
DR-Prolog: A System for Reasoning with Rules and Ontologies

on the Semantic Web

Grigoris Antoniou and Antonis Bikakis

Institute of Computer Science, FO.R.T.H

Vassilika Vouton, P.O. Box 1385, GR 71110, Heraklion, Greece

{antoniou,bikakis}@ics.forth.gr

Abstract

Defeasible reasoning is a rule-based approach for efficient
reasoning with incomplete and inconsistent information.
Such reasoning is, among others, useful for ontology
integration, where conflicting information arises
naturally; and for the modeling of business rules and
policies, where rules with exceptions are often used. This
paper describes these scenarios in more detail, and reports
on the implementation of a system for defeasible
reasoning on the Web. The system (a) is syntactically
compatible with RuleML; (b) features strict and
defeasible rules, priorities and two kinds of negation; (c)
is based on a translation to logic programming with
declarative semantics; (d) is flexible and adaptable to
different intuitions within defeasible reasoning; and (e)
can reason with rules, RDF, RDF Schema and (parts of)
OWL ontologies.

Introduction

The development of the Semantic Web (Berners Lee et
al., 2001) proceeds in layers, each layer being on top of
other layers. At present, the highest layer that has reached
sufficient maturity is the ontology layer in the form of the
description logic based languages of DAML+OIL
(Connolly et al., 2001) and OWL (Dean and Schreiber,
2004).
The next step in the development of the Semantic Web
will be the logic and proof layers that will offer enhanced
representation and reasoning capabilities. Rule systems
appear to lie in the mainstream of such activities.
Moreover, rule systems can also be utilized in ontology
languages. So, in general rule systems can play a twofold
role in the Semantic Web initiative: (a) they can serve as
extensions of, or alternatives to, description logic based
ontology languages; and (b) they can be used to develop
declarative systems on top of (using) ontologies. Reasons
why rule systems are expected to play a key role in the
further development of the Semantic Web include the
following:

• Seen as subsets of predicate logic, monotonic rule
systems (Horn logic) and description logics are
orthogonal; thus they provide additional expressive
power to ontology languages.

• Efficient reasoning support exists to support rule
languages.

• Rules are well known in practice, and are reasonably
well integrated in mainstream information technology.

Possible interactions between description logics and
monotonic rule systems were studied in (Grosof et al.,
2003). Based on that work and on previous work on
hybrid reasoning (Levy and Rousset, 1998) it appears
that the best one can do at present is to take the
intersection of the expressive power of Horn logic and
description logics; one way to view this intersection is
the Horn-definable subset of OWL.
This paper is devoted to a different problem, namely
conflicts among rules. Here we just mention the main
sources of such conflicts, which are further expanded in
the next section. At the ontology layer:

• Default inheritance within ontologies

• Ontology merging

And at the logic and reasoning layers:

• Rules with exceptions as a natural representation of
business rules

• Reasoning with incomplete information
Defeasible reasoning is a simple rule-based approach to
reasoning with incomplete and inconsistent information.
It can represent facts, rules, and priorities among rules.
This reasoning family comprises defeasible logics (Nute,
1994; Antoniou et al., 2001) and Courteous Logic
Programs (Grosof 1997). The main advantage of this
approach is the combination of two desirable features:
enhanced representational capabilities allowing one to
reason with incomplete and contradictory information,
coupled with low computational complexity compared to
mainstream nonmonotonic reasoning.
In this paper we report on the implementation of a
defeasible reasoning system for reasoning on the Web. Its
main characteristics are the following:

• Its user interface is compatible with RuleML (RuleML),
the main standardization effort for rules on the
Semantic Web.

• It is based on Prolog. The core of the system consists of
a well-studied translation (Antoniou et. al., 2001) of
defeasible knowledge into logic programs under Well-
Founded Semantics (van Gelder et al., 1991). This
declarative translation distinguishes our work from
other implementations (Grosof et al., 2002; Maher et
al., 2001).

• The main focus is on flexibility. Strict and defeasible
rules and priorities are part of the interface and the
implementation. Also, a number of variants were
implemented (ambiguity blocking, ambiguity

propagating, conflicting literals; see below for further
details).

• The system can reason with rules and ontological
knowledge written in RDF Schema (RDFS) or OWL.

As a result of the above, DR-Prolog is a powerful
declarative system supporting:

• rules, facts and ontologies

• all major Semantic Web standards: RDF, RDFS, OWL,
RuleML

• monotonic and nonmonotonic rules, open and closed
world assumption, reasoning with inconsistencies.

