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Abstract. In ambient environments, there coexist many different enti-
ties that collect, process, and change the available context information.
Although they all share the same context, they face it from different
viewpoints based on their perceptive capabilities, experiences and goals.
Moreover, they are expected to use distinct vocabularies; they may even
have different levels of sociality. This diversity raises additional research
challenges in the study of Distributed Artificial Intelligence. In this pa-
per, we present an algorithm for reasoning with distributed rule theories
in an ambient setting. The algorithm models the participating agents as
nodes in a peer-to-peer system, and considers the potential conflicts that
may arise during the integration of the distributed theories taking into
account some special characteristics of context knowledge and ambient
agents.

1 Introduction

The study of ambient environments and pervasive computing systems has intro-
duced new research challenges in the field of Distributed Artificial Intelligence.
These are mainly caused by the imperfect nature of the available context infor-
mation and the special characteristics of the agents that provide and process this
knowledge. Henricksen and Indulska in [1] characterize four types of imperfect
context information: unknown, ambiguous, imprecise, and erroneous. Sensor or
connectivity failures (which are inevitable in wireless connections) result in sit-
uations, that not all context data is available at any time. When the data about
a context property comes from multiple sources, the context information may
become ambiguous. Imprecision is common in sensor-derived information, while
erroneous context information arises as a result of human or hardware errors.

The agents that operate in an ambient environment are expected to have
different goals, experiences and perceptive capabilities. They may use distinct
vocabularies; they may even have different levels of sociality. Due to the highly
dynamic and open nature of the environment (various entities join and leave
the environment at random times), they are not able to know a priori all other
entities that are present at a specific time instance nor can they communicate
directly with all of them.

Considering these requirements, three main challenges of knowledge manage-
ment in Ambient Intelligence are to enable:



1. Reasoning with the highly dynamic and ambiguous context data.
2. Managing the potentially huge piece of context data, in a real-time fashion,

considering the restricted computational capabilities of some mobile devices.
3. Collective intelligence, by supporting information sharing, and distributed

reasoning between the entities of the ambient environment.

So far, most pervasive computing frameworks have followed fully centralized
approaches (e.g. [2–11]), while some others have employed models based on the
blackboard and shared memory paradigms (e.g. [12–14]). Collecting the reasoning
tasks in a central entity certainly has many advantages. It achieves better con-
trol, and better coordination between the participating entities. However, such
solutions cannot meet the demanding requirements of ambient environments.
The dynamics of the network and the unreliable and restricted (by the range
of the transmitters) wireless communications inevitably lead to fully distributed
solutions.

The goal of this study is to propose a distributed solution tailored to the
special characteristics of ambient environments. The approach we propose to
take models the agents of an ambient environment as nodes in a peer-to-peer
system. Specifically, it considers nodes that have independent knowledge, and
that interact with existing, neighboring nodes to exchange information. The
internal knowledge is expressed in terms of rules, and knowledge is imported
from other nodes through bridging rules.

Even if it is assumed that the theory of each node is locally consistent,
the same assumption will not necessarily hold for the global knowledge base.
The unification of the local theories, which model the viewpoints of the different
nodes, may result in inconsistencies that are caused by the bridging rules. To deal
with them, we follow a non-monotonic approach; bridging rules are expressed as
defeasible rules (rules that may be defeated in the existence of adequate contrary
evidence), and priorities between conflicting rules are determined by the level of
trust that each node has on the other system nodes. In this way, the proposed
approach manages to exploit the knowledge of every system node, and reason
in a consistent and efficient manner, taking into account the viewpoint of each
different node with regard to its context and cooperating peers.

The rest of the paper is structured as follows. Section 2 refers to the most
prominent recent studies on reasoning in P2P data management systems and
contextual reasoning. In Section 3, we present the algorithms that constitute
our approach for reasoning with distributed rule theories. The conclusive section
briefly describes the next steps of our work.

