X))):- defeasibly(republican(X)),sk_not 
definitely(pacifist(X)),ok(r2,~(pacifist(X))). 
ok(r2,~(pacifist(X))):- okk(r2,r1,~(pacifist(X))). 
okk(r2,r1,~(pacifist(X))):- obstructed(r1,pacifist(X)). 
okk(r2,r1,~(pacifist(X))):- defeated(r1,pacifist(X)). 
defeated(r2,~(pacifist(X))):- sk_not blocked(r1,pacifist(X)),sup(r1,r2). 
blocked(r2,~(pacifist(X))):- sk_not defeasibly(republican(X)). 
obstructed(r2,~(pacifist(X))):- sk_not supported(republican(X)). 
supported(~(pacifist(X))):- supported(republican(X)),sk_not 
defeated(r2,~(pacifist(X))). 
 

r3 

defeasibly(~(hasGun(X))):- defeasibly(pacifist(X)),sk_not 
definitely(hasGun(X)),ok(r3,~(hasGun(X))). 
ok(r3,~(hasGun(X))):- okk(r3,r4,~(hasGun(X))). 
okk(r3,r4,~(hasGun(X))):- obstructed(r4,hasGun(X)). 
okk(r3,r4,~(hasGun(X))):- defeated(r4,hasGun(X)). 
defeated(r3,~(hasGun(X))):- sk_not blocked(r4,hasGun(X)),sup(r4,r3). 
blocked(r3,~(hasGun(X))):- sk_not defeasibly(pacifist(X)). 
obstructed(r3,~(hasGun(X))):- sk_not supported(pacifist(X)). 
supported(~(hasGun(X))):- supported(pacifist(X)),sk_not 
defeated(r3,~(hasGun(X))). 
 

r4 

defeasibly(hasGun(X)):- defeasibly(livesInChicago(X)),sk_not 
definitely(~(hasGun(X))),ok(r4,hasGun(X)). 
ok(r4,hasGun(X)):- okk(r4,r3,hasGun(X)). 
okk(r4,r3,hasGun(X)):- obstructed(r3,~(hasGun(X))). 
okk(r4,r3,hasGun(X)):- defeated(r3,~(hasGun(X))). 
defeated(r4,hasGun(X)):- sk_not blocked(r3,~(hasGun(X))),sup(r3,r4). 
blocked(r4,hasGun(X)):- sk_not defeasibly(livesInChicago(X)). 
obstructed(r4,hasGun(X)):- sk_not supported(livesInChicago(X)). 
supported(hasGun(X)):- supported(livesInChicago(X)),sk_not 
defeated(r4,hasGun(X)). 
 

 
definitely(quaker(a)). 
defeasibly(quaker(a)):- definitely(quaker(a)). 
supported(quaker(a)):- definitely(quaker(a)). 
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definitely(republican(a)). 
defeasibly(republican(a)):- definitely(republican(a)). 
supported (republican(a)):- definitely(republican(a)). 
 

 definitely(livesInChicago(a)). 
defeasibly(livesInChicago(a)):- definitely(livesInChicago(a)).  
supported (livesInChicago(a)):- definitely(livesInChicago(a)). 

 
sup(r3,r4). 

 

Under this translation, neither defeasibly(hasGun(a)), nor defeasibly(~hasGun(a))) 

is included in the answer set of the logic program, agreeing with the defeasible 

propagation behavior of the defeasible theory D, under which no conclusion can be 

drawn about literals, which depend on ambiguous premises. P(D) corresponds exactly 

to the ambiguity propagation variant of D.  

5.3 Properties of the Translation 

The size of the logic program P(D) which corresponds to a defeasible theory D 

depends on the number of facts, rules and superiority relations of the defeasible theory 

D, but also on the behavior of D. In general, theories which consist of sets of 

defeasible rules that attack each other, lead to programs with much more clauses than 

theories with rules that do not support conflicting conclusions. The ambiguity 

propagation variable of a defeasible theory D  leads to a logic program with up to 

30% more clauses in comparison with the program that corresponds to the ambiguity 

blocking variant of the same theory. 

Proposition 1. The size of the logic program P(D) which corresponds to the 

ambiguity blocking variant of a defeasible theory D is bound by 2�  f + 2� s + (4+d) 

�d, where f is the number of facts or strict rules of the theory, s is the number of 

superiority relations and d is the number of defeasible rules. 

According to Proposition 1, a theory with ten defeasible rules, five of them 

supporting a conclusion p, and the other five supporting ~p, is translated into a logic 

program with 140 clauses (each defeasible rule is translated into 14 program clauses). 

If the same rules do not support conflicting conclusions, the size of the logic program 

is 10, which is the size of the defeasible theory (in the latter case each rule of the 

defeasible theory is translated into a single program clause). 