The paper is organized as follows. The next section
describes the main motivations for conflicting rules on
the Semantic Web. The third section describes the basic
ideas of defeasible reasoning, and the forth one describes
the translation of defeasible logic, and of RDF, RDFS
and (parts of) OWL into logic programs. The fifth
section reports on the implemented system. The sixth
section discusses related work, and the last section
concludes with a summary and some ideas for future
work.

Motivation for Nonmonotonic Rules on the

Semantic Web

We believe that we have to distinguish between two types
of knowledge on the Semantic Web. One is static
knowledge, such as factual and ontological knowledge
which contains general truths that do not change often.
And the other is dynamic knowledge, such as business
rules, security policies etc. that change often according to
business and strategic needs. The first type of knowledge
requires monotonic reasoning based on an open world
assumption to guarantee correct propagation of truths.
But for dynamic knowledge flexible, context-dependent
and inconsistency tolerant nonmonotonic reasoning is
more appropriate for drawing practical conclusions.
Obviously, a combination of both types of knowledge is
required for practical systems. Defeasible logic, as
described in the next section, supports both kinds of
knowledge. Before presenting its technical details, we
motivate the use of nonmonotonic rules in more detail.

Reasoning with Incomplete Information: Antoniou
and Arief (2002) describe a scenario where business
rules have to deal with incomplete information: in the
absence of certain information some assumptions have to
be made which lead to conclusions that are not supported
by classical predicate logic. In many applications on the
Web such assumptions must be made because other
players may not be able (e.g. due to communication
problems) or willing (e.g. because of privacy or security
concerns) to provide information. This is the classical
case for the use of nonmonotonic knowledge
representation and reasoning (Marek and Truszczynski,
1993).

Rules with Exceptions: Rules with exceptions are a
natural representation for policies and business rules
(Antoniou et. al, 1999). And priority information is often
implicitly or explicitly available to resolve conflicts
among rules. Potential applications include security

policies (Ashri et al., 2004; Li et al., 2003), business
rules (Antoniou and Arief 2002), personalization,
brokering, bargaining, and automated agent negotiations
(Governatori et al., 2001).

Default Inheritance in Ontologies: Default inheritance
is a well-known feature of certain knowledge
representation formalisms. Thus it may play a role in
ontology languages, which currently do not support this
feature. Grosof and Poon (2003) present some ideas for
possible uses of default inheritance in ontologies. A
natural way of representing default inheritance is rules
with exceptions, plus priority information. Thus,
nonmonotonic rule systems can be utilized in ontology
languages.

Ontology Merging: When ontologies from different
authors and/or sources are merged, contradictions arise
naturally. Predicate logic based formalisms, including all
current Semantic Web languages, cannot cope with
inconsistencies.

If rule-based ontology languages are used and if rules are
interpreted as defeasible (that is, they may be prevented
from being applied even if they can fire) then we arrive at
nonmonotonic rule systems. A skeptical approach, as
adopted by defeasible reasoning, is sensible because it
does not allow for contradictory conclusions to be drawn.
Moreover, priorities may be used to resolve some
conflicts among rules, based on knowledge about the
reliability of sources or on user input. Thus,
nonmonotonic rule systems can support ontology
integration.

Defeasible Logics

Basic Characteristics

The root of defeasible logics lies on research in
knowledge representation, and in particular on
inheritance networks. Defeasible logics can be seen as
inheritance networks expressed in a logical rules
language. In fact, they are the first nonmonotonic
reasoning approach designed from its beginning to be
implementable.
Being nonmonotonic, defeasible logics deal with
potential conflicts (inconsistencies) among knowledge
items. Thus they contain classical negation, contrary to
usual logic programming systems. They can also deal
with negation as failure (NAF), the other type of negation
typical of nonmonotonic logic programming systems; in
fact, Wagner (2003) argues that the Semantic Web
requires both types of negation. In defeasible logics,
often it is assumed that NAF is not included in the object
language. However, as Antoniou et al. (2000a) show, it
can be easily simulated when necessary. Thus, we may
use NAF in the object language and transform the
original knowledge to logical rules without NAF
exhibiting the same behavior.
Conflicts among rules are indicated by a conflict between
their conclusions. These conflicts are of local nature.
The simpler case is that one conclusion is the negation of
the other. The more complex case arises when the
conclusions have been declared to be mutually exclusive,

a very useful representation feature in practical
applications.
Defeasible logics are skeptical in the sense that
conflicting rules do not fire. Thus consistency of drawn
conclusions is preserved.
Priorities on rules may be used to resolve some conflicts
among rules. Priority information is often found in
practice, and constitutes another representational feature
of defeasible logics.
The logics take a pragmatic view and have low
computational complexity. This is, among others,
achieved through the absence of disjunction and the local
nature of priorities: only priorities between conflicting
rules are used, as opposed to systems of formal
argumentation where often more complex kinds of
priorities (e.g. comparing the strength of reasoning
chains) are incorporated.
Generally speaking, defeasible logics are closely related
to Courteous Logic Programs (Grosof, 1997); the latter
were developed much later than defeasible logics. DLs
have the following advantages:

• They have more general semantic capabilities, e.g. in
terms of loops, ambiguity propagation etc.