2 Related Work

Several recent studies have focused on developing formal models and methods
for reasoning in peer-to-peer database systems. A key issue in formalizing data-
oriented P2P systems is the semantic characterization of the mappings (bridging
rules). One approach (followed in [15, 16]) is the first-order logic interpretation



of P2P systems. In [17], Calavanese et al. identifies several drawbacks with this
approach, regarding modularity, generality and decidability, and proposes new
semantics based on epistemic logic. A common problem of both approaches is
that they do not model and thus cannot handle inconsistency. Franconi et al. in
[18] extends the autoepistemic semantics to formalize local inconsistency. The
latter approach guarantees that a locally inconsistent database base will not
render the entire knowledge base inconsistent. A broader extension, proposed
by Calvanese et al. in [19], is based on nonmonontonic epistemic logic, and
enables isolating local inconsistency, while also handling peers that may provide
mutually inconsistent data. The proposed query evaluation algorithm assumes
that all peers share a common alphabet of constants, and does not model trust or
priorities between the peers. The propositional P2P inference system proposed
by Chatalic et al. in [20] deals with conflicts caused by mutually inconsistent
information sources, by detecting them and reasoning without them. The main
problem is the same, once again: To perform reasoning, the conflicts are not
actually resolved using some external trust or priority information; they are
rather isolated.

Relevant to our work are also some recent research studies that combine the
fields of multi-context systems (MCS) and nonmonotonic reasoning. The first
prominent work in this research line was conducted by Roelofsen and Serafini.
They define in [21] a non-monotonic rule-based MCS framework, which contains
default negation in the rules. The multi-context variant of Default Logic, intro-
duced by Brewka et al. in [22] is a step further towards nonmonotonic contextual
reasoning. Specifically, the authors propose to model the bridge relations between
different contexts as default rules. The latter study has the additional advantage
that is closer to implementation due to the well-studied relation between De-
fault Logic and Logic Programming. However, the authors do not provide cer-
tain reasoning algorithms, leaving some practical issues, such as the integration
of priority information, unanswered.

3 Our Approach

We propose modeling the agents of an ambient environment as nodes in a P2P
system. This choice is not arbitrary. The P2P paradigm captures many critical
properties of ambient settings:

1. Each different peer independently collects and processes in its own way the
available context information.

2. Each peer may not have (immediate) access to all information sources.
3. The peers share their knowledge through messages with their neighboring

nodes.
4. Each peer may not trust all the other peers at the same level.
5. Peers join and leave the system randomly.

Below, we define our P2P model, which captures local knowledge, mapping
relations through which the nodes exchange information, and trust between the



system nodes. We also define the specific reasoning problem that we deal with,
and describe the reasoning algorithms that we have developed.

3.1 Definitions

We assume a peer-to-peer system P as a collection of local theories:

P = {Pi}, i = 1, 2, ..., n

Each peer has a proper distinct vocabulary VPi
and a unique identifier i. Each

local theory is a set of rules that contain only local literals (literals from the
local vocabulary). These rules are of the form:

ri : ai, bi, ...ki → xi

where i denotes the peer identifier.
Each peer also defines mappings that associate literals from its own vocab-

ulary (local literals) with literals from the vocabulary of other peers (remote
literals). The acquaintances of peer Pi, ACQ(Pi) are the set of peers that at
least one of Pi’s mappings involves at least one of their local literals. The map-
pings are rules of the form:

mi : ai, bj , ...zk → x

The above mapping rule is defined by Pi, and associates some of its own local
literals with some of the literals defined by Pj , Pk and other system nodes. Literal
x may belong to whichever vocabulary of these system nodes. Finally, each peer
defines a trust order Ti, which includes a subset of the system nodes.

3.2 Problem Statement

Given a peer-to-peer system P , and a query about literal xi issued at peer Pi,
find the truth value of xi considering Pi’s local theory, its mappings and the
theories of the other system nodes.

We assume that the local theories are consistent, but this is not necessarily
true for the case of the unified theory T (P ), which is the collection of the theories
(local rules and mappings) of the system nodes. The inconsistencies result from
interactions between local theories and are caused by mappings.

An example of such conflicts derives in the following system of theories:

P1 P2 P3

r11 : a1 → x1 r21 : → a2 r31 :→ a3

m11 : a2 → a1

m12 : a3 → ¬a1

Pi’s theory is locally consistent, but with the addition of the the two mapping
rules (m11,m12), which associate the literals of P1 with those of P2 and P3, a
conflict about literal a1 derives from the interaction of the three theories.



3.3 P2P DR Algorithm

The algorithm follows four main steps. In the first step (lines 1-16), it uses
Pi’s local theory to prove xi. If xi or its negation, ¬xi, derives from the peer’s
local theory, the algorithm terminates returning Y es/No respectively, without
considering the peer’s mappings or the theories of other peers in the system.