Proposition 2. The size of the logic program P(D) which corresponds to the 

ambiguity propagation variant of a defeasible theory D is bound by 2�  f + 2� s + 
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(6+d) �d, where f is the number of facts or strict rules of the theory, s is the number 

of superiority relations and d is the number of defeasible rules. 

According to Proposition 2, the same theory that we describe above is translated to 

a logic program with 160 program clauses. In this case each rule of the defeasible 

theory is translated into 16 clauses of the logic program. 

For the implementation of the translation, we used sk_not as the negation operator. 

This is the negation operator of XSB 7[102] (the logic programming tool that we used), 

which allows for the correct execution of programs with well founded semantics. 

Under the well-founded model, the relationship between a defeasible theory D and its 

translation P(D) can be described with the following theorem. 

Theorem 3 -[5].   

(a).  D +�p �  definitely(p) is included in the well-founded model of P(D). 

(b). D -�p �   sk_not definitely(p) is included in the well-founded model of P(D). 

(c). D +
p �   defeasibly(p) is included in the well-founded model of P(D). 

(d). D -
p �   sk_not defeasibly(p) is included in the well-founded model of P(D).  





 

6 Implementation Architecture 

6.1 Overview of the Architecture 

Our goal is to develop a system that supports not only the basics of defeasible logic, 

but also the two different variants (ambiguity blocking and ambiguity propagation) of 

this logic, and the use of conflicting literals. In Figure 76.1 we present the overall 

architecture of our system.  

The system works in the following way: The user imports defeasible theories, 

either using the syntax of defeasible logic (described in Chapter 4), or in the RuleML 

7[88]  syntax, that we describe below. The former theories are checked by the DL 

Parser, and if they are syntactically correct, they are passed to the Logic Translator, 

which  

 

Figure -6.1: The Overall Architecture of our System. 

translates them into logic programs. The RuleML defeasible theories are checked by 

the RuleML Parser and translated into defeasible theories, which are also passed to 

RDF 
Translator 

DL Parser 

Logic 
Translator 

RuleML 
Parser 

RuleML 
Translator 

XSB Logic Compiler / Evaluator 

User 
Internet 

Semantic – 
Syntactic Validator 

RDF documents 

 valid RDF 
documents 

logic facts 

 dl theories 
 & queries 
 

valid dl 
 theories 
 

valid 
 queries 

 dl theories 
 in RuleML syntax 
 

logic programs 
 

logic queries 
 

 dl theories 

results of 
the queries 
 

valid RuleML 
dl theories 
 



58  Implementation Architecture 

 

the Logic Translator and transformed into logic programs. XSB 7[102], which is the 

logic programming system that we use, compiles the logic programs, and evaluates 

the answers to the user’s queries. The queries are expressed in a standard syntax (that 

we describe below). They are checked by the DL Parser, and translated into Prolog 

queries, before being  applied to the compiled programs. An additional functionality 

that the system supports, is that it has the ability to treat RDF data as facts of the 

user’s defeasible theories. The RDF data are retrieved from the Web, and validated by 

the Semantic – Syntactic Validator 7[101] , before being loaded to the system. The 

system employs the SWI RDF parser 7[91] to load the valid RDF data and translate 

them into RDF triples. The triples are then translated into Prolog facts, which are 

passed to the Logic Compiler. Below, we describe in more detail, each of the tools 

mentioned above.  

6.2 The DL Parser 

The parser is responsible for parsing the user’s defeasible theory (expressed in the 

defeasible logic syntax), and for checking  whether the theory is syntactically correct.  

The theory is considered to be correct, if it follows the standard syntax of defeasible 

logic, as described in Chapter 4. If there are syntax errors in a defeasible theory, the 

system informs the user about these errors, and does not proceed to the translation of 

the theory. If the theory is correct, the parser creates a symbol table, which contains 

all the facts, rules and superiority relations of the user’s defeasible theory. The symbol 

is later used by the translator.  

Another important task of the parser is to check for the conflicting literals of the 

defeasible theory, and to augment the theory with the appropriate rules and superiority 

relations. If the user has defined two or more literals to be conflicting, the parser 

checks for the rules which have one of these literals as their head, and for the 

superiority relations among these rules, and creates new rules and superiority 

relations, following the way we described in Chapter 4. 

The last task of the parser is to check for the validity of the user’s queries. We 

have defined a standard syntax for these queries: 

� +D p : is it concluded that literal p of the defeasible theory is proved strictly? 

� -D p : is it concluded that p is not proved strictly? 

� +d p :is it concluded that p is proved defeasibly? 
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� -d p : is it concluded that p not proved defeasibly? 

The syntax we use for the complementary of a literal p is ~p.  

The source code of the DL Parser is written in C. For the creation of the code, we 

employed lex&yacc 7[56]. 