• They have been studied much more deeply, with strong
results in terms of proof theory (Antoniou et al.,
2001), semantics (Maher, 2002) and computational
complexity (Maher, 2001). As a consequence, its
translation into logic programs, a cornerstone of DR-
Prolog, has also been studied thoroughly (Maher et al.,
2001; Antoniou and Maher, 2002).

However, Courteous Logic Programs have also had some
advantages:

• They were the first to adopt the idea of mutually
exclusive literals, an idea incorporated in DR-Prolog.

• They allow access to procedural attachments,
something we have chosen not to follow in our work
so far.

Syntax

A defeasible theory D is a triple (F,R,>) where F is a
finite set of facts, R a finite set of rules, and > a
superiority relation on R. In expressing the proof theory
we consider only propositional rules. Rules containing
free variables are interpreted as the set of their variable-
free instances.
There are two kinds of rules (fuller versions of defeasible
logics include also defeaters): Strict rules are denoted by
 A → p,
and are interpreted in the classical sense: whenever the
premises are indisputable then so is the conclusion. An
example of a strict rule is “Professors are faculty
members”. Written formally:
 professor(X) → faculty(X).
Inference from strict rules only is called definite
inference. Strict rules are intended to define relationships
that are definitional in nature, for example ontological
knowledge.
Defeasible rules are denoted by
 A ⇒ p,
and can be defeated by contrary evidence. An example of
such a rule is

 faculty(X) ⇒ tenured(X)

which reads as follows: “Professors are typically
tenured”.
A superiority relation on R is an acyclic relation > on R
(that is, the transitive closure of > is irreflexive). When
 r1 > r2,
then r1 is called superior to r2, and r2 inferior to r1. This
expresses that r1 may override r2. For example, given the
defeasible rules
 r: professor(X) ⇒ tenured(X)

 r’: visiting(X) ⇒ ¬tenured(X)

which contradict one another: no conclusive decision can
be made about whether a visiting professor is tenured.
But if we introduce a superiority relation > with
 r’ > r,
then we can indeed conclude that a visiting professor
cannot be tenured.
A formal definition of the proof theory is found in
(Antoniou et al., 2001).

Simulation of Negation As Failure in the Object

Language

We follow a technique based on auxiliary predicates first
presented in (Antoniou et al., 2000a), but which is often
used in logic programming. According to this technique,
a defeasible theory with NAF can be modularly
transformed into an equivalent one without NAF. Every
rule
 r: L1,…,Ln, ~M1,…, ~Mk ⇒ L

where L1,…,Ln, M1,…,Mk are atoms and ~Mi denotes the
weak negation of Mi, is replaced by the rules:

 r: L1,…,Ln, neg(M1),…,neg(Mk) ⇒ L

 ⇒ neg(M1)

 …

 ⇒ neg(Mk)

 M1 ⇒ ¬neg(M1)

 …

 Mk ⇒ ¬neg(Mk)

where neg(M1),…,neg(Mk) are new auxiliary atoms
and ¬neg(Mi) denotes the strong negation of Mi. If we
restrict attention to the original language, the set of
conclusions remains the same.

Ambiguity Blocking and Ambiguity Propagating

Behavior

A literal is ambiguous if there is a chain of reasoning that
supports a conclusion that p is true, another that supports
that ¬p (where ¬p denotes strong negation of p) is true,
and the superiority relation does not resolve this conflict.
We can illustrate the concept of ambiguity propagation
through the following example.
 r1: quaker(X) ⇒ pacifist(X)

 r2: republican(X) ⇒ ¬pacifist(X)

 r3: pacifist(X) ⇒ ¬hasGun(X)

 r4: livesInChicago(X) ⇒ hasGun(X)

 quaker(a)

 republican(a)

 livesInChicago(a)