In the second step (lines 17-41), if neither xi nor ¬xi derives from the local
theory, the algorithm also uses Pi’s mappings. It collects all the rules that support
xi. For each such rule, it checks the provability of the literals in its body. For each
local/remote literal, it issues similar queries (recursive calls of the algorithm) to
Pi (local literals) or to the appropriate Pi’s acquaintances (remote literals). To
avoid circles, before each new call, the algorithm checks if the same query has
been issued before, during the same query evaluation process. At the end of this
step, the algorithm builds the mapping supportive set of xi; this contains the
set of mapping (locally or remotely defined) rules that can be used to prove xi

in the absence of contradictions.
The third step (lines 42-66) involves the rules that contradict xi. The al-

gorithm builds the mapping conflicting set of xi, by collecting the rules that
support ¬xi.

In the last step (lines 64-71), the algorithm decides about xi by comparing
the supportive and conflicting sets. To compare two mapping sets, a peer uses
its trust order Ti. According to this order, one mapping rule mk is considered
to be stronger than ml from Pi’s viewpoint if Pi trusts Pk more than Pl. The
strength of a mapping set is determined by the weakest rule in this set. In the
followings, we denote as:

rl
i: a local rule of Pi

rm
i : a mapping rule of Pi

rlm
i : a rule (local/mapping) of Pi

Rm: the set of all mapping rules
Rs(xi): the set of supportive rules for xi

Rc(xi): the set of conflicting rules for xi

When a node Pi receives a query about xi, it runs the P2P DR algorithm.
The algorithm parameters are:

xi: the queried literal
P0: the peer that issued the query
Pi: the local node
SSxi : the set of supportive mappings for xi (initially empty)
CSxi : the set of conflicting mappings for xi (initially empty)
Histxi : the list of pending queries of the form: [x1, ..., xi]
Ansxi : the answer returned for xi (initially empty)

P2P DR(xi, P0, Pi, SSxi , CSxi ,Histxi , Ansxi)
1: if ∃rl

i ∈ Rs(xi) then
2: localHistxi ← [xi]



3: run local alg(xi, localHistxi
, localAnsxi

)
4: if localAnsxi = Y es then
5: Ansxi

← localAnsxi

6: terminate
7: end if
8: end if
9: if ∃rl

i ∈ Rc(xi) then
10: localHistxi

← [xi]
11: run local alg(¬xi, localHistxi , localAns¬xi)
12: if localAns¬xi = Y es then
13: Ansxi

← ¬localAns¬xi

14: terminate
15: end if
16: end if
17: for all rlm

i ∈ Rs(xi) do
18: SSri

← {}
19: for all bt ∈ body(rlm

i ) do
20: if bt ∈ Histxi then
21: stop and check the next rule
22: else
23: Histbt ← Histxi

⋃
bt

24: run P2P DR(bt, Pi, Pt, SSbt , CSbt ,Histbt , Ansbt)
25: if Ansbt = No then
26: stop and check the next rule
27: else
28: SSri ← SSri

⋃
SSbt

29: end if
30: end if
31: end for
32: if rlm

i ∈ Rm then
33: SSri ← SSri

⋃
rlm
i

34: end if
35: if Stronger(SSri , SSxi , Ti) = Y es then
36: SSxi ← SSri

37: end if
38: end for
39: if SSxi = {} then
40: return Ansxi = No and terminate
41: end if
42: for all rlm

i ∈ Rc(xi) do
43: SSri ← {}
44: for all bt ∈ body(rlm

i ) do
45: if bt ∈ Histxi then
46: stop and check the next rule
47: else



48: Histbt
← Histxi

⋃
bt

49: run P2P DR(bt, Pi, Pt, SSbt , CSbt ,Histbt , Ansbt)
50: if Ansbt

= No then
51: stop and check the next rule
52: else
53: SSri

← SSri

⋃
SSbt

54: end if
55: end if
56: end for
57: if rlm

i ∈ Rm then
58: SSri

← SSri

⋃
rlm
i

59: end if
60: if Stronger(SSri , CSxi , Ti) = Y es then
61: CSxi

← SSri

62: end if
63: end for
64: if CSxi = {} then
65: return Ansxi = Y es and SSxi and terminate
66: end if
67: if Stronger(SSxi , CSxi , Ti) = Y es then
68: return Ansxi = Y es and SSxi and terminate
69: else
70: Ansxi = No and terminate
71: end if