6.3 The Logic Translator 

If the defeasible theory has been parsed with success, the translator creates the logic 

program which corresponds to the user’s defeasible theory. The translator has two 

inputs and one output. The first input is the user’s defeasible theory D (checked and 

possibly augmented with new rules and superiority relations by the parser). The 

second input is the user’s choice of the behavior of the defeasible theory: ambiguity 

blocking / ambiguity propagation. The output is a logic program P(D), which is in fact 

a Prolog file. The translation of each defeasible rule to the corresponding Prolog rule 

is described in Chapter 5. The only difference is that, instead of not we use sk_not, 

which is XSB’s negation operator and allows for the correct execution of programs 

with well founded semantics. By using this operator, we allow the system to deal with 

cyclic theories. The translator parses the symbol table, which is created by the parser, 

and translates the defeasible rules one by one. In the course of this procedure, some 

searches of the symbol table are required. For example, if a translator meets a 

defeasible rule with head p, it searches the symbol table for defeasible rules with 

complementary head, ~p. 

The translator is also responsible for transforming the user’s queries into valid 

Prolog queries: 

� +D p is translated into definitely(p). 

� -D p is translated into not definitely(p). 

� +d p is translated into defeasibly(p). 

� -d p is translated into not defeasibly(p). 

The source code of the Logic Translator is written in C. For the creation of the 

code, we employed lex&yacc 7[56]. 
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6.4 The RuleML Parser & RuleML Translator 

Another part of our work is the creation of a DTD which allows to translate XML 

files to defeasible theories and vice versa. This DTD is in fact an extension of the 

RuleML DTDs 7[88]. It covers both strict and defeasible rules, as well as the 

superiority relations between these rules. The elements of the RuleML DTD that we 

add / modify are: 

� The “rulebase” root element which uses “imp” (strict) and “def” (defeasible) 

rules, “fact” assertions and “superiority” relations. 

� The “imp” element, which consists of a “_head” and a “_body” element, 

accepts a “name” attribute, and refers to the strict rules of a theory. 

� The “def” element which consists of a “_head” and a “_body” element, 

accepts a “name” attribute, and refers to the defeasible rules of a theory. 

� The “superiority” empty element, which accepts the name of two rules as its 

attributes (“sup” & “inf”), and refers to the superiority relation between these 

two rules. 

 In Figure 76.2, we present the modified DTD: 

<!ELEMENT rulebase ((imp|def|fact|superiority)*)> 
<!ELEMENT imp ((_head, _body) | (_body, _head))> 
<!ATTLIST imp  
 name ID #IMPLIED>   
<!ELEMENT def((_head, _body) | (_body, _head))> 
<!ATTLIST def 
 name ID #IMPLIED>  
<!ELEMENT fact (_head) > 
<!ELEMENT superiority EMPTY> 
<!ATTLIST superiority 
 sup IDREF #REQUIRED 
 inf IDREF #REQUIRED> 
<!ELEMENT _head (atom)> 
<!ELEMENT _body (atom | and)> 
<!ELEMENT and (atom*)> 
<!ELEMENT atom ((_opr,(ind | var)*) | ((ind | var)+, _opr))> 
<!ELEMENT _opr (rel)> 
<!ELEMENT ind  (#PCDATA)> 
<!ELEMENT var  (#PCDATA)> 
<!ELEMENT rel  (#PCDATA)>   

Figure -6.2: The modified RuleML DTD for the defeasible theories 

In order to give the user the ability to create defeasible theories using the RuleML 

syntax, we implemented the RuleML Parser, and the RuleML Translator. The former 

parses the RuleML defeasible theories and, if they are syntactically correct, passes the 

theories to the Translator. The role of the RuleML Translator is to translate them into 



Implementation Architecture  61 

 

the defeasible logic syntax, according to the DTD we described above. The defeasible 

theories are then passed to the Logic Translator, which translates them into logic 

programs. The source code of both tools is written in C. For the creation of the code, 

we employed lex&yacc 7[56]. 

6.5 The Logic Compiler & Evaluator 

The role of the Logic Compiler is to compile the logic program P(D), created by the 

logic translator. We use XSB 7[102], as we need a Prolog system which supports the 

well-founded semantics. XSB is appropriate for building integrated real-world 

systems, as it is easy to construct the communication module between XSB and the 

other parts of such systems. In our case, it was critical for the performance of the 

system, to find an easy and efficient way to communicate the Logic Compiler with the 

DL Parser and the Logic Translator. Only a small number of code was enough to 

construct this communication module. 

XSB is also used to evaluate the answer to the user’s queries. The queries are 

parsed by the DL Parser, and translated into Prolog queries by the Logic Translator, 

before being passed to the Evaluator. The Prolog queries are applied to the compiled 

Prolog file, and a positive (“yes”) or a negative answer (“no”) is produced by the 

evaluator. This is the answer that the system returns to the user. 