 r3 > r4

Here pacifist(a) is ambiguous. The question is
whether this ambiguity should be propagated to the
dependent literal hasGun(a). In one defeasible logic
variant it is detected that rule r3 cannot fire, so rule r4 is
unopposed and gives the defeasible conclusion
hasGun(a). This behavior is called ambiguity blocking,
since the ambiguity of pacifist(a) has been used to
block r3 and resulted in the unambiguous conclusion
hasGun(a).
On the other hand, in the ambiguity propagation variant,
although rule r3 cannot lead to the conclusion
hasGun(a) (as pacifist(a) is not provable), it
opposes rule r4 and the conclusion hasGun(a) cannot
also be drawn.
This question has been extensively studied in artificial
intelligence, and in particular in the theory of inheritance
networks. A preference for ambiguity blocking or
ambiguity propagating behavior is one of the properties
of nonmonotonic inheritance nets over which intuitions
can clash. Ambiguity propagation results in fewer
conclusions being drawn, which might make it preferable
when the cost of an incorrect conclusion is high. For
these reasons an ambiguity propagating variant of DL is
of interest.

Conflicting Literals

Usually in Defeasible Logics only conflicts among rules
with complementary heads are detected and used; all
rules with head L are considered as supportive of L, and
all rules with head ¬L as conflicting. However, in
applications often literals are considered to be
conflicting, and at most one of a certain set should be
derived. For example, the risk an investor is willing to
accept may be classified in one of the categories low,
medium, and high. The way to solve this problem is to
use a constraint rule of the form
 conflict :: low, medium, high

Now if we try to derive the conclusion high, the
conflicting rules are not just those with head ¬high, but
also those with head low and medium. Similarly, if we
are trying to prove ¬high, the supportive rules include
those with head low or medium.
In general, given a conflict::L,M, we augment the
defeasible theory by:

 ri: q1,q2,…,qn → ¬L

 for all rules ri: q1,q2,…,qn → M

 ri: q1,q2,…,qn → ¬M

 for all rules ri: q1,q2,…,qn → L

 ri: q1,q2,…,qn ⇒ ¬L

 for all rules ri: q1,q2,…,qn⇒ M

 ri: q1,q2,…,qn ⇒ ¬M

 for all rules ri: q1,q2,…,qn ⇒ L

The superiority relation among the rules of the defeasible
theory is propagated to the “new” rules.

Translation into Logic Programs

Translation of Defeasible Theories

The translation of a defeasible theory D into a logic
program P(D) has a certain goal: to show that
 p is defeasibly provable in D �
 p is included in the Well-Founded Model of P(D)
Two different translations have so far been proposed,
sharing the same basic structure:
The translation of (Antoniou et al., 2000b; Maher et al.,
2001) where a meta-program was used.
The translation of (Antoniou and Maher, 2002), which
makes use of control literals.
It is an open question which is better in terms of
computational efficiency, although we conjecture that for
large theories the meta-program approach is better, since
in the other approach a large number of concrete program
clauses is generated. Therefore, we have adopted this
approach in our implementation.

Translation of Ambiguity Blocking Behavior. The
metaprogram which corresponds to the ambiguity
blocking behavior of the defeasible theories consists of
the following program clauses:
The first three clauses define the class of rules used in a
defeasible theory.

 supportive_rule(Name,Head,Body):-

 strict(Name,Head,Body).

 supportive_rule(Name,Head,Body):-

 defeasible(Name,Head,Body).

 rule(Name,Head,Body):-

 supportive_rule (Name,Head,Body).

The following clauses define the definite provability: a
literal is definitely provable if it is a fact or is supported
by a strict rule, the premises of which are definitely
provable.

 definitely(X):- fact(X).

 definitely(X):-strict(R,X,L),

 definitely_provable(L).

 definitely_provable([]).

 definitely_provable(X):- definitely(X).

definitely_provable([X1|X2]):-

definitely_provable(X1),

definitely_provable(X2).

The next clauses define the defeasible provability: a
literal is defeasibly provable, either if it is definitely
provable, or if its complementary is not definitely
provable, and it is supported by a defeasible rule, the
premises of which are defeasibly provable, and which is
not overruled. The sk_not operator, which we use as the
negation operator in the following clauses, is provided by
XSB (the logic programming system that stands in the
core of DR-Prolog), and allows for correct execution of
programs according to the well-founded semantics.

 defeasibly(X):- definitely(X).

defeasibly(X):- negation(X,X1),

supportive_rule(R,X,L),

defeasibly_provable(L),

sk_not(definitely(X1)),

 sk_not(overruled(R,X)).

 defeasibly_provable([]).

 defeasibly_provable(X):- defeasibly(X).

defeasibly_provable([X1|X2]):-

defeasibly_provable(X1),

defeasibly_provable(X2).

The next clause defines that a rule is overruled when
there is a conflicting rule, the premises of which are
defeasible provable, and which is not defeated.

 overruled(R,X):- negation(X,X1),

 supportive_rule(S,X1,U),

defeasibly_provable(U),

 sk_not(defeated(S,X1)).