The local alg(xi, localHistxi , localAnsxi) is used to determine if xi is a con-
sequence of Pi’s local theory. The algorithm parameters are:

xi: the queried literal
localHistxi : the list of pending queries in Pi of the form: [x1

i , ..., x
m
i ]

localAnsxi : the local answer returned for xi (initially No)

local alg(xi, localHistxi , localAnsxi)
1: for all rl

i ∈ Rs(xi) do
2: if body(rl

i) = {} then
3: return localAnsxi = Y es
4: terminate
5: else
6: for all bi ∈ body(rl

i) do
7: if bi ∈ localHistxi then
8: stop and check the next rule
9: else

10: localHistbi ← localHistxi

⋃
bi

11: run local alg(bi, localHistbi , localAnsbi)
12: end if
13: end for



14: if for every bi: localAnsbi
= Y es then

15: localAnsxi ← Y es
16: terminate
17: end if
18: end if
19: end for

The Stronger(S, C, Ti) function is used by Pi to check if the S set of map-
pings is stronger than the C set of mappings based on Pi’s trust level order, Ti.

Stronger(S, C, Ti)
1: rw

s ← rs ∈ S s.t. forall ri ∈ S : rs is not weaker than ri (according to Ti)
2: rw

c ← rc ∈ C s.t. forall rj ∈ C : rc is not weaker than rj (according to Ti)
3: if rw

s is stronger than rw
c then

4: Stronger = Y es
5: else
6: Stronger = No
7: end if

3.4 Algorithm Properties

The application of the proposed algorithms in real scenarios largely depends on
some properties regarding its termination and complexity.

Termination. We assume that there are a finite number of nodes in the system,
each of which with a finite number of literals in its vocabulary. As a consequence,
there are a finite number of rules that a peer may define. If the algorithm did
not terminate, it would have to make indefinite recursive calls, adding each time
a new query to the history, without ever returning an answer or detecting a
cycle. However, this is impossible, because: (a) the number of recursive calls is
bounded by the total finite number of literals in the system; and (b) there can
be a finite number of independent (with different history) algorithm calls. These
are bounded by the total finite number of rules in the system. Consequently, the
algorithm will eventually terminate.

Number of Messages. To reduce the complexity of the algorithm with regard
to the number of messages that the system nodes have to exchange, and the
computational overhead of the algorithm on each system node, we can make the
following optimization: Each node is required to retain two states: (a) the state
of the queries it has been requested to process, INC Q; this contains tuples of
the form (qi, Ansqi), where qi is the queried literal, and Ansqi is true/false in
the case the node has completed the computation, or undetermined otherwise;
and (b) the state of the queries it has requested other peers to process, OUT Q
(of the same form). Before sending a query to one of its neighbors, a node checks



if the same query is in OUT Q. If this is the case, it retrieves the answer stored
in OUT Q if this has the value true/false, or waits until the pending query
returns a true/false answer. When a new query is issued at a node, the node
checks if the same query is in its INC Q. If it is, the node returns the stored
true/false answer for that query if this has already been computed; otherwise,
it suspends the new query until the pending query returns a true/false answer.
The space overhead of both states is proportional to the number of mappings
that a node defines. The two states need to be updated every time a new query
is issued at the system from an external source (we assume that the state of the
network remains unchanged during the computation of each such query).

With these optimizations, each node will have to make at most one query
for each of the remote literals that appear in the body of its mapping rules. In
the worst case, that each peer has defined mappings that involve literals from
all the other nodes in the system, and needs to apply all these mappings during
a query evaluation, each peer will have to make n × nl queries, where n is the
number of system nodes and nl is the maximum number of literals that a node
may define. So, the total number of messages that need to be exchanged for the
computation of a single query is in the worst case n×n×nl = O(n2) (assuming
that the number of nodes is the most critical parameter in the system).

4 Conclusion

We presented an approach for distributed reasoning in P2P settings, taking into
account some special properties and constraints of context knowledge and am-
bient environments. The proposed reasoning algorithm models and reasons with
potential conflicts that may arise during the integration of the distributed theo-
ries; to resolve these conflicts it uses trust information from the system nodes. We
have already proved some desirable algorithm properties regarding its termina-
tion and complexity, and we are in the course of studying other properties, such
as the computational complexity of the distributed algorithm on a single node.
Other planned research directions of the same work are: (a) Study if there is an
equivalent defeasible theory that derives from the unification of the distributed
theories and produces the same results; (b) Extend the algorithm to support
overlapping vocabularies; (c) Extend the algorithm to support defeasible local
rules, and non-Boolean queries; and (d) Study applications in the Ambient Intel-
ligence domain, where the theories may represent ontological knowledge (Horn
logic subset of OWL DL), policies or regulations.
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