6.6  The Semantic & Syntactic Validator 

This module is an embedded version of VRP 7[101], a parser for validating RDF 

documents. The RDF documents are retrieved from the Web and are checked by this 

module before being imported into the system. Among others, the tests that are being 

performed are: class hierarchy loops, property hierarchy loops, domain/range of 

subproperties, source/target resources of properties and types of resources.  

6.7 The RDF Translator 

The role of the RDF translator is to transform the RDF statements into logical facts, 

and the RDFS statements into logical facts and rules. This transformation allows the 

RDF/S information to be processed by the rules (in the form of defeasible theories) 

provided by the user. 
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For RDF data, the SWI-Prolog 7[91] RDF parser is used to transform them into an 

intermediate format, representing triples as rdf(Subject, Predicate, Object). Some 

additional processing (i) transforms the facts further into the format 

Predicate(Subject, Object); (ii) cuts the “comment” elements from the RDF files. 

In addition, for processing RDF Schema information, the following rules 

capturing the semantics of RDF Schema constructs are created:  

  a: C(X):- rdf:type(X,C). 

  b: C(X):- rdfs:subClassOf(Sc,C),Sc(X). 

  c: P(X,Y):-  rdfs:subPropertyOf(Sp,P),Sp(X,Y). 

  d: D(X):- rdfs:domain(P,D),P(X,Z). 

  e: R(Z):- rdfs:range(P,R),P(X,Z). 

Let us consider rule b that captures the meaning of the subclass relation of RDFS. 

A class Sc is subclass of a class C when all instances of Sc are also instances of C. 

Stated another way, if X is an instance of Sc then it is also instance of C. That is 

exactly what rule b says. Rule c says that if Sp is a subproperty of P, and X, Y are 

respectively the subject, object of Sp, then X is also a subject of P, and Y is an object 

of P. d is used to declare the relation between a property and its domain: the subject of 

a property P must belong to the class which is specified by the domain D of the 

property, and e is used to declare the relation between a property and its range: the 

object of a property P must belong to the class which is specified by the range R of 

the property. All the above rules are created at compile-time, i.e. before the actual 

querying takes place. Therefore, the above rules although at first they seem second-

order, because they contain variables in place of predicate names, they are actually 

first-order rules, i.e. predicate names are constant at run-time. 



 

7 A  Concrete Example 

In this chapter we describe a concrete example, in order to show the way that our 

system works and interacts with the user’s requests. The reader will be able to 

understand better the role of each of the tools, described in Chapter 5, and perceive 

the data flow from the point that new data are imported into the system until the 

results are returned to the user. 

7.1 The Scenario 

Teo is a new student in the Computer Science Department at the University of 

Crete, in Iraklio. His brother, Adam has already been in Iraklio for two years, working 

for a company in the centre of the town.  Teo and Adam want to rent an apartment to 

stay together. They wish to stay at the centre of the town, and require the apartment to 

have central heating. They prefer the apartment to have three rooms at least, but they 

are also willing to accept apartments with two rooms, on the condition that they are 

not on the ground floor. They are not willing to pay more than 400 Euros per month, 

except if the apartment has air-conditioning. In the latter case, they are willing to pay 

up to 450 Euros per month.  

7.2  Formalization of Requirements 

We show how the two brothers’ requirements are expressed in defeasible logic. The 

predicate acceptable(X) is used to denote that an apartment is acceptable. The first 

rule says that, a priori, all apartments are acceptable.  

 r1: apartment(X) � acceptable(X) 

However, any apartment not satisfying one of the required features is 

unacceptable. The following rules describe exceptions to the first, more general rule. 

Note that the exception rules are declared to be stronger than the first general rule. 

 r2: �location(X, centre)�� �acceptable(X) 

 r3: �heating(X, central) � �acceptable(X) 

 r4:  rooms(X, Z), Z < 2 �� �acceptable(X) 

 r5: rooms(X, Z), Z < 3, floor(X, ground) � �acceptable(X) 
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 r2>r1, r3>r1, r4>r1, r5>r1  

Next we must represent the price the two brothers are willing to pay at most. The 

predicate offer(X,Y) denotes that Teo and Adam are willing to pay at most Y Euros for 

apartment X.  

 conflict :: offer(X,400), offer(X,450) 

r6: � offer(X,400) 

 r7: aircon(X,true) � offer(X,450) 

 r7>r6 

An apartment is unacceptable if its price is higher than what the two brothers are 

willing to pay. This rule is also an exception to the general rule r1.  

 r8: price(X,Y), offer(X,Z), Y>Z  � �acceptable(X) 

 r9>r1 

The next rules state that the two brothers prefer apartments with 3 rooms (even if 

they are on ground floor) than apartments with two rooms that are not on the ground 

floor. The predicate chose(X) is used to denote that an apartment meets the two 

brothers’ requirements and preferences. 

 conflict :: prefer1(X), prefer2(X) 

 r10 : rooms(X, Z), Z > 2 � prefer1(X) 

 r11 : rooms(X, Z), Z = 2, �floor(X, ground) � prefer2(X) 

 r12 : acceptable(X), prefer1(X) � chose(X) 

r13 : acceptable(X), prefer2(X) � chose(X) 

 r10 > r11 

7.3 Representation of Offered Apartments 

In Table 77.1 we show ten different apartment offerings maintained by the broker, in 

table form. 
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Table -7.1: Offerings for ten different apartments in table form. 