The next clause defines that a rule is defeated when there
is a superior conflict rule, the premises of which are
defeasibly provable. The last two clauses are used to
define the negation of a literal.

 defeated(S,X):-sup(T,S), negation(X,X1),

supportive_rule(T,X1,V),

defeasibly_provable(V).

 negation(~(X),X):- !.

 negation(X,~(X)).

For a defeasible theory D = (F,R,>), where F is the set of
the facts, R is the set of the rules, and > is the set of the
superiority relations between the rules of the theory, we
add facts according to the following guidelines:

 fact(p).

 for each p∈F
 strict(ri,p,[q1,…,qn]).
 for each rule r: q1,q2,…,qn → p ∈R
 defeasible(ri,p,[q1,…,qn]).
 for each rule r: q1,q2,…,qn ⇒ p ∈R
 sup(r,s).
 for each pair of rules such that r>s

Translation of Ambiguity Propagating Behavior. In
order to support the ambiguity propagation behavior of a
defeasible theory, we only have to modify the program
clauses which define when a rule is overruled. In
particular, in this variant a rule is overruled when there is
a conflicting rule, the premises of which are supported,
and which is not defeated.

 overruled(R,X):- negation(X,X1),

supportive_rule(S,X1,U),

supported_list(U),

 sk_not(defeated(S,X1)).

The next clauses define that a literal is supported, either
if it is definitely provable, or if there is a supportive rule,
the premises of which are supported, and which is not
defeated.

 supported(X):- definitely(X).

 supported(X):-supportive_rule(R,X,L),

supported_list(L),

sk_not(defeated(R,X)).

 supported_list([]).

 supported_list(X):- supported(X).

 supported_list([X1|X2]):-

 supported_list(X1),

 supported_list(X2).

Translation of RDF(S) and parts of OWL

ontologies

In order to support reasoning with RDF/S and OWL
ontologies, we translate RDF data into logical facts, and
RDFS and OWL statements into logical facts and rules.
For RDF data, the SWI-Prolog RDF parser (SWI) is used
to transform it into an intermediate format, representing
triples as

 rdf(Subject, Predicate, Object).

Some additional processing
(i) transforms the facts further into the format

 Predicate(Subject, Object);

(ii) cuts the namespaces and the “comment” elements of
the RDF files, except for resources which refer to the
RDF or OWL Schema, for which namespace information
is retained.
In addition, for processing RDF Schema information, the
following rules capturing the semantics of RDF Schema
constructs are created:

 a: C(X):- rdf:type(X,C).

 b: C(X):- rdfs:subClassOf(Sc,C),Sc(X).

 c: P(X,Y):- rdfs:subPropertyOf(Sp,P),

 Sp(X,Y).

 d: D(X):- rdfs:domain(P,D),P(X,Z).

 e: R(Z):- rdfs:range(P,R),P(X,Z).

Parts of OWL ontologies can also be translated using
logical rules, which capture the semantics of some of the
OWL constructs.

Equality

o1: D(X):- C(X),owl:equivalentClass(C,D).

o2: C(X):- D(X),owl:equivalentClass(C,D).

o3: P(X,Y):- Q(X,Y),

 owl:equivalentProperty(P,Q).

o4: Q(X,Y):- P(X,Y),

 owl:equivalentProperty(P,Q).

o5: owl:equivalentClass(X,Y):-

 rdfs:subClassOf(X,Y),

 rdfs:subClassOf(Y,X).

o6 :owl:equivalentProperty(X,Y):-

 rdfs:subPropertyOf(X,Y),

 rdfs:subPropertyOf(Y,X)

o7 : C(X):- C(Y),

 owl:sameIndividualAs(X,Y).

o8 : P(X,Z):- P(X,Y),

 owl:sameIndividualAs(Y,Z).

o9 : P(Z,Y):- P(X,Y),

 owl:sameIndividualAs(X,Z).

o10: owl:sameIndividualAs(X,Y):-

 owl:sameIndividualAs(Y,X).

o11: owl:sameIndividualAs(X,Z):-

owl:sameIndividualAs(X,Y),

owl:sameIndividualAs(Y,Z).

Figure 1: The overall architecture of DR-Prolog

o12: owl:sameAs(X,Y):-

 owl:equivalentClass(X,Y).

o13: owl:sameAs(X,Y):-

 owl:equivalentProperty(X,Y).

o14: owl:sameAs(X,Y):-

 owl:sameIndividualAs(X,Y).

Property Characteristics

o15: P(X,Z):- P(X,Y), P(Y,Z),

 rdf:type(P,owl:TransitiveProperty).

o16: P(X,Y):- P(Y,X),

 rdf:type(P,owl:SymmetricProperty).

o17: P(X,Y):- Q(Y,X),owl:Inverseof(P,Q).

o18: Q(X,Y):- P(Y,X),owl:Inverseof(P,Q).

o19: owl:sameIndividualAs(X,Y):-

 P(A,X),P(A,Y),

 rdf:type(P,owl:FunctionalProperty).

o20: owl:sameIndividualAs(X,Y):-

 P(X,A),P(Y,A),

rdf:type(P,owl:InverseFunctionalProperty)

Property Restrictions

o21: D(Y):- C(X),P(X,Y),

 rdfs:subClassOf(C,R),

 rdf:type(R,owl:Restriction),

 owl:onProperty(R,P),

 owl:allValuesFrom(R,D),

 rdf:type(D,owl:Class).

o22: C(X):- P(X,V),rdfs:subClassOf(C,R),

 rdf:type(R,owl:Restriction),

 owl:onProperty(R,P),owl:hasValue(R,V).

o23: P(X,V):- C(X),rdfs:subClassOf(C,R),

 rdf:type(R,owl:Restriction),

 owl:onProperty(R,P),owl:hasValue(R,V).

Collections

o24: D(X):- C1(X), C2(X),

 owl:IntersectionOf(D,Collect),

 rdf:type(Collect,Collection),

 memberOf(C1,Collect),

 memberOf(C2,Collect).

o25: C1(X):- D(X),

 owl:IntersectionOf(D,Collect),

 rdf:type(Collect,Collection),

 memberOf(C1,Collect),

 memberOf(C2,Collect).

o26: C2(X):- D(X),

 owl:IntersectionOf(D,Collect),

 rdf:type(Collect,Collection),

 memberOf(C1,Collect),

 memberOf(C2,Collect).

o27: C(X):- owl:oneOf(C,Collect),

 rdf:type(Collect,Collection),

 memberOf(X,Collect).

Implementation

DR-Prolog, in accordance with the general philosophy of
logic programming, is designed to answer queries. In
fact, there are two kinds of queries, depending on which

strength of proof we are interested in: definite or
defeasible provability.
In Figure 1 we present the overall architecture of our
system. The system works in the following way: The user
imports defeasible theories, either using the syntax of
defeasible logic, or in the RuleML syntax, that we
describe below in this section. The former theories are
checked by the DL Parser, and if they are syntactically
correct, they are passed to the Logic Translator, which
translates them into logic programs. The RuleML
defeasible theories are checked by the RuleML Parser
and translated into defeasible theories, which are also
passed to the Logic Translator and transformed into logic
programs. The Reasoning Engine compiles the logic
programs and the metaprogram which corresponds to the
user’s choice of the defeasible theory variants (ambiguity
blocking / propagating), and evaluates the answers to the
user’s queries. The logic programming system that we
use as the Reasoning Engine is XSB. The advantages of
this system are two: (a) it supports the well-founded
semantics of logic programs through the use of tabled
predicates, and its sk_not negation operator; and (b) it
offers an easy and efficient way to communicate with the
other parts of the system. The RDF&OWL Translator is
used to translate the RDF/S and OWL information into
logical facts and rules, which can be processed by the
rules, provided by the user.
The DTD that we have developed to represent defeasible
theories in XML format, is in fact an extension of the
RuleML DTDs (RuleML). The elements that we add /
modify to support the defeasible theories are:

• The “rulebase” root element which uses strict and
defeasible rules, fact assertions and superiority
relations.

• The “imp” element, which consists of a “_head” and a
“_body” element, accepts a “name” attribute, and
refers to the strict rules.

• The “def” element, which consists of a “_head” and a
“_body” element, accepts a “name” attribute, and
refers to the defeasible rules.

• The “superiority” empty element, which accepts the
name of two rules as its attributes (“sup” & “inf”), and
refers to the superiority relation between these two
rules.

Below, we present the modified DTD:

 <!ELEMENT rulebase ((imp|def|fact|greater)*)>
 <!ELEMENT imp ((head, body) | (body, head))>
 <!ATTLIST imp
 name ID #IMPLIED>
 <!ELEMENT def ((head, body) | (body, head))>
 <!ATTLIST def
 name ID #IMPLIED>
 <!ELEMENT fact (atom|neg) >
 <!ELEMENT greater EMPTY>
 <!ATTLIST greater
 sup IDREF #REQUIRED
 inf IDREF #REQUIRED>
 <!ELEMENT head (atom|neg)>
 <!ELEMENT body (atom|neg)*>
 <!ELEMENT neg (atom)>
 <!ELEMENT atom ((op,(ind | var)*) | ((ind | var)+,
op))>
 <!ELEMENT ind (#PCDATA)>
 <!ELEMENT var (#PCDATA)>
 <!ELEMENT op (#PCDATA)>

All the DR-Prolog files are available at:
http://www.csd.uoc.gr/~bikakis/DR-Prolog.