Apartment Location Heating Rooms Floor Aircon Price 

a1 Mastabas central 4 first yes 400 

a2 Kaminia no 2 second no 280 

a3 centre no 3 first no 340 

a4 Fortetsa no 3 ground no 300 

a5 centre central 2 third no 350 

a6 centre central 3 second yes 440 

a7 centre no 3 second no 350 

a8 Kaminia central 4 first no 480 

a9 centre central 3 third no 380 

a10 centre central 3 first no 430 

 

The same offerings are contained as RDF data in RDF documents. An apartment 

offering example in RDF form is presented in Figure 77.1. The RDF Schema 

describing the apartments’ ontology of our example (presented in Figure 77.2),  is 

available at http://www.csd.uoc.gr/~bikakis/apartment.rdfs. 

 

<?xml version="1.0"?> 
<!DOCTYPE rdf:RDF [<!ENTITY xsd 
"http://www.w3.org/2001/XMLSchema#">]> 
<rdf:RDF 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"  
    xmlns:ap ="http://www.csd.uoc.gr/~bikakis/apartment.rdfs#"> 
<rdf:Description rdf:about="a1"> 

<rdf:type rdf:resource="ap:apartment"/> 
<ap:location rdf:datatype="&xsd;istring">Mastabas</ap:location> 
<ap:heating rdf:datatype="&xsd;string">central</ap:heating> 
<ap:rooms rdf:datatype="&xsd;integer">4</ap:rooms> 

    <ap:floor rdf:datatype="&xsd;string">first</ap:floor> 
   <ap:aircon rdf:datatype="&xsd;boolean">true</ap:aircon> 
   <ap:price rdf:datatype="&xsd;integer">400</ap:price> 
</rdf:Description> 
</rdf:RDF> 

Figure -7.1: An apartment offering example in RDF form. 
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<?xml version="1.0" ?> 
<!DOCTYPE rdf:RDF [<!ENTITY xsd 
"http://www.w3.org/2001/XMLSchema#">]> 
<rdf:RDF 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"> 
<rdfs:Class rdf:ID="house"></rdfs:Class> 
<rdfs:Class rdf:ID="apartment"> 
      <rdfs:subClassOf rdf:resource="#house"/></rdfs:Class> 
<rdfs:Class rdf:ID="cottage"> 
      <rdfs:subClassOf rdf:resource="#house"/></rdfs:Class> 
<rdf:Property rdf:ID="houseID"> 
 <rdfs:domain rdf:resource="#house"/> 
 <rdfs:range rdf:resource="&xsd;string"/> 
</rdf:Property> 
<rdf:Property rdf:ID="location"> 
 <rdfs:domain rdf:resource="#house"/> 
 <rdfs:range rdf:resource="&xsd;string"/> 
</rdf:Property> 
<rdf:Property rdf:ID="heating"> 
 <rdfs:domain rdf:resource="#house"/> 
 <rdfs:range rdf:resource="&xsd;string"/> 
</rdf:Property> 
<rdf:Property rdf:ID="rooms"> 
 <rdfs:domain rdf:resource="#house"/> 
 <rdfs:range rdf:resource="&xsd;integer"/> 
</rdf:Property> 
<rdf:Property rdf:ID="aircon"> 
 <rdfs:domain rdf:resource="#house"/> 
 <rdfs:range rdf:resource="&xsd;boolean"/> 
</rdf:Property> 
<rdf:Property rdf:ID="price"> 
 <rdfs:domain rdf:resource="#house"/> 
 <rdfs:range rdf:resource="&xsd;integer"/> 
</rdf:Property> 
<rdf:Property rdf:ID="floor"> 
 <rdfs:domain rdf:resource="#apartment"/> 
 <rdfs:range rdf:resource="&xsd;string"/> 
</rdf:Property> 
<rdf:Property rdf:ID="garden"> 
 <rdfs:domain rdf:resource="#cottage"/> 
 <rdfs:range rdf:resource="&xsd;boolean"/> 
</rdf:Property> 

</rdf:RDF> 

Figure -7.2: The RDF Schema of the apartments’ ontology. 

The facts concerning the apartment offering of “a1”, which are created by the 

RDF translator have the following form: 

apartment(a1). 

location(a1,Mastabas). 

heating(a1,central). 

rooms(a1,4). 

floor(a1,first). 

aircon(a1,true). 