Related Work

There exist several previous implementations of
defeasible logics. Conington et al. (2002) give the
historically first implementation, D-Prolog, a Prolog-
based implementation. It was not declarative in certain
aspects (because it did not use a declarative semantic for
the not operator), therefore it did not correspond fully to
the abstract definition of the logic. Also, D-Prolog
supported only one variation thus it lacked the flexibility
of the implementation we report on. Finally it did not
provide any means of integration with Semantic Web
layers and concepts, a central objective of our work.
Deimos (Maher et al., 2001) is a flexible, query
processing system based on Haskell. It implements
several variants, but not conflicting literals. Also, it does
not integrate with Semantic Web (for example, there is
no way to treat RDF data and RDFS/OWL ontologies;
nor does it use an XML-based or RDF-based syntax for
syntactic interoperability). Thus it is an isolated solution.
Finally, it is propositional and does not support variables.
Delores (Maher et al., 2001) is another implementation,
which computes all conclusions from a defeasible theory.
It is very efficient, exhibiting linear computational
complexity. Delores only supports ambiguity blocking
propositional defeasible logic; so, it does support
ambiguity propagation, nor conflicting literals and
variables. Also, it does integrate with other Semantic
Web languages and systems, and is thus an isolated
solution.
DR-DEVICE (Bassiliades, 2004) is another effort on
implementing defeasible reasoning, albeit with a different

approach. DR-DEVICE is implemented in Jess, and
integrates well with RuleML and RDF. It is a system for
query answering. Compared to the work of this paper,
DR-DEVICE supports only one variant, ambiguity
blocking, thus it does not offer the flexibility of this
implementation. At present, it does not support RDFS
and OWL ontologies.
SweetJess (Grosof et al., 2002) is another
implementation of a defeasible reasoning system
(situated courteous logic programs) based on Jess. It
integrates well with RuleML. Also, it allows for
procedural attachments, a feature not supported by any of
the above implementations, not by the system of this
paper. However, SweetJess is more limited in flexibility,
in that it implements only one reasoning variant (it
corresponds to ambiguity blocking defeasible logic).
Moreover, it imposes a number of restrictions on the
programs it can map on Jess. In comparison, our system
implements the full version of defeasible logic.

Conclusion

In this paper we described reasons why conflicts among
rules arise naturally on the Semantic Web. To address
this problem, we proposed to use defeasible reasoning
which is known from the area of knowledge
representation. And we reported on the implementation
of a system for defeasible reasoning on the Web. It is
Prolog-based, supports RuleML syntax, and can reason
with monotonic and nonmonotonic rules, RDF facts and
RDFS and OWL ontologies..
Planned future work includes:

• Adding arithmetic capabilities to the rule language, and
using appropriate constraint solvers in conjunction
with logic programs.

• Implementing load/upload functionality in conjunction
with an RDF repository, such as RDF Suite (Alexaki et
al., 2001) and Sesame (Broekstra et al., 2003).

• Applications of defeasible reasoning and the developed
implementation for brokering, bargaining, automated
agent negotiation, and security policies.

References

Alexaki, S.; Christophides, V.; Karvounarakis, G.;
Plexousakis, D.; and Trolle, K. 2001 The ICS-FORTH
RDFSuite: Managing Voluminous RDF Description
Bases. 2nd International Workshop on the Semantic Web
(SemWeb'01).

Antoniou, G., and Arief, M. 2002. Executable
Declarative Business rules and their use in Electronic
Commerce. In Proc. ACM Symposium on Applied
Computing

Antoniou, G.; Billington, D.; and Maher M. J. 1999. On
the analysis of regulations using defeasible rules. In
Proc. 32nd Hawaii International Conference on Systems
Science

Antoniou G.; Billington D.; Governatori G.; and Maher
M. J. 2001. Representation results for defeasible logic.