A Concrete Example   67 

 

price(a1,400). 

The rules, described in 7.2 are translated into the corresponding logic program by 

the Logic Translator, and along with the facts representing the apartment offerings are 

compiled by the Logic Compiler. 

7.4 Selecting the Appropriate Apartments 

The role of the Evaluator is to find the apartments that meet the two brothers’ 

requirements and preferences. Based on the rules, described in 7.2 and the facts 

representing the apartments offerings, described in 7.3: 

� Apartment a1 is unacceptable because it is not located in the centre of the 

town. (rule r2).  

� Apartment a2 is unacceptable because it is not located in the centre of the 

town (rule r2), and it does not have central heating (rule r3). 

� Apartment a3 is unacceptable because it does not have central heating (rule r3). 

� Apartment a4 is unacceptable because it is not located in the centre of the 

town (rule r2), and it does not have central heating (rule r3). 

� Apartment a7 is unacceptable because it does not have central heating (rule r3). 

� Apartment a8 is unacceptable because it is not located in the centre of the 

town (rule r2). 

� Apartment a10 is unacceptable because its price (430) is higher than what Teo 

and Adam are willing to pay (400; rule r8). 

� Apartments a5, a6, and a7 are acceptable (rule r1). 

Between the acceptable apartments, the system “decides” that a6 and a7 are those 

that suit the two brothers’ preferences (rules r10, r11). 





 

8 Performance Evaluation 

In this chapter we present the experimental evaluation we made in order to measure 

the performance of our system, and to compare it with the performance of other 

defeasible reasoning systems, namely Deimos 7[64], and d-Prolog 7[28]. Firstly, we 

describe the test defeasible theories that we use for the experiments,  and then we 

present and try to interpret the experimental results. 

8.1 Design of the experiments 

We employed the DTScale tool of Deimos to create the experimental tests for the 

evaluation. The tests are in fact defeasible theories, consisting of a large number of 

facts, rules (strict and defeasible), and superiority relations. The test theories do not 

include defeaters, as they are not supported by our system. They do not also contain 

user-defined conflicting literals, as this feature is not supported by the other systems. 

In the experiments we focus on defeasibly inference. Below we present the form of 

the theories that we created: 

8.1.1 Chain Theories 

Chain theories chain(n) start with a fact ao and continue with a chain of defeasible 

rules of the form ai-1 �  ai. A variant chains(n) uses only strict rules. 
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8.1.2 Circle Theories 

Circle theories circle(n) consist of n defeasible rules ai � a(i+1) mod n. 

circle(n) = 
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Any proof +" ai will fail. A variant circles(n) uses only strict rules.  

8.1.3 Levels Theories 

Levels theories levels(n) consist of a cascade of 2n+2 disputed conclusions ai, i 
  

[0…2n +1]. For each i, there are rules � ai and ai+1� � ai. For each odd i a priority 

asserts that the latter rule is superior. A final rule � a2n+2 gives uncontested support 

for a2n+2. A variant levels-(n) omits the priorities.  

levels(n) = 
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8.1.4 Teams theories 

Teams theories teams(n) consist of conclusions ai which are supported by a team of 

two defeasible rules and attacked by another team of two defeasible rules. Priorities 

ensure that each attacking rule is beaten by one of supporting rules. The antecedents 

of these rules are in turn supported and attacked by cascades of teams of rules. 

teams(n) = block(ao,n) 

where, if p is a literal, and r1,…,r4 are unique labels: 

block(p,0) = 
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and, if n > 0, a1,…,a4 are new unique literals, and r1,…,r4 are new unique labels: 

block(p,n) = 
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8.1.5 Tree theories 

In tree theories tree(n,k) a0 is at the root of a k-branching tree of depth n in which 

every literal occurs once. 

tree(n,k) = block(a0, n, k) 

where, if p is a literal, n > 0, r is a new unique label, and a1,a2,…,ak are new unique 

literals: 

block(p, n, k) = 
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and block(p, 0, k) = {p. 

8.1.6 Directed Acyclic Graph Theories 

In directed acyclic graph theories dag(n, k), ao is a the root of a k-branching tree of 

depth n in which every literal occurs k times. 
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dag(n, k) = 
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8.1.7 Theory sizes 

In Table 78.1, we record the size of the test theories. The reported metrics are: the 

number of facts in the theory (facts); the number of rules in the theory (rules); the 

number of priorities in the theory (priorities); the overall “size” of the theory, defined 

as the sum of the number of facts, rules, priorities and literals in the bodies of all 

rules. 

Table -8.1: Size of the test theories 

 

 

8.2 Configuration for the experiments 

All the experiments were performed on an Intel Pentium M 1.3 GHz with 256MB 

DDR SDRAM machine, running Windows XP. We used a paging file of 1440MB, so 

as to have enough virtual memory for the experiments. 
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For the experimental evaluation of our system, we use the 2.6 version of XSB for 

Windows. For maximum space used by the global (heap) and local (environment) 

stack of XSB, we invoke XSB with the ‘-s’ command-line option. For the 

measurement of the execution time, we use the cputime(-CPU_Time) predicate, which 

returns the CPU_Time at the time of the call in seconds. The difference between 

results of successive calls to this predicate can measure the time spent in specific 

predicates. 

We compile Deimos using the Glasgow Haskell Compiler 6.2.1 for Windows. The 

execution times are measured using the –m option of DTScale (this is the tool of 

Deimos used for the creation of the test theories). We also use the RTS options: -

K20M, -M100M. In this way, the system begins with a stack space of 20M and a heap 

of 100M. 

For the compilation of d-Prolog, we use the 5.2.13 version of SWI-Prolog for 

Windows. The times presented in the experiments are those measured by the SWI-

Prolog statistics built-in. When timing several experiments in the same Prolog session 

the first experiment consistently took significantly longer than later identical 

experiments. In our data we have omitted the first timing in a session. 

8.3 Experimental Results 

The tables describe the time (in cpu seconds) required to find the appropriate 

conclusion for a0. The experiments are designed to execute all rules and literals of 

each test theory. 

The times for Deimos include time spent garbage collecting, whereas the times for 

our system and d-Prolog do not. This adds significantly to the time in problems where 

the space usage approaches the heap space allocated to the Haskell run-time 

environment. We must note that the times presented in the tables below do not include 

the time spent to build and compile the test theories. In the case of our system and d-

Prolog, the compilation of the test theories adds a significant amount of time to the 

overall time of the execution of the experiments. There are also cases that XSB and 

SWI-Prolog could not compile the test theories, because the default memory 

allocation was exhausted. So, we could not test our system and d-Prolog in cases of 

theories with size bigger than 20000. 
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In the tables below, %  denotes that the system will not terminate, &  denotes that 

the default memory allocation for XSB or SWI-Prolog was exhausted, - denotes that 

the experiment was not performed because the runtime required was excessive, ? 

denotes that the experiment could not be performed.  

In Table 78.2 we record the times in the case of theories with undisputed inferences, 

namely chain(n), chains(n), circle(n), circles(n), tree(n,k) and dag(n,k). In Table 78.3, 

we record the times in the case of theories with disputed references, namely levels(n), 

levels-(n) and teams.  

Table -8.2: Execution times for theories with Undisputed Inferences 

 Problem Size Our System Deimos d-Prolog 

chains(n)     
n = 1000 2001 0.02 0.16 0.00 

n = 2000 4001 0.03 0.60 0.01 

n = 5000 10001 0.06 3.60 0.02 

chain(n)     

n = 1000 2001 0.05 0.41 0.13 

n = 2000 4001 0.08 1.44 0.25 

n = 5000 10001 0.10 8.59 0.62 

circles(n)     

n = 1000 2000 0.03 0.16 %  

n = 2000 4000 0.04 0.61 %  

n = 5000 10000 0.07 3.67 %  

circle(n)     

n = 1000 2000 0.07 0.25 %  

n = 2000 4000 0.10 0.90 %  

n = 5000 10000 0.13 5.60 %  

tree(n,k)     

n = 6, k = 3 2185 0.02 0.22 0.06 

n = 7, k = 3 6559 0.08 1.37 0.15 

n = 8, k = 3 19681 0.22 5.27 0.38 

dag(n,k)     

n = 3, k = 3 43 0.01 0.00 0.06 

n = 4, k = 4 89 0.01 0.00 8.80 

n = 50, k = 5 1511 0.03 0.06 &  

n = 100, k = 10 11021 0.11 0.49 &  
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Table -8.3: Execution times for theories with Disputed Inferences 

 Problem Size Our System Deimos d-Prolog 

levels-(n)     
n = 10 67 0.02 0.00 1.61 

n = 20 127 0.02 0.01 - 

n = 100 607 0.06 0.06 - 

n = 1000 6007 0.12 3.53 - 

levels(n)     

n = 10 78 0.02 0.00 1.70 

n = 20 148 0.02 0.01 - 

n = 100 708 0.06 0.06 - 

n = 1000 7008 0.39 3.78 - 

teams(n)     

n = 3 594 0.11 0.05 - 
n = 4 2386 0.89 0.26 - 
n = 5 9554 2.30 1.15 - 

 

As it is obvious from the two tables, the cases that our system performs best is the 

theories that contain undisputed inferences, or the theories with disputed inferences 

but with not many superiority relations. For example, if we compare the time that our 

system spends on the tree(8,3) theory, which contains only facts and rules with 

undisputed inferences, with the time that it spends on teams(5) which contains a large 

number of conflicting rules and superiority relations between them, we can see that 

although the tree theory is double in size, the execution time for this theory is 10 

times smaller. The reason for this is that theories with disputed inferences result in 

Prolog files with many more program clauses, as we commented in Chapter 5.  