ACM Transactions on Computational Logic 2, 2 (2001):
255 - 287

Antoniou G.; Maher M. J.; and Billington D. 2000a.
Defeasible Logic versus Logic Programming without
Negation as Failure. Journal of Logic Programming 41,1
(2000): 45-57

Antoniou G.; Billington, D.; Governatori G.; and Maher
M. J. 2000b: A Flexible Framework for Defeasible
Logics. In Proc. AAAI’ 2000, 405-410

Antoniou G.; Maher M. J. 2002. Embedding Defeasible
Logic into Logic Programs. In Proc. ICLP 2002, 393-
404

Ashri, R.; Payne, T.; Marvin, D; Surridge, M.; and
Taylor S. 2004. Towards a Semantic Web Security
Infrastructure. In Proc. of Semantic Web Services 2004
Spring Symposium Series, Stanford University,
California

Bassiliades, N; Antoniou, G; and Vlahavas, I. 2004. DR-
DEVICE: A Defeasible Logic System for the Semantic
Web. In Proc. 2nd Workshop on Principles and Practice
of Semantic Web Reasoning (PPSWR04), LNCS,
Springer 2004 (accepted)

Berners-Lee, T; Hendler, J; and Lassila, O. 2001. The
Semantic Web. Scientific American, 284, 5 (2001): 34-43

Broekstra, J; Kampman, A.; and van Harmelen, F. 2003
Sesame: An Architecture for Storin gand Querying RDF
Data and Schema Information. In: D. Fensel, J. A.
Hendler, H. Lieberman and W. Wahlster (Eds.), Spinning
the Semantic Web, MIT Press, 197-222

Connolly, D; van Harmelen, F.; Horrocks, I.;
McGuinness, D. L.; Patel-Schneider, P. F.; and Stein, L.
A. 2001. DAML+OIL Reference Description.
www.w3.org/TR/daml+oil-reference

Covington, M. A.; Nute, D.; and Vellino, A. 1997.
Prolog Programming in Depth, 2nd ed. Prentice-Hall

Dean, M., and Schreiber, G. (Eds.) 2004. OWL
Web Ontology Language Reference.
www.w3.org/TR/2004/REC-owl-ref-20040210/

van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs. Journal of
the ACM 38 (1991): 620—650

Governatori, G; Dumas, M.; ter Hofstede, A.; and Oaks,
P. 2001. A formal approach to legal negotiation. In Proc.
ICAIL 2001, 168-177

Grosof, B. N. 1997. Prioritized conflict handing for logic
programs. In Proc. of the 1997 International Symposium
on Logic Programming, 197-211

Grosof, B. N.; Gandhe, M. D.; and Finin T. W. 2002
SweetJess: Translating DAMLRuleML to JESS. RuleML
2002. In: Proc. International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web

Grosof, B. N.; Horrocks, I.; Volz, R; and Decker, S.
2003. Description Logic Programs: Combining Logic
Programs with Description Logic". In: Proc. 12th Intl.
Conf. on the World Wide Web (WWW-2003), ACM Press

Grosof, B. N., and Poon, T. C. 2003. SweetDeal:
representing agent contracts with exceptions using XML
rules, ontologies, and process descriptions. In Proc. 12th

International Conference on World Wide Web. ACM
Press, 340 – 349

Levy, A., and Rousset M. C. 1998. Combining Horn
rules and description logics in CARIN. Artificial
Intelligence 104, 1-2 (1998):165 - 209

Li, N.; Grosof, B. N.; and Feigenbaum, J. 2003.
Delegation Logic: A Logic-based Approach to
Distributed Authorization. In: ACM Transactions on
Information Systems Security 6,1 (2003)

Maher, M. J. 2002: A Model-Theoretic Semantics for
Defeasible Logic. In Proc. Paraconsistent
Computational Logic 2002, Datalogisker Srkifter 95 ,67-
80

Maher, M. J. 2001. Propositional Defeasible Logic has
Linear Complexity. Logic Programming Theory and
Practice 1(6): 691-711 (2001)

Maher, M. J.; Rock, A.; Antoniou, G.; Billington, D.; and
Miller, T. 2001. Efficient Defeasible Reasoning Systems.
International Journal of Tools with Artificial Intelligence
10,4 (2001): 483--501

Marek, V. W., and Truszczynski, M. 1993.
Nonmonotonic Logics; Context Dependent Reasoning.
Springer Verlag

Nute, D. 1994. Defeasible logic. In Handbook of logic in
artificial intelligence and logic programming (vol. 3):
nonmonotonic reasoning and uncertain reasoning.
Oxford University Press

RuleML. The Rule Markup Language Initiative.
www.ruleml.org

SWI. SWI-Prolog, http://www.swi-prolog.org

Wagner, G. 2003. Web Rules Need Two Kinds of
Negation. In Proc. First Workshop on Semantic Web
Reasoning, LNCS 2901, Springer 2003, 33-50

XSB, Logic Programming and Deductive Database
System for Unix and Windows. http://xsb.sourceforge.net