Comparing to Deimos our system performs better in most of the cases. The only 

exception is the teams theories, which contain many conflicting rules and superiority 

relations. In general, when the size of the theories is relatively small, the two systems 

have more or less the same performance. But in the case of large theories, our system 

performs obviously much better. However, we should mention that the time that 

Deimos spends in order to build and compile the same theories (which is not recorded 

in the tables above) is by far less than the corresponding time of our system. 

Moreover, in the case of theories with very large sets of rules and priorities (size > 

20000), our system is unable to compile the logic files, as XSB runs out of memory. 
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Comparing to d-Prolog, our system performs better in all the cases that there are 

defeasible rules in the test theories. Especially in the case of theories with disputed 

inferences, d-Prolog performs very badly, with time growing exponentially in the 

problem size. d-Prolog is substantially more efficient than our system when there are 

only strict rules (for example in the case of the chains theories), due to the direct 

execution of such rules. However, d-Prolog shows its incompleteness, comparing to 

the other two systems, when it loops on circle(n), which are cyclic theories.   



 

9 Conclusions and Future Work 

9.1 General Conclusions 

In this report, we describe our work on the implementation of a defeasible reasoning 

system for the web. At first, we reason why  such a system can be useful in the 

layered development of the Semantic Web 7[13]. Then, we describe the logic 

(Defeasible Logic 7[5]7[73]), on which the system is based on, presenting its declarative 

capabilities, and its low computational complexity. We present in detail the 

architecture of the system, its rationale, and its functionality, and compare its 

performance capabilities with other similar defeasible reasoning systems. 

Defeasible Logic seems to be a very useful tool for reasoning about resources of 

the Web, due to its representational capabilities and its low computational complexity. 

The translation of defeasible theories into logic programs, that we present in Chapter 

5, is an effort to efficiently combine this logic with the resources that are expected to 

be available in the Semantic Web. The implementation of tools that translate data 

contained in RDF documents into logical rules and facts, and represent defeasible 

theories in an XML format, as those described in Chapter 6, moves in the same 

direction: in the integration of rule systems with the layers of the Semantic Web that 

have been so far implemented. Although the use of nonmonotonic rule systems still 

remains an issue between the developers of the Semantic Web, it seems that it will not 

take much longer, until they find their role in the development of the Semantic Web. 

The system described in this report, moves one step forward from the other 

existing defeasible reasoning systems; it is not an isolated system, as d-Prolog 7[28] or 

Deimos 7[64]. It has been designed to integrate with the Semantic Web, as it has the 

ability to treat RDF data and RDF ontologies, and to use an XML-based format to 

express the defeasible theories. This makes it suitable for integrated web applications 

for brokering, bargaining, automated agent negotiation, and personalization. 

Moreover, it is more flexible and adaptable to different intuitions within defeasible 

reasoning, as the ambiguity blocking and ambiguity propagating behavior, and the use 

of conflicting literals. Finally, its implementation is declarative, because it interprets 

the “not” operator using Well-Founded Semantics. Its main drawbacks are two: it 

cannot handle very large sets of rules; and it cannot compute all answers as it 

implements a backward-chaining theorem prover. The first problem is caused by the 
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very large logic programs that result from the translation of defeasible theories with 

many conflicting rules, and by the restricted capabilities of the logic programming 

system (XSB 7[102]) that we use as the Logic Compiler. The second is probably 

caused by the method that we use to translate defeasible theories into logic programs, 

which does not permit the Evaluator to calculate all answers, given a query containing 

a free variable. The solution of these problems is part of our planned future work, 

which is described in the next section.     

9.2 Planned Future Work 

Our planned future work includes: 

� Adding arithmetic capabilities to the rule language, and using appropriate 

constraint solvers in conjunction with logic programs. This will allow us to 

add more expressional capabilities to the rule language, and make it more 

suitable for expressing business rules and contracts. 

� Add two kinds of negation into the object language; both classical negation 

and negation as failure. 

� Implementing load/upload functionality in conjunction with an RDF 

repository, such as RDF Suite 7[1] and Sesame 7[24]. This additional 

functionality will promote the integration of the system with the Semantic 

Web, and will make it more suitable for building web-based applications. 

� Study in more detail integration of defeasible reasoning with description logic 

based ontologies. Starting point of this investigation will be the Horn definable 

part of OWL 7[43]. 

� Studying in the translation of defeasible theories into logical programs, 

through the use of a meta-program, as that proposed in 7[7]. A such translation 

can reduce the size of the logical programs, improving the performance of the 

system. 

� Applications of defeasible reasoning and the developed implementation for 

brokering, bargaining, automated agent negotiation, and personalization.  
